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Abstract: We have studied a self-regulating radial gas-dynamic bearing and developed a methodology for its
calculation and design. We have also developed modeling methods for rotational segments of the bearing
surface stable m terms of rotation angle, load and rotor speed. There was developed a numerical method for
determining the position of a segment with zero moments as well as the method of analyzing its stability in this
position. This study describes a technique to determine the stable equilibrium position of a segment. We have
determined the values and directions of a torque and the resultant forces for different values of the average
thickness of the lubricating layer and the shaft speed. There were obtained the pressure plots in the lubricating
layer of the segment. We have defined the parametric dependences of design characteristics of the bearing on
the load and on the rotational speed of the shaft. Practical srelevance. The developed calculation technique can
be used in designing hybrid air bearings while selecting the position of a segment rotation axis. Segment
rotation allows the range of self-regulation of air bearings to be extended and in certain limits to parry the
overloads on the shaft.
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INTRODUCTION

The purpose of this study 18 to develop a
methodology for designing rotational segments of the
bearing surface of hybrid gas bearings that are stable in
terms of rotation angle, load and rotor velocity.

In recent years, interest in gas bearings has increased
significantly. The theory of classical gas bearings 15 well
developed. The fundamental works by Shemberg and
Shisheyev (1979) and Constantinescu (1963) as well as the
works of Kotlyar (1967), Zablotsky et al (1970),
Loitsiansky and Stepanyants (1967) are dedicated to this
problem.

Based on the method of creating bearing capacity,
there are Gas-Static (GSB), Gas-Dynamical (GDB) and
hybrid Gas-Static-Dynamic Bearings (GSDB) (Bulat and
Bulat, 2013). In GDB, lifting force 15 created by the
interaction between the moving parts of a shaft and a
bearing with a viscous thin layer of gas lubricant. Their
main drawback is small load capacity, limited by the lifting
force which 13 created by the Bernoulli and Poiseuille
effects. At a shaft rotation frequency lesser than the
designed one, GDB operate mn dry friction mode which
causes its early run-out.

(GSB require a constant supply of working gas into
the gap between the bearing’s housing and the rotor in
order to create a lifting force. In addition, GSB 1s
characterized by various oscillatory regimes caused by
the mismatch between the gas flow entering the
lubricating gap and the one flowing out of it through the
ends of the bearing.

The scientific novelty 1s that each segment of the
bearing support surface must be self-aligning m other
words the segment which is under the influence of a
pressure drop and the turmng torque, must be installed at
a certain angle in relation to the shaft surface. The main
difference between the methods described in the work
from existing solutions is to find such an arrangement of
each segment’s rotation axis which will ensure its stability
in terms of the rotation angle. Typically, segments of the
hybrid gas bearing are controlled by a control system or
a variety of damping systems (Nelson and Hollingsworth,
1977). In thus case, 1t 1s necessary to calculate the forces
and moments at the freely rotating segments of hybrid air
bearing. Below 1s a description of a design procedure for
the rotary segments of the bearing’s surface which are
stable in terms of rotation angle, load and rotor velocity,
as well as the numerical method for determining the
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segment’s position at which the moments applied to it
equal zero. Demonstrational calculations were performed.
The results are compared with estimates made by
asymptotic methods as well as with the experiment results.

MATERIALS AND METHODS

Mathematical model of a lubricating layer
The initial system of equations for a radial bearing:
Usually, there 1s used a basic equation of hydrodynamic
theory of lubrication the Reynolds equation when
analyzing the flow in the lubricating layer (Reynolds,
1886). Reynolds equation is derived from the assumption
that the lubricating layer 13 thin Let us consider a
full-radius radial bearing of fimite length | and elongation
A = Vd where d is the diameter. The Reynolds equation for
it in the polar coordinate system is written as:
i(ﬂ3a_p)+%i_(ﬂ3a—g _e ot (D
90 0¢ 4A oz oz 20 ot

where, h=h/,5=p/p and the meaning of the remaining
notations. Let us introduce the dimensionless variables:

z=2p="L, p,:“”"zrz,Y:mt (2)
£ P. ¢
Where:
w = The rotor’s angular velocity
p =vp = The dynamic viscosity
v = The kinematic viscosity
p = Density

We can write an equation for a relative gap:

h=1-gcos(gp-9), e=° (3)
¢

By differentiating Eq. 3 with respect to t and ¢, we
obtain:

oh  oe

o a

oh/ o = ssin(p—0)

cos(p—9) — E%t—esin((p -8 4

Based on the Omitted values of second order of
smallness (¢’) and Eq. 4, Eq. 1 in dimensionless variables
(Eq. 2) can be rewritten as:
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Equation 5 can be integrated for specified values of
pressure at the bearing’s ends pl and p2:
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Based on Eq. 6, we can then obtain the expression
for the resultant forces in the projection on axes e and 6:

P, = P,/P, = -6mk, o (7
ot
F, = P./P, = 3nk (1-2 Z—?)a (8)

where, kp = 1-thA/} is a coefficient which is equal to one
for an infinitely long bearing (without any leaks) and
kp=A%3 for a very short bearing with A<<l. Eq. 6-8
provide an exact solution for the non-stationary
lubrication layer of a full-radius radial bearing and are
suitable for developing a technique used for calculating
the shaft’s non-stationary motion.

a{ph3 apj+a[ph3 apj = 12ug(ph)+6p%(puh) &)

ox ox | oz 0z ot
Where:
p = The pressure
h = The gap
u = Velocity
t = Time

p = Viscosity

x = The coordinate oriented along the generating line of
the shaft

z = The coordinate oriented along the shaft’s axis

Reason for verifying the Reynolds Model: The practice of
calculating gas-static bearings has shown that the
throttles, through which the gas lubricant is fed into
the gap as well as micro-grooves
distribute gas along the supporting
sometimes be mcluded into calculation area. The flow at
the boundary of the throttles and micro-grooves 1s
essentially three-dimensional. In addition, at near-critical
regimes when the velocity of gas flowing out from the
throttle is close to the sonic speed, inertia forces cannot
be neglected. Thus, results obtained by solving Eq. 9
must be verified with a numerical model based on the
equations (Beschastnykh,

designed to
surface must

solution of Navier-Stokes
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2011). The flow within a thin layer can be considered as
laminar (Beschastnykh and Ilyina, 2015). Therefore,
equations are not averaged and turbulence models are not
used.

Asymptotic approximations

Approximation of a two-dimensional lubricating layer: A
number of important estimates can be obtamed on the
assumption that the shaft is infinitely long and the size of
the bearing in shaft’s direction 1s mfinite as well. Then,
the flow in the lubricating layer can be considered as
two-dimensional and flat. Thus, derivatives can be
neglected with respect to z. In the stationary case, we can
neglect the derivatives with respect to t, then Eq. 9 can be
written as:

AR ) 10
aX[ph axj 6p.ax(puh) (10)

Let us consider a bearing with the length d mn the
direction of x-axis, located in the environment with the gas
pressure p, Then, the following parameters can be
introduced, the gap size hy,, through which the lubricant
flows into the bearing and the gap size h,,, through wlich
the lubricant flows out. Thus, the bearing will be
characterized by certain average gap size hy. If the gap 1s
much smaller than the length d then the following
reasoming 1s also applicable to a bearing with the curved
generating line. For example, it can be a segmented radial
bearing. Then, d 1s the arc length of the segment’s inner
surface generating line, hy, is the gap between segment’s
frontal edge and the shaft and h,, is the gap between
segment’s rear edge and the shaft. If the bearing is
a full-radius one with an eccentricity of e, then d is the
length of the trunmion circle, h,= hite/2, h,, = hy-e/2.
Thus, the following conclusions are valid for all types of
bearings. In dimensionless variables, Eq. 10 can be written

das:
9/ ) .9, 6uvd
RAE LA NN RN an
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where, A is the Harrison parameter or the dimensionless
bearing characteristic. Let us mtroduce the parameter
A =h,/hy the relative thickness of the entrance gap. Then,
if we consider (Eq. 11 and 10) will be finally written as:

ap _ 1 ) C
ox A(A+2><(1-A))Z[1 P(A”X(l'A))} "

Dashes denoting the dimensionlessness of the
variable will not further be written for sumplicity. Equation
12 is a nonlinear partial differential equation that must be

solved numerically which was apparently, first done by
Sternlicht (1961) and Raimondi (1961). At present, the
Reynolds equations are solved by standard numerical
methods in most commercial gas-dynamic packages, for
example, in ANSYS CFX. The practice of applying Eq. 12
shows that it adequately describes the pressure change
far from the segment’s edges and with lugh accuracy on
the segment’s symmetry plane perpendicular to the
shaft’s axis.

Applying asymptotic methods allows obtaining
sufficiently meaningful conclusions about the behavior of
gas bearings with real rather than idealized design
schemes.

Kotlyar has developed the asymptotic methods in the
most general form: first for a cylindrical lubricating layer,
then for a spherical one and subsequently they were
generalized for a surface of arbitrary shape. We will
consider the limiting cases A~0 and Ao

Approximation of simulation operation in gas-static
regime (A-0). If A~ 0, then the relative pressure will be
p-1. This allows us to eliminate p from Eq. 12 and
integrate this Eq. 13:

(XZ-X)(l—A)

T (13)
(A+2x(1-A))

p=A

Based on Eq. 13, we can determine the load capacity
of a bearing section with the length d and width L, namely
the load capacity of a separate bearing segment:

1
A-l
W =Ldp K., K.= L (21) (14)
4(A-1) A
n -
(2-4)

where, K is the specific load capacity of the bearing. Ks
1s strongly increasing with A-2 m other words when the
output gap tends to zero. With increasing A, specific load
capacity also increases. A similar Eq. 14 can be obtained
for a full-radius bearing:

ATE
W=2rlp, ————— (15)
(2+€" JW1-¢’
Where:
£ =e/c = The relative eccentricity
c = The mean size of the radial gap

Based on the graphs and Eq. 13 and 14, it 15 not
difficult to conclude that GSB segments capable of
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turning to a certain angle with respect to the bearing
surface have angular nigidity in the angle of rotation.
Indeed, a change in the angle leads to the pressure
diagram distortion. At that, pressure decreases mn places
where the gap grows and increases where the gap
becomes smaller. It should be noted that the presence of
angular rigidity does not yet guarantee the segment
stability in terms of rotation angle. Approximation of
simulation operation in gas-dynamic regime (A-oo). If
there is no loss of generality, we can assume that in this
case u~8. Thus, we are dealing with either GDB or with
GSDB in a regime where the influence of the blowing
1s not determinative. This allows us to integrate Eq. 12:

A

A (16)
A+2x(1-A)

2

Equation 16 shows that pressure in the gap varies
monotonically as well as the max pressure in the output
section and the ratio between the maximum and mimmum
pressure 1s equal to the ratio between the input and
output gaps. Based on the above, load capacity of the
gas-dynamic bearing will be different from zero only when
the surfaces are positioned at an angle:

] R AL 17
W = Ldp.K., Krz(A-l)ln((Z'A)}l "

In the case of a full-radius radial bearing when the
shaft and the trunnion are positioned with eccentricity.
Thus, Eq. 17 can be written as:

W = 2rLp,% f1+352( L -1}1 (1)
3 1€ €

In addition, it 13 1mpossible to draw an a prion

conclusion about the segment’s stability in terms of
rotation angle. In this case, we need to find a pomnt on the
segment’s surface at which the total moment of pressure
forces (Eq. 18) will be zero:

I
1 (3A) 2(1A) (19)
A

Xy

Hence, the greater is the desired load capacity in gas
dynamic regime (the larger is the ratio between the input
and the output gaps), the closer must be the segment
rotation axis to the output section (Eq. 19) m order for it to

be stationary. In this case, the segment will be stable in
terms of rotation angle because the angle’s decrease
shifts the pressure diagram to the right from the hinge axis
and the segment tends to increase the angle. As the angle
decreases, the situation 1s the opposite.

Thus, considering the two limiting cases A~ and
A-0 simulating gas-dynamic and gas-static regimes,
respectively, we can draw conclusions about the behavior
of a real segmented GSDB in which the final reaction is the
sum of gas-static and gas-dynamic components.

RESULTS AND DISCUSSION

Practical implementation with numerical simulation
methods

The numerical method: Numerical modeling was carried
out with Ansys CFX package within the Reynolds model
frameworl, verification calculations were performed with
the OpenFoam package by solving the Navier-Stokes
equations for laminar, compressible, heat-conducting and
viscous gas.

Calculation area and boundary conditions: The idea of
GSDB geometry and the calculation area are illustrated in
Fig. 1. The air 1s supplied into the mlet at a pressure of 6
bar and a temperature of 300 K. The pressure is set equal
to 1 bar along the segment perimeter (boundary
conditions). The shaft rotates at a specified frequency
relative tothe axis: 5000, 10.000, 20.000, 30.000 and 42.000
rpm. There are specified solid wall boundary conditions
for non-flow, adherence and thermal insulation.

Calculation area 1s divided into three bodies in order
to build a grid, lubricating gap, a microgroove and a
supply tube with a throttle. A microgroove and a throttle
form anozzle.

Algorithm for calculating the stable position of a
segment: We have considered that the pressure is
constant at the mlet and the average gap, determined by
the shaft’s load, changes. The segment’s slope angle is
set by the minimum output gap which size varies within
the specified limits. The pressure distribution, the
segment’s load capacity and the gas flow through the
throttles are the results of calculation. In addition, the
moment of pressure force acting on the segment in
relation to the rotation axis 1s determined based on
calculation results. At the same time, we understand that
in reality, the segment of GSDB is aligned by itself at the
certain angle. In this case, the moment must be equal to
zero. The calculation sequence is as follows:
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Fig. 1: a) Radial bearing and b) Geometric model of the working area for calculating the lubricating layer between the

bearing’s segment and the shaft

Setting the average gap between the shaft and the
segment H; at such point, above which the axis of
rotation 1s located (Fig. 1b). In our case, the values of
H;are of 10, 15, 20 and 25 pm

Creating 3-D Models with different gap tapering
(with a different value of the output gap h,,) for the
selected parameters. There must be at least three
different values

Based on 3-D Models, generating difference grid and
performing mumerical calculation of the flow in the
lubricating gap at different shaft rotation velocities.
As the result, we get the diagrams of pressure
distribution at the segment

Based on the pressure diagrams, determimng the
torque at the segment’s rotation axis and the
resultant of pressure forces at the segment

Plotting dependences of forces and moments on the
output gap h,,,

Based on these diagrams, determining (by linear
mterpolation) the output gap at which segment’s
position is equilibrium (M = 0) and the resultant of
pressure forces (F;) is at the segment in equilibrium
position

Analyzing the derivative of the moment with respect
to the rotation angle in the equilibrium position. If the
derivative is negative then the equilibrium position is
stable

Asymptotic analysis of boundary load capacity: F, is the
resultant of pressure forces applied to segment’s rotation
axis. In a full-radius bearing, pressure in the lubricating
layer changes continuously and has a resultant force F

directed opposite to the shaft axis e displacement and
determining the load capacity of the entire bearing. In a
segment bearing, situation i1s more complicated. Each
segment has its own resultant F;. The total load capacity
is determined by the vector addition of these forces. The
condition for providing the load capacity of the rotor’s
support can be written as follows:

F = kMg +F, +F, <W (20)

Where:

F,, = The dynamic component of the force
F, = The gas-static component

h,> b, where, b 1s the minimum gap between the shaft
and the bearing, M 1is the rotor’s mass, W Bearing’s load
capacity, k the coefficient taking into account the effect of
mass forces.

Based on the formulas of the gas lubrication theory
for a gas bearing, we transform the expression (Eq. 20)
into the:

2P pp | = 2 1
2 2(A-1)  2-A z (1)
180°
- kMg+F, +F,
Z

Where:
I. = The bearing’s length
P, = Bearing pressure
z = The number of segments in the bearing

Based on Eq. 21, we express the value of bearing
pressure for a full-radius bearing:
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F kMg+F, +F,

p = =
* dLK (22)
’ dLT[J1+262 L -1 1
3 1-¢ £
Where:

€ = The eccentricity
K = The load capacity coefficient

And for the segment bearing:

kMg+F, +F,
P, = R
nrl A In A -1 1—% 005180
2(A-1)  2-A z z
(23)

The relative elongation for gas lubrication bearings
rarely exceeds the limits determined by the technological
accuracy A = 0.5-2 relative eccentricity under load is
usually € = 0.6-0.9. The circumferential velocity on the
shaft cannot be either low (due to reduction in load
capacity with the decrease in A) or very high, since, its
value has a raticnal limit, after which no increase m leoad
capacity occur. Keeping the above mentioned in mind, we
can select the values close to maxima for qualitative
evaluation. Forexample, A=18 A=15 E=081U=150
m/sec.

If we apply these values to Eq. 22, we will obtain the
following expression for the value of the bearing pressure
of a full-radius bearing:

g

pa =
4u27m1’1+28{ 12—1}1 (24)
3 l-e £

Mm? =23*10"Mm?

where, @ 18 the rotational frequency. In the case ofa
four-segment bearing with the load directed between the
segments, we will assumethat A=18and .= A*2r=15
* 2r. If we apply these values to (Eq. 23), we will get:

p, = &
2nu’h A In A -1 1—% cos 45° (25)
2(Ad) 2-A 4

Mm? =47,5%10° M

Namely, the required pressure is almost
doubled. Therefore, load capacity of a segment bearing 1s
significantly lower than the full-radius one. In the case
where the load falls onto the segment, the load capacity
is further reduced. The coefficient in Eq. 25 will already

Table 1: Value of the load capacity coetficient
Number of segments 1 2 3 4 5 6
Coefficient in the formula (4.19)<10¢ 23.0 42.0 53.0 64.3 82.0 103

0.30 .
@ Sy
0.25 A%
,’Q\fo ’

Q Oa\b \é’o % S
0.251 g ajf,.r'@,;\ NG &
‘ 5Q///
5 0.20 e
S e
< E ‘ o
S 0.15 // B -
0.101 -
_--"7 M=10kg
0.051 i
0.00 == = ;
0 2000 4000 6000 8000 10000

®,1/sec segment bearing

Fig. 2: Asymptotic evaluation of bearings load capacity
and the dependence of the required bearing
pressure on the shaft rotation frequency

be 64.3 for a four-segment GDSB when the resultant
passes through one of the segments. Besides, as the
number of segments increases, the overall load capacity
decreases. Table 1 shows the results of calculating the
coefficient in (Eq. 25) for the case when the resultant lies
on a segment for a different number of segments.

If we increase the shaft velocity unlimitedly then the
load capacity of the full-radius bearing will asymptotically
tend to the limit and the load capacity of the segment
bearing will be maximum.

Calculation results for required blowing pressure for
different rotor masses depending on the rotor velocity are
shown in Fig. 2.

It is clear that with the increase of mass and rotor
velocity, the required bearing pressure continuously
increases. The zone below the horizontal line of 0.1 MPa
contains the rotors which can be equipped with bearings
at atmospheric pressure, namely with GDBs. Rotors falling
in the zone above tlis line must be equpped with
bearings with additional air blowing into the lubricating
gap, namely with GSDBs.

Asymptotic analysis of rotation frequency, at which the
bearing starts working in a contactless mode: The shaft
rotation velocity at which the shaft detaches from the
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bearing is another criterion for choosing the type of gas
bearing (GSB, GSDB or GDB). The above analysis showed
that the smaller 1s this velocity, the smaller 1s the size of
the output gap h,,. We recall that air bearings have a
limiting regime at A~< such that a further increase in the
rotational velocity does not lead to an increase in the load
capacity. In this case, there are analytical expressions for
the load capacity W for full-radius bearing:

W =2Lp.n /1+252{ 12 -1}1 (26)
o 1-& g

For segment bearings with segment length d:

W = dea( A-l} 27)

—1
2(A1) A4

Based on Eq. 26-27, there 15 determined the size of the
output gap for full-radius bearing:

hout = c(1-4) (28)

and for segment bearing:

hout = ho(2-Adh, = it‘“d, u=ar (29)

a

The h,, of a segment bearing depends on the
Harisson criterion A, unlike the case of a full-radius
bearing (Eq. 28 and 29). This should be explained. Let’s
assume that the segment bearing 1s designed in such a
way that it has a certamn value of the characteristic A
under some load at the nominal rotation velocity. This
characteristic will remain unchanged when the rotational
velocity reduces because a constant pressure diagram in
the lubricating layer will be required to compensate for the
constant load. The diagram is in turn, determined by this
characteristic’s value. In other words, when the rotational
velocity changes the value of h,, will change in such a
way that the bearing’s characteristic A will remain
unchanged Thus, A must be specified for a segment
bearing. The experience in designing segment bearings
known that A is usually assigned in the range of A = 2.30.
Since, we analyze the detachment velocity, it 13 necessary
to choose A as close as possible to the limit regime A-oo,
therefore we set A = 30.

In the case of a radial full-radius bearing with reduced
rotation velocity, the effective load will be compensated

by the increase of eccentricity in such a way that the
coefficient of load capacity will remain constant and
therefore, the characteristic A will decrease in accordance
with the expression:

A:&(ZJrSZ) 1-e? (30)
T £

According to Eq. 26-30, 1f I, 15 equal to the minimum
possible h_;, then the bearing’s detachment frequency can
be determined by equation:

2
Kp| 2+ l-—hmm ~
¢’p, ¢ h_. (31)
Mgy = 6Tur’ h 1 1-—2%
TUUT 1- —min C

C

(for a full-radius bearing) and for a segment bearing with
the number of segments of z:

_ (h,. )’ ZAp, (32)

T ewran(2-A)

It 18 clear from Eq. 31 and 32 that by decreasing the
maximum permissible value of h,,, = h,;,, it is possible to
substantially reduce the angular rotation velocity of the
shaft at which it detaches from the bearing. Let us
estimate the relationship between the rotational speed and
the minimum gap for a typical case.

If we assume that A=1.8, D=nr/2, U=150m/sec,
A = 30, Pa = 01*10°Pa, M = 1.8%10° Pa*s (for

a four-segment bearing), we will obtain
b, = 2261/0pm. Similarly, we assume that ¢ = 0.8 for a full-
radius bearing (other parameters are the same). Thus, we
will get b, =18041/e

Thus, full-radius bearing requires a smaller output
gap, therefore, it has more stringent requirements for
accuracy of manufacturing. Consequently, segment
bearing will be technologically simpler and cheaper.

Designing the radial nozzles of GSDB: If the segment
rotates by some angle in a way that the width of the input
and output gaps are different, there will be formed a
pattern of pressure isolines (Fig. 3a). In Fig. 3a, the gas is
supplied only through a nozzle with a rectilinear groove
(Eq. 1) located at the exit section (right edge in the
Fig. 3a).

Based on the calculations made for the segment with
a single nozzle and on the asymptotic analysis
performed in 1 and 2, we have chosen an average gap of
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Fig. 3:a) Pressure distribution; b) along the bearing surface of a segment with the length 1 and width b and with a single
slot nozzle 1. It was calculated with ANSYS CFX at shaft rotation velocity of 42.000 rpm at an average gap of 15
pm and a minimum gap of 7 um and ¢) A scheme illustrates a sickle-shaped groove 2 along the isobar 3, pressure
at which 13 equal to the pressure of the gas supply to the bearing

Fig. 4: a) The initial version of the radial GDSB and b) Tts segment

@ (b)

0 0.02.m
—

0 0.02m

Fig. 5:a) Pressure distribution on designed and b)on test segments at the rotation velocity of 42.000 rpm and the average

gap Hy; = 20 um

H, =15 pym for further calculations. Based on the
graph above, we have found an output gap of
h,, = 7.2 pm corresponding to a stable position. We have
calculated the flow in the lubricating layer for a
segment with one rectilinear canal in order to select
the gaps. The of sickle-shaped

line nozzle

microgroove was plotted an 1sobar with a pressure of 6
bar was selected according to the pattern of pressure
isolines.

At the end of the study, we have calculated the
hybrid air bearing previously designed on the basis of
data available from literature (Fig. 4). Figure 5a shows the
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results of pressure distribution at the segment with the
final nozzle geometry at the nominal regime. In this case,
pressure profile 1s much more filled n comparison with the
profile of the previously manufactured test bearing
(Fig. 5b) and of the segment with one rectilinear nozzle
(Fig. 3a). The load capacity of the newly designed
segment 13 25% greater than of the test one with the
size of the average gap of 15-20 pm. This result is
achieved due to the optimal geometry of the sickle-shaped
nozzle.

Experimental verification of design results: We have
performed a series of experiments was performed to test
the developed methodology for GSDB design and
mathematical modeling. Thus, we have determined the
dependence of the load capacity of a radial GSDB on the
shaft rotation velocity. The rotor of the apparatus rests on
two gas GSDBs (radial-thrust one and the radial one) and
1s rotated by an air turbine. The rotation sensor controls
its velocity, specified by the flow rate of the ar supplied
into the turbine. The studied radial GDSB is loaded via the
rocker by the load device. During the experiment, the
rotation velocity was set n the range of 10.000-42.000 rpm
and the load on the shatt in the range of 500-700 N. The
average gap controlled with an eddy current sensor was
varied in the process.

CONCLUSION

Hybrid air bearings are an attractive area in the field
of creating oil-free transmissions for rotary technology
with heavy rotors or heavy load on the shaft. We have
developed a methodology for designing self-aligning
segments of such bearings as well as a technique
applicable while calculating the moments of pressure
forces acting on them. The gas must be fed mto the gap
at least through two nozzles in order to ensure the
stability of segment’s equilibrium position at which the
moment on 1its rotation axis 1s zero. One of them was
chosen straightforwardly based on the recommendations
available from the literature while the geometry of the
second one was determined by calculations. The study
describes how the second nozzle’s geometry and the flow
n the lubricating layer were designed and mathematically
modeled.
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