Tournal of Engineering and Applied Sciences 13 (16): 6622-6625, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Classifying Non-Functional Properties of Software Systems

According to their use in Some Application Areas

Abdulkarim Bello, Abu Bakar Md Sultan, Abdul Azim Abdul Ghani and Hazura Zulzalil
Faculty of Computer Science and Information Technology,
University Putra Malaysia, Malaysia

Abstract: Dealing with non-functional properties has a great challenge to software engineers for many years.
For many years, software engineers are using this properties provide high quality to the software products they
developed. This make it possible for engineers to divide their focus of testing non-functional properties

according to, the services the software product renders. Although, non-functional properties of software

systems are being described as the most important contributors to the success of software systems, study to

date revealed that there is no general consensus on the notion of certamn classification of NFPs. This study
presents results of a study on the investigation conducted on the different classification of Non-Functional

Properties (NFP) of software systems.

Key words: Non-functional properties, non-functional requirements, non-functional requirements, NFPs,

NPRs, Malaysia

INTRODUCTION

Software system’s utility 1s determined both by its
functional as well as non-functional properties
(Chung and Leite, 2009). Dealing with non-functional
properties of software systems poses a lot of challenges
to software engineering communities. Over the years,
different methods and techniques are being proposed
to improve on their documentation and elicitation
(Ameller and Franch, 2010).
testing being a sub-area of search based software
engineering (Afzal ef al., 2009; Harman ef al., 2015) an
area of research that attracted much attention in recent
vears as part of the general interest in search-based
engineering approaches (Harman, 2007).
The growing number in non-functional properties

Search-base software

software

consideration can be attributed correlation of growing
number of automation in development
commumnity and software testing, since, it 1s known that
exhaustive testing is infeasible and the fact that
software test data generation is consider NP-hard
(MeMimm, 2004). A lot of researchers have written a
survey on search-based software testing mncluding
McMinn (2004) which shows the application of
search-based techniques for white-box testing, black-box
testing, grey-box testing and for the verification of
non-functional properties (Afzal ef al, 2008). Since,
non-functional properties of software systems described

software

the way in which the systems operate, rather than actions
the system performs (Patrick and Jia, 2015) makes it so
much important to optimize.

Though you may find two software systems that
might be functionally the same but may differ in the way
they perform ther actions and also, differ m their
execution time, response time, memory usage and/or
power consumption. Therefore, there is need to have
software systems with its non-functional properties
thoroughly optimized. The needs to develop high quality
software that finds solution amongst all the available
solutions 1s a cause of concemed to software systems
developed considering the role of non-functional
properties, being these properties that measure the quality
software systems, also, derives a lot of challenges to
software engineers due to nature posed by these
properties. The aim of this study is to categorically
classify all the non-functional properties of software
system that are identified by thus study and also mention
the properties that have no definition or have definition
but have no attributes (Mairiza et al, 2010) as is
reported by various literatures.

Literature review: The success of a particular software
system or the safety of the people using the system are
dependent upon underlying quality concerns in many
software systems (Mirakhorli and Clelanf-Hung, 2012).
This section outlined some of the related work of software

Corresponding Author: Abdulkarim Bello, Faculty of Computer Science and Information Technology,

University Putra Malaysia, Malaysia

6622

J. Eng. Applied Sci., 13 (16): 6622-6623, 2018

engineering researchers that focused on the identification
and utilization of non-functional properties of software
systems. Work such as that by Harman et al (2015)
undertook a review in the area of search-based software
testing, its origin, trends in publications and open
problem. The review uses data from Search-Based
Software Engineering repository, indicates how the area
continues to grow with respect to the increase in
publication, how well the area of non-functional
properties is getting the attention of researchers with
some cause of concern to some areas. The concluded by
introducing a future tool that automatically finds bugs, fix
the bugs and verifies what it fixes. Ameller and Franch
(2010) conducted an empirical study to answer the
question on how software architects consider
non-functional properties/requirements of a software
system. The study uses software architects from twelve
different companies to answer some interview questions
through a semi-structured interviews. The study identified
and grouped non-functional properties for the study into:
most important and non-technical NFPs. The most
important NFPs consisted of thirteen non-functional
properties which include performance, usability, security,
availability, interoperability, maintenance, accuracy,
fault tolerance, reusability, scalability, modularity and
portability. While the non-technical NFPs are licensing
issues, technological policy, cost, external regulations,
availability of support and organizational policy. After
(Chung and Leite, 2009) finds out that the attention of
software engineering researchers concentrate mostly
towards the identification and optimization of functional
characteristics of software systems conducted a study
that explores the non-functional properties of software
systems. The study also finds a plethora of definitions to
non-functional properties in software engineering and
grouped the identified non-functional properties based on
the article presented by Paech and Kerkow (2004).
Roohullah et al. conducted a survey that emphasizes the
benefits on integration of non-functional properties of
software system at architectural level of system
development. The survey identified some techniques
through which non-functional properties can be
integrated into system design phase of software
development. The considered non-functional properties
for their research are performance, maintainability,
security and fault tolerance. There is also a study by
Mylopoulos et al. (1992) that uses process-oriented
approach to represent non-functional properties of
software system. The study considers design architecture
as the basis for evaluating how well a particular property
suit certain architectural design in which thirteen
non-functional properties were identified and grouped
mnto three phases of acquisition, performance, design and
adaptation.

Table 1: Sources of information considered for the study

Database Address
IEEE xplore http://www.ieeexplore,. com/
Springer link https://link.springer. com/

Science direct
ACM digital library
Google scholar

http//www.sciencedirect.com/
http://dl.acm. org/
https://scholar. google.com/

Fig. 1: Usage based categorization of non-functional
properties

MATERIALS AND METHODS

The study was conducted from different sources
of information published in academic resources within the
area of software engineering such as journal article,
conference proceedings and ISO/SEC standards and
some few industrial reports. All these selected articles
cover various issues that are concerning the
non-functional properties in software engineering as can
be seen in Fig. 1 as I reported by Chung and Leite (2009).
Table 1 shows the details of the databases and
composition of articles considered form each database
for the study. All the articles were then analyzed
systematically using content analysis techmque (Cho and
Lee, 2014). The method of content analysis was chosen
because it enables the researcher to systematically
identifymg its properties through locating the more
important structures of its contents. Such information are
then categorized to provide meaningful reading contents
which are then extracted for further usage.

RESULTS AND DISCUSSION

We used the information extracted from the
selected primary studies to answer the research question.
This section used the results obtamed by the study
to answer the research questions defined at the
beginning of the study.

6623

J. Eng. Applied Sci., 13 (16): 6622-6623, 2018

Table 2: TROMISEC25010-2011 standard classification of non-finctional properties

NFPs Sub categories of NFP:

Functional Functional Functional Functional

Stability Appropriateness Cormpleteness Correctness

Performance Capacity Time Resource

Efficiency Behaviou rutilization

Compatibility Coexistence interoperability

Usability Appropriateness Tearnability Operability User error User interface Accessibility
Recognisability protection aesthetics

Reliability Maturity Availability Fault Tolerance Recoverability

Security Confidentiality Integrity Non repudiation Authenticity Accountability

Maintainability Modularity Reusability Anatysability Moditiability Testability

Portability Adaptability Installability Replaceability

Table 3: Categories of non-fimctional properties as classifies by Mairiza et af (2010)

Has definition and attributes Has definition

Without definition and attribites

Accessibility, adaptability,
availability, efficiency,

fault tolerance, functionality,
integratability, integrity,
maintainability, maintainability,
modifiability, performance,
portability, privacy,
readability, reliability,
reusability, robustness, safety,
scalability, security, testability,
understandability, usability,

Accuracy, analysability,
Attractiveness, changeability,
complexity, composability,
confidentiality, consistency,
correctness, defensibility,
dependability, evolvability,
extendibility, flexibility,
irmrmunity, installability,
interoperability, learnability,
likeability, localizability,

recoverability,
replaceability, stability,
suitability, survivability,

maturity, operability, quality of service

Accountability, additivity, Adjustability, affordability,
agility, anormymity, atomicity, auditability,
augmentability, certainty, compatibility,
comprehensibility, conciseness, configurability,
conformance, controllability, customizability,
debuggability, decomposability, demonstrability,
distributivity, durability, effectiveness, enhenceability,
expandability, expressiveness, extensibility, feasibility,
formality, generality, legibility, manageability,
measurability, mobility, nomadicity, observability,
predictability, provability, reconfigurability,
repeatability, replicability, self-descriptiveness,
simplicity, standardizability, strcturedeness,
supportability, susceptibility, sustainability, tailorability,
traceability, trainability, transferability, trustability,
uniformity, variability, verifiability, versatility,
viability, visibility, wrappability,

The number of non-functional properties used in software
engineering: To answer the first question of the study
(1e, RQ1) thus study itemized the different number of
non-functional properties in software engineering as 1s
presented in different contents of the primary studies
encountered by this review.

ISO/ASEC25010-2011 standard quality characteristics:
The software quality characteristics defined by ISO.
(2011) are identified twenty eight non-functional
properties grouped into eight different characteristics
that includes: functional Suitability, performance
Efficiency, Compatibility, Usability, Security,
Maintainability and portability (ISO., 2011). Under each
category subcategories are Table 2
outlined the non-functional properties as defined by ISO.
(2011).

define.

Definition/attributes-based
defimtion/attributes-based classification of
functional properties was proposed by Mairiza et al
(2010). In this classification, over hundred non-functional
properties are grouped mto three categories based on
definition and attributes. The classification includes those
with definition and attributes, those with definition and
those without definition and attributes (Table 3 and 4).

classification: The
non-

Table 4: Application area based classification
Relevant NFPs
Accuracy, conformmnity, reliability,

Application area
Banking and finance

(Business) confidentiality, performance, security, usability
verifiability, privacy, verifiability
Education Inter-operability, reliability, comrectness

performance, scalability, security, usability,
Availability, performance, reliability,safety,
Accuracy, confidentiality, performance
privacy, reusability, verifiability, viability
Communicativeness, confidentiality,
integrity, performance, privacy, reliability,
safety, security, traceability, usability
Compatibility, conformance, dependability,
performance, portability, accessibility
Accuracy, accessibility, availability,
completeness, dependability, integrity,
safety, security, verifiability

Energy resources
Govemment and defence

Health care

Telecommunication

Transportation

Frequency-based usage of non-functional properties: To
answer research Question two (RQ2), NFPs are software
systems are grouped in three as can be seen in Fig. 1
below. The study grouped the identified NFPs into three
categories, G1-G3.

G1 (1997-2007): This group all non-functional properties
that are identified from different work of SBST researchers
that fall between the vears of 1996 and 2007 and are
used in optimizing software system (Afzal er al, 2008,
2009).

6624

J. Eng. Applied Sci., 13 (16): 6622-6623, 2018

G2 (1997-2015): This group contains non-functional
properties that get were used by software engineering
researchers within the period range of 1996-2015 for
optimizing software system.

G3 (1997-2015): This group contams the non-functional
properties that this study has not come across any study
that used them to optimized software systems. This group
falls into the categories of non-functional properties that
without definition and attributes (Mairiza ef al., 2010).
Classification base on application domain.

CONCLUSION

Non-functional properties are the means through
which software systems can be given qualitative feature
and make 1t operate in it most optimized form. This study
was able to enumerate the available non-functional
properties of software systems and group them into
different classifications, the ISO/ISEC (Mairiza et al., 2010)
and according to, the usage intensity by software testers
for the optimization of software systems. The focus of the
study 1s to classify the available non-functional properties
that are identified by software engmneers from various
worle they published and software engineering standard
body such as TEEE, ISO/ASEC, etc., it does not report the
procedure the researchers used in coming up with the
non-functional properties and/or the various method they
used while optimizing software system through the
mentioned non-functional properties. The study, also,
does include not the metric measurements of non-
functional properties and their fitness evaluation.

REFERENCES

Afzal, W., R. Torkar and R. Feldt, 2008. A systematic
mapping study on non-functional search-based
software testing. Proceedings of the 20th
International Conference on Software Engineering
and Knowledge Engmeering, July 1-3, 2008, San
Francisco, CA, USA., pp: 488-493.

Afzal, W., R. Torkar and R. Feldt, 2009. A systematic
review of search-based testing for non-functional
system properties. Inform. Software Technol., 51:
957-976.

Ameller, D. and X. Franch, 2010. How do software
architects consider non-functional requirements: A
survey. Proceedings of the 16th International
Working Conference on Requirements
Engineering: Foundation for Software Quality,
Tune 30-Tuly 2, 2010, Springer, Essen, Germany,
[SBN:978-3-642-14191-1, pp: 276-277.

Cho, J.Y. and E.H. Lee, 2014. Reducing confusion about
grounded theory and qualitative content analysis:
Similarities and differences. Qual. Rep., 19: 1-20.

Chung, I.. and I.C.5.D.P. Leite, 2009. On Non-Functional
Requirements in Software Engineering. I
Conceptual Modeling: Foundations and
Applications, Borgida, AT. V.K. Chaudhr,
P.Giorgini and E.S. Yu (Eds.). Springer, Berlin,
Germany, ISBN:978-3-642-02462-7, pp: 363-379.

Harman, M., 2007. The current state and future of search
based software engineering. Proceedings of the
2007 International Conference on Future of Software
Engineering, May 23-25, 2007, IEEE, Washington,
DC, USA., ISBN:0-7695-2829-5, pp: 342-357.

Harman, M., Y. Jia and Y. Zhang, 2015. Achievements,
open problems and challenges for search based
software testing. Proceedings of the 2015 IEEE 8th
International Conference on Software Testing,
Venfication and Validation (ICST), April 13-17,
2015, TEEE, Graz, Austria, ISBN:978-1-4799-7125-1,
pp: 1-12.

IS0, 2011. TEC23010: 2011 Systems and software
engmeering-systems and software quality
requirements and evaluation (SQuaRE)-system and
software quality models. International Orgamization
for Standardization, Geneva, Switzerland.

Mairiza, D., D. Zowghi and N. Nurmuliam, 2010. An
investigation into the notion of non-functional
requirements. Proceedings of the 2010 ACM
International Symposium on Applied Computing,
March 22-26, 2010, ACM, New York, USA,
ISBN:978-1-60558-639-7, pp: 311-317,

McMmn, P., 2004. Search-based software test data
generation: A swrvey. Software Test. Verification
Reliab., 14: 105-156.

Mirakhorli, M. and I. Cleland-Huang, 2012. Tracing
Non-Functional Requirements. In: Software and
Systems Traceability, Cleland-Huang, J., O. Gotel
and A. Zisman (Eds.). Springer, London, UK.,
ISBN:978-1-4471-2238-8, pp: 299-320.

Mylopoulos, J., L. Chung and B. Nixon, 1992.
Representing and using nonfunctional
requirements: A process-oriented approach. IEEE
Trans. Software Eng., 18: 483-497.

Paech, B. and D. Kerkow, 2004. Non-functional
requirements engineering-quality is essential.
Proceedings of the 10th Amiversary Intemational
Workshop on Requirments Engineering Foundation
for Software Quality, June 7-8, 2004, Fraunhofer
TESE, Kaiserslautern, Germany, pp: 237-250.

Patrick, M. and Y. Jia, 2015. Exploring the landscape of
non-functional program properties using spatial
analysis. Proceedings of the 7th International
Symposium on Search Based Software Engineering
(SSBSE’15), September 5-7, 2015, Springer, Bergamo,
Ttaly, ISBN:978-3-319-22182-3, pp: 332-338.

6625

	6622-6625 - Copy_Page_1
	6622-6625 - Copy_Page_2
	6622-6625 - Copy_Page_3
	6622-6625 - Copy_Page_4

