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Abstract: The steepest descent method is the simplest gradient methed for solving unconstrained optimization
problems. In this study, a new scaled search direction of steepest descent method is proposed. The proposed
method is motivated by Andrei’s approach of scaled conjugate gradient method. The numerical results show
that the proposed method outperforms than the other classical steepest descent method.
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INTRODUCTION

The Steepest Descent (SD) method 18 a well-known
optimization method for solving unconstramned
optimization problems. The SD method has low
computational cost and matrix storage requirement
considering that 1t does not need the computation of
second derivatives to be solved to compute the search
direction. Generally, the unconstrained optimization
problem to be mimmized 1s considered below:

minf(x) (1)

zeR"
Where:
f: R,7R = Continuously differentiable function. Suppose
that an initial point

Xq = Selected, then the next iterate point
Xpry = That approaches a solution pomt 1s obtained
by the iterative Eq:
Xy =X TG dy (2)
Where:

x, = The current iterate point
a, = A positive step-size
d, = The search direction

The search direction is in the opposite of gradient:

dy =-glx ) =-VI(xy) (3)

The SD method was first introduced by Cauchy
(1847) who proposed the use of negative gradient
direction to find the local mimimizers of a differentiable
function. The SD method produces successive directions
that are orthogonal to each other. However, the choice of
exact line search with the direction of SD may cause the
algorithm to zigzag when the point is near to the optimum
(Abidin et al, 2014; Nocedal and Wright, 2006). Thus,
the convergence speed of SD becomes very slow.
Abidin et al. (2014) presented a new search direction from
Cauchy’s method in the form of two parameters
which 1s known as Zubai’ah-Mustafa-Rivaie-Ismail
(ZMRI) method:

ZMEI
dk

=-g.-lg.llg., )

Tt is known that the choices of step-size and search
direction affect numerical performance of gradient method
(Nocedal and Wright, 2006). The stepsize can be obtained
by exact line search:

o =minf (x, to, (-g,)) (5)

Barzilai and Borwein (1988) presented a new formula
of step-size through two-point step-size for gradient
method. TInterestingly, the Barzilai-Borwein (BB)
method converges with R-superlinear convergence for
two-dimensional strictly convex quadratic functions. Due
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toits simplicity and numerical efficiency, the BB method
has attracted the attention of many researchers on the
choices of the step-size such as Raydan (1993a, b),
Dai and Liao (2002), Mamat et ol (2009) and many others.
Wen et al. (2012) stated that only exact line search can
give the greatest possible reduction to the objective
function even though several inexact line searches have
been proposed. Therefore, we use exact line search as the
line search procedure in this study.

MATERIALS AND METHODS

New scaled search direction: In this study, a new scaled
Search Direction of SD method 1s proposed. This
modification is inspired from Andrei (2007)’s approach of
scaled conjugate gradient method into the search
direction of ZMRI. The proposed method is named as
where RRM denotes Rashidah, Rivaie and Mamat:

if k=0,

dy _{ Bk _ ©)
081 8 | 8 1 k21

where, 8, (Zhang et al., 2006) is a scaling parameter to be:

8, = dE—lYk -1 Q)
Jea/*
Where:
¥k = 8k Bka

Algorithm of SD** method 1:
Step 1: Given initial point,x;. Setk =0
Step 2: Compute the search direction by Eq.6
If d,, =0, then stop. Declare x, as a stationary point
Step 3: Compute the step-size a, by exact line search, based on Eq. 5
Step 4:  Update the next point x4 by Eq. 2
Step 5: Check for convergence and stopping criteria
If fixy q)<fxy) and HngSg where £ = 10° satisfied, then
te

terminal
Otherwise, consider, k =k+1 continue by Step 2

RESULTS AND DISCUSSION

Numerical results and discussion: Tn this study, the
comparison results between RRM with ZMRI and SD by
using standard test functions (Andrei, 2008; Jamil and
Yang, 2013; Witte and Hoist, 1964) are observed. Four
different initial points are chosen for each test functions
to study the global convergence properties of the
proposed method. The initial points are assigned from the
closer initial point to the further away from the solution
point. The stopping criteria are set to ||g/<10°. All
problems in Table 1 and 2 are solved by using Maple

Table 1: Test finction comparisons based on munber of iterations
No. of iterations

Function Initial point SD ZMRI RRM
Shalow (-10, -10) 100 31 37
(1.5, 1.5) 19 18 20
(2.2) 79 16 20
(10, 10) 121 27 25
Rosenbrock (-2,2) =>1000 101 36
(0.01, 0.01) =1000 175 151
(0.3,1.6) >1000 137 )
) =1000 295 67
Himmelblau (5.5 19 22 10
(10, 10) 17 17 13
(15,15 17 15 13
(20, 20) 17 13 13
3 hump camel (0.35, 0.35) 16 13 12
(0.65, 0.63) 14 11 9
(0.85, 0.85) 5 13 9
@, -2) 9 13 12
6 hump camel (0.15,0.15) 12 10 8
(0.45, 0.45) 8 & 5
(3.3 12 14 10
@, 4 13 12 10
Quartic (2.2) 19 14 11
@, 4 19 15 11
(s, 6) 19 15 11
X)) 19 15 11
Zettl (2.2) 136 42 36
) 160 38 36
4 168 38 36
(55 170 38 36
Engvall (3,3) 19 15 11
(@, 6) 19 15 11
(15,15 19 13 11
(20, 20) 19 15 11
Liarwhd (7.7 20 17 15
(15,15 16 19 13
(17,17 16 19 16
(20, 20) 16 19 18
Goldstein-Price’s (5, 5) 211 19 18
(7.7 58 26 25
(11,11) 321 36 34
(24, 20 =1000 43 20
Cube (-0.001, 0.001) =1000 Fail 57
(-0.25,0.25) =1000 54 49
(-0.5, 0.5) =1000 249 71
3.5 =1000 275 60
Beale’s (3.3 599 55 21
(5,0.5) 33 79 31
© 3 =1000 43 37
(11, 0.5) 97 100 82
Price (0.15,0.15) 115 50 50
(0.55, 0.55) =1000 44 7
(14, 14) =1000 Fail 25
(27.5,27.5) 39 Fail 5
Nonscormnp (1.25,1.25) 25 22 20
(s, 6) 341 30 22
©, 9 437 198 35
(13, 13) 533 31 20

18 programming. Figure 1 and 2 show the performance
results based on the performance profile introduced by
Dolan and More (2002).
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Table 2: Test fimction comparisons based on CPU time
CPU time (sec)

Function Initial point SD ZMRI RRM
Shalow (-10, -10) 12.1525 4.8672 5.8656
(1.5, 1.5) 3.6348 3.8064 3.9936
2,2 5.2728 3.3384 3.7440
(10, 10) 14.0713 5.1168 4.4928
Rosenbrock (-2,2) NA 11.2477 51012
(0.01, 0.01) NA 18.6889 16.7857
(0.3, 1.6) NA 14.6953 10.1869
5,5 NA 30.4358 8.2213
Himmelblau (5, 5) 2.9484 3.3540 2.4336
(10, 10) 2.8704 2.8548 2.7456
(15,15) 2.7456 3.0732 2.6832
(20, 20) 2.7144 2.8392 2.7612
3 hump camel (0.35, 0.35) 5.4600 3.0504 3.6504
(0.65, 0.65) 3.7128 3.4008 2.9328
(0.85, 0.85) 2.2620 3.6348 2.7456
2,-2) 3.0888 3.8220 3.3072
6 hump carnel (0.15, 0.15) 4.0716 3.2448 3.1824
(0.45, 0.45) 2.5740 2.4804 2.4336
(3, 3) 3.5100 4.0716 3.3540
“, 9 3.6660 3.6660 3.4788
Quartic 2,2 3.5412 2.9640 2.6676
“, 9 3.4788 3.2448 2.8704
(6, 6) 3.3540 3.6036 3.0420
(8,8 3.7596 3.0576 2.7300
Zettl 2,2 13.8841 5.1480 4.9452
(3,3 15.2101 4.6800 4.9920
4,4 17.1289 5.0544 4.8360
5,5 17.2693 4.9764 5.3040
Engvall (3, 3) 4.8048 3.0264 2.6052
(6, 6) 3.5256 3.3696 2.7456
(15,15) 3.3852 3.2604 2.8080
(20, 20) 3.6036 3.0888 2.6832
Liarwhd (€M) 3.4008 3.3228 3.0420
(15,15) 3.1200 3.5412 2.8704
(17,17 3.2604 3.5100 3.2760
(20, 20) 2.8392 3.2604 3.1668
Goldstein-Price’s (5, 5) 52.2135 6.2868 6.2868
7.7 14.0089 7.2540 8.0029
(11,11) 83.1485 11.0605 9.6721
(24, 24) NA 12.7921 9.6409
Cube (-0.001, 0.001) NA Fail 13.8373
(-0.25, 0.25) NA 10.8109 11.0761
(-0.5, 0.5) NA 46.1607 15.0073
(-5, 5) NA 53.6643 12,9793
Beale’s (3, 3) 129.8396 14.7265 6.5052
(5,0.5 9.2353 22,7761 8.5801
©, 3 NA 11.9185 10.9981
(11, 0.5 24.0242 23.9930 21.4345
Price (0.15, 0.15) 36.1454 15.2413 15.7093
(0.55, 0.55) NA 13.6345 3.6036
(14, 14) NA Fail 8.6737
(27.5, 27.5) 11.3725 Fail 2.9484
Nonscomp (1.25,1.25) 6.1152 3.9312 3.8844
(6, 6) 36.8474 4.8828 4.3212
©,9 47.5491 22,7761 5.8656
(13,13 55.1932 4.8048 3.7596

Table 1, the iteration numbers m the SD column of
Rosenbrock, Goldstein-Price’s, Cube, Price and Beale’s
functions are written as larger than 1000. This is because
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Fig. 2: Performance profile based on number of iterations

the value 1s set as the maximum limit of accepted number
of iterations. So, when the number count exceeds 1000,
the iteration process is terminated. In Table 2, the symbol
‘NA’ in the SD column mdicates that the CPU time 1s not
available because the iteration number reaches the set
limit at 1000. The word ‘Fail” in Table 1 and 2 represents
that the step-size is negative. In order to compare the
performance of RRM with ZMRI and SD, we plot the
fraction P of problems for which the method 13 within a
factor t of the best time for Fig. 1 and the minimum number
of iterations for Fig. 2. The left side of Fig. 1 and 2 give the
percentage of the test problems for which a method 1s the
fastest while the right side gives the percentage of the
test problems that are successfully solved by each of the
methods. The top curve is the method that solves the
most problems in a time that was within a factor t. From
Fig. 1, we can say that RRM 1s the fastest solver for about
76.79% of the test problems whereas ZMRI and SD only
at 16.07% and 10.71%, respectively. RRM solves 100% of
the entire problem while ZMRI and SD can solve 94.64%
and 78.57% of the problems respectively. The left side of
Fig. 2 shows that RRM is the fastest which solves about

5444



J. Eng. Applied Sci., 13 (Special Issue 6): 5442-5445, 2018

89.29% of the test problems with the minimum number of
iterations while ZMRI and SD are only about 8.92% and
7.14% of the test problems, respectively. From the right
side of Fig. 2, RRM solves 100% of the entire test
problems to optimality, followed by ZMRI can solve
about 94.64% and lastly SD can solve about 78.57% of the
entire test problems to optumality.

CONCLUSION

Several modifications on SD method have been
widely used in practical computation as the SD method is
the simplest of the gradient methods for solving
unconstrained optimization problems. In this study, we
proposed a new scaled SD method based on Andrei’s
approach of scaled comjugate gradient method. The
numerical results show that the proposed method
performed better than the other classical SD method. For
future work, we intend to hybrid our proposed method
with other unconstrained optimization methods.
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