Tournal of Engineering and Applied Sciences 13 (Special Issue 9): 6967-6972, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

The Influence of Packet Manipulation on the IPv6 Firewall Effectivity

Josef Horalek and Vladimir Sobeslav
Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove,
Czech Republic

Abstract: The new version of IP protocol is slowly being adopted in computer networks. The transfer to TPv6
world will take some time and the [Pv4 and IPv6 protocols need to coexist together. The aim of this study 1s pro
present results from IPv6 packet mamipulation efficiency analysis. This study discusses the measurements of
various Linux/Unix TPv6 firewalls and their behaviour in specialized networking test which are based on RFC
standard. Results were taken by scapy-advanced TP packet mampulator.

Key words: [Pv6, RFC, firewall, testing, packet manipulation, scapy. specialized

INTRODUCTION

The new version of TP protocol-TPv6 is slowly but
surely expanding across the internet infrastructure.
Together with this development, a lot of new security
challenges are arisng due to the different network
architecture of the previous protocol-IPv4. RFC 4864
(Van et al., 2007) discusses basic techmiques of IPv6
network architecture protection. Firewall as a stateful
packet filter can fully replace NAT (Ham, 2000) n
protection against unwanted attempts for connection from
outside the network and from hiding the network
topology.

The transfer to TPv6 will not take place instantly and
all at once, for some time the TPv4 and TPv6 protocols will
coexist and the problems stemming from the duplicity will
arise such as TPv4-mapped TPv6 addresses where the
attacker is able to avoid the Ipv4 packet filters and
break through the firewall by generating specifically
formatted packets. Another problem is tunnelling IPv6
via. Ipv4 networks where for example, Ipv6-over-IPv4
(Steffann et al., 2013) using port 41 can be easily enabled
or disabled. TPv6 encapsulated in UDP is a problem as
passing through UDP must usually be enabled in
firewall.

Therefore, a security gap appears in the firewall
(Steffann et al, 2013). Regarding solely TPv6 problems,
RFC 4942 (Davies et al., 2007) mentions the issue of the
routing headers defined in RFC 246 and their possible
abuse as a means for avoiding the firewall or for an
amplification attack. Such an attack 1s a serious threat and
RFC 5095 (Afilias et al., 2007) recommends all IPv6 nodes
stop the support of the type 0 routing header and let this

header type be filtered by their firewalls. However, it is not
possible to filter all the routing headers. Forged packets
in ICMPv6 (Deering and Hinden, 1998) error messages,
filtering the traffic with anycast addresses, TPSec,
procedures for processing the extended or unknown
headers by the firewalls, firewall protection against the
misuse of Padl and PadN options or link-local, another
significant safety i1ssue 1s the packets with overlapping
fragments which can avoid the firewall. These very
problems and whether a conflict with RFC would arise
were the aim of the tests of firewall behaviour during the
use of mampulated packets.

MATERIALS AND METHODS

Firewall tests with scapy: Host firewalls are an important
part of multilayer network protection. The safety policies
of an individual instance of the host firewall define what
traffic is accepted from the internet or from the local
network which 1s the essential advantage of such firewall
as a firewall on the perimeter 1s not principally able to
protect the host from the attacks from inside its own
network or its segment. In Umx operating systems packets
are filtered mn the core and the packet filters can be either
modules installed on request or they can be included
directly m the core. Such modules are accessed with the
corresponding userspace programs that allow the creation
of filtering rules sets and other configurations. Windows
firewall wuses Wmdows Filtermg Platform API
{(Nordmark and Bagnulo, 2009) with whose help it can
interact with the packet processing within the framework
of the operating system’s network code. For the purpose
of testing and checking the functionality, the followng
firewall software implementations will be used.

Corresponding Author: Josef Horalek, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove,

Czech Republic

6967

J. Eng. Applied Sci., 13 (Special Issue 9): 6967-6972, 2018

Windows firewall: Windows firewall with advanced
security 1s a stateful firewall capable of inspecting and
filtering IPv4 and IPv6 packets (Barre ef al., 2011). It can
block or allow the network traffic based on rules defined
by an administrator. In its default settings it blocks the
mcoming packets unless they are a response to a
previous request of the host or unless such traffic 1s
explicitly permitted. Explicit permissions can be defined by
a port number, application name, service name and other
criteria. It 18 also, possible to specify rules for the host’s
outgoing traffic.

Netfilter/IPtables: Netfilter 15 a framework for filtering
embedded into Linux core from core Version 2.4 onwards.
From Version 2.6 onwards, the core features full IPv6
stateful firewall. TPtables is a user-space CLI program for
set configuration of filtering rules. For the TPv6 packet
filter rules configuration, ipétables 1s used. IPv4 and IPv6
filtering rules must be set up separately and they are
independent of each other. Normally, three sets of rules
exist (user can create their own):

+ INPUT-for incoming packets
+« OUTPUT-for outgoing packets
+ FORWARD-for packets forwarded further

The rules 1n these chams are read in sequence and
therefore their order matters. If a packet matches any of
the defined rules, the rule forwards the packet towards its
destination which decides what will happen next and
searching through the rules table 1s stopped. Standard
commands are as follows:

¢+ ACCEPT-packet is allowed to pass
* DROP-packet is discarded
+ QUEUE-packet is passed to the user space

Return: Packet stops passing through the chain in which
1t encountered RETURN. If it was passing through the
main chain (e.g., INPUT) default policy of the chain is
applied on it. If it was passing through a subordinate
chain 1t returns to the mam chain. User-defined
chain-packet 15 forwarded to the user-defined set of
rules.

If the corresponding rules are not found for the
packet, default policy of the chain 1s applied. Rules can be
created based on the source/destination address or port
number, ICMPv6 message type, extension headers etc. As
an example of the syntax, let us present an explicit
ICMPv 6 permission, assuming the traffic 1s not forwarded
further:

s ipotables-A INPUT-p icmpv6-j ACCEPT
s ipotables-A OUTPUT-p icmpv6-] ACCEPT

TP firewall: Also, known as IPFW (McCann et al., 1996)
it is a default (stateful) firewall in FreeBSD operating
system. Tt supports both TPv4 and TPv6. Based on the
rules chain defimtion, packets are processed by the core.
The rules are numbered from 1-65535 and they are
reviewed in ascending sequence. When a packet of a
corresponding rule i1s found an action chosen by the rule
1s executed and the reviewing of the rules 1s terminated. If
such a rule 1s not found, the default action of the rule
65535, 1e., silent packet drop is executed. For easier
management, the rules can be assembled into so called
rulesets. The basic actions that can be executed with the
packets are as follows:

¢+ Allow | accept | pass | permit-these keywords are
functionally equivalent and authorize the given
packet

» Check-state-verifies the packet agamst dynamic state
table. An action comected with the given dynamic
rule 1s executed if the match 1s found, otherwise, the
process continues with followmng rule

+ Count-increases counter for every packet that is
corresponding to the rule. Then the process
continues with the subsequent rule

¢ Deny | drop-silent packet dropping

s Ipfw add 100 allow ipve-icmp from any to any in

¢ Ipfwadd 110 allow ipve-icmp from any to any out

Packet filter: Also, known as “pf,” packet filter 1s a
default stateful firewall in OpenBSD and OS X (from
version 10.7 onwards known as “Tion™). Tt supports both
[Pv4 and IPv6. The rules are passed from the top to the
bottom and the packet i1s evaluated agamst every rule
unless “quick” keyword is used which differs from the
firewalls mentioned above. Therefore, more valid rules can
exist for the packet but only the last action defined
adncorresponding rule is executed. Tt is for example
possible to first define the rule of “block all packets” style
and to enable specific exceptions only. The basic actions
that can be performed with the packets are as follows:

» Pass-passes the packet further to be processed by
the core

» Block-performs an action based on block-policy
settings by default, silent packet drop 1s executed

An example of the syntax:
¢ Pass ininet6 proto ipvo-icmp from any to any
+ Pass out inet6 proto ipvo-icmp from any to any

6968

J. Eng. Applied Sci., 13 (Special Issue 9): 6967-6972, 2018

Table 1: Operating systems tested
Operating sv stem

Firewall Kernel version

M8 Windows 7 SP1 Windows firewall 6.1.7001
M8 Windows 8.1 Windows firewall 6.3.9600
M8 Windows Windows firewall 6.1.7601
Server 2008 R2
M8 Windows Windows firewall 6.3.9600
Server 2012 R2
Debian “Wheezy” Netfilter/[Ptables 3.2.0-4-amde4
Ubuntu 14.04 LTS Netfilter/TPtables 3.13.0-24-generic
Fedora 21 workstation Netfilter/IPtables-service 3.174-301-fc21
iptables service replaced x86-64
by firewall
CentO8 WNetfilter/TPtables-service 3.10.0-229
iptables service replaced .el7.x86-64
by firewall
FreeBSD 1P firewall 10.0-RELEASE
OpenBSD Packet filter 5.6
NetBSD IP filter 6.1.5
Oracle Solaris TP filter 5.11

IP filter: IP filter 1s a default firewall distributed with
NetBSD and Oracle Solaris. It is a stateful firewall and it
supports both IPv4 and IPv6. The passing principle is the
same as 1n packet filter, 1.e., from top to bottom and the
last corresponding rule is performed . Rules are set in the
same way as 1n packet filter and “pass™ and “block™ are
again basic actions. However , it 1s for example, also,
possible to use “log” keyword to log occurrences of
correspondence with the rule etc. An example of the
syntax (note the similarity to packet filter):

* Pass in quick proto 1pv6-icmp from any to any
» Pass out quick proto 1pv6-icmp from any to any

IPv6 firewall functionality and testing efficiency: This
chapter presents the results of the performed tests aimed
at the efficiency and functionality of TPv6 firewalls and
their behaviour during the processing of purpose fully
modified packets.

Tested operating systems: All the operating systems (and
firewall implementations they are distributed with) used
for the purposes of testing on the hosts are summarized
i Table 1. All the tested operating systems were fully
updated before the testing. The 64 bit operating
system variants were used during the testing.

RESULTS AND DISCUSSION

Hardware used during the testing: The tests have been
performed using a physical personal computer with the
following hardware configuration:

+ Processor-AMD Phenom II X4 955 Deneb Quad-Core
32 GHz

* Memory-8 GB RAM

* Operating system-Xubuntu 14.04 LTS

2001:2:1::b 2001:2:1::1 ~ 2001:2:1::b 2001211
]
N pzzss R
192.1680.1 192.168.0.Z 192.168.10.2 192.168.10.1
Source Intermediary Target

Fig. 1: Test topology for scapy

Virtual machines used as destinations or proxies were
virtualized on the same PC using Oracle VM VirtualBox
virtualization software of Version 4.3.24. Every virtual
machine was assigned one virtual processor, 1024 MB
RAM and hardware virtualization support (AMD-V). Both
source and destination of the packets always had
WireShark network traffic analysis software active.

Testing scenario and scapy utility results: For the testing
of selected firewall’s behaviour and communication with
the modified packets, scapy utility was used. Tlus packet
manipulation utility allows the creation of almost any
packet using pre-defined syntax.

For its performance, scapy uses so-called raw sockets
because of which 1t was necessary to modify the testing
topology to correspond to the test topology in Fig. 1. In
the topology, the testing packets are trying to reach their
target destination where they are blocked by the rules for
the incoming packets. This, however, 1s not true for the
packets created wsing raw sockets. Despite an explicit
rejection the packet will not be discarded. Besides scapy,
other utilities were used: randicmp6 and toobigé from The
Hacker’s Choice IPv6 Toolkit. Rather that attempting to
bypass the firewall in this set of tests we monitored
whether the firewall forwarded certain packet types even
if their format was for instance in conflict with RFC. The
traffic using UDP protocol was being sent to port 69 and
an explicit rule for its permission was always created. It
was expected that the firewall should not give permission
to the packets from the following scenarios:

¢ Sends all combinations of ICMPv6 type and code to
the target. However, only some types will be of any
interest to us

» Sends an ICMPv6 error message “TooBig” with too
low MTU value

» Sends an ICMPv6 error message “TooBig” with too
high MTTU value

» Sends several encapsulated fragments (Le.,
fragmented fragments). There is no reason for such
packets to be created n the network python

* Unspecified address as the source

» Loopback address as the source

¢ Address “all nodes in the local network segment” as
the source

s Packet with type O routing header. Passing it is a
violation of RFC 5095

6960

J. Eng. Applied Sci., 13 (Special Issue 9): 6967-6972, 2018

Table 2: The results for scapy

Debian Ubuntu 14.04 Fedora 21 CentOS FreeBSD OpenBSD NetBSD Solaris
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO Y Y NO NO Y NO Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
NO NO NO NO NO Y NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO Y NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
Y Y Y Y Y Y Y Y
NO NO NO NO NO NO NO NO
NO NO NO NO Y Y Y Y
NO NO NO NO NO NO NO NO
Y Y Y Y NO Y NO Y
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO

Packet with type 2 routing header and “Segments
Left” header field different from 1

Packet with type 100 unallocated routing header.
Passing it 1s a violation of RFC 2460

Packet with invalid chain of headers: Hop-by-hop,
Hop-by-hop. Violation of RFC 2460

Packet with invalid chain of headers: Destination
options, Hop-by-hop. Vio-lation of RFC 2460
Packet with mvalid chain of headers: Hop-by-hop,
Destination options, type 2 routing header,
Hop-by-hop. Violation of RFC 2460

PadN options can legally contain zeros only (RFC
2460) otherwise it be-comes so-called hidden channel
Packet with invalid chain of headers: Hop-by-hop
(except for Padl and PadN they can occur only once)
duplicate Jumbo Payload occurrence. See RFC 4942
Packet with invalid chain of headers: Destination
options, duplicate jumbo payload occurrence. See
RFC 4942

Packet with mvalid chain of headers: Hop-by-hop,
duplicate router alert occurrence. See RFC 4942
Packet with invalid chain of headers: destination
options, duplicate router

Packet with invalid chain of headers: hop-by-hop,
duplicate tunmel encapsulation limit occurrence. See
RFC 4942

Packet with invalid chain of headers: destination
options, duplicate tunmnel
occurrence. See RFC 4942
PadN should not mnsert more than 5 octets

encapsulation limit

The third set of tests was executed usig scapy as
well. Once again, we use UDP protocol and port 69 which
15 now blocked by the firewall. We send IPv6 packets that
we encapsulate in another TP protocol header.

¢ Sends IPv6 packet encapsulated in TPv6 header
» Sends IPv6 packet encapsulated in IPv4 header

Table 2 presents test results of individual operating
systems and their firewalls. The testing scenarios
proposed above were executed using scapy utility and
randicmpé and toobigé from The Hacker’s Choice TPv6
Toolkit. UDP traffic destined to port 69 was generated and
explicitly allowed in firewall. Scenarios 22 and 23 are the
exceptions where [Pv6 was encapsulated m IPv6 and IPv4
respectively. In these two scenarios an explicit block of
combination of UDP protocol and destination port 69 was
created. These tests were aimed at whether the given
packet was passed or blocked by the firewall. Except for
already mentioned Scenarios 22 and 23 where the packets
were expected to be blocked based on the explicit access
rules, packets created in conflict with RFC should not be
passed further. The results were marked Y when the
firewall behaviour worked properly and NO if the firewall
rules were bypassed. As it can be seen, neither of the
firewalls does implicitly follow RFC protocols in terms of
I[CMPv6 filtering (Scenario No. 1). However, all of the
tested firewalls allow the creation of granular rules for
ICMPv6 filtering dependent on type and code.
Therefore , it is the administrator’s responsibility to
assemble the access rules set to ensure proper
firewall behaviour.

6970

J. Eng. Applied Sci., 13 (Special Issue 9): 6967-6972, 2018

All the firewalls, also, allow ICMPv6 error messages
“Packet Too Big” with too low or too high MTU values
(Scenarios No. 2 and 3, respectively) to pass. The firewall
admimstrator cannot reject such packets specifically
based on MTU value. ICMPv6 messages “Packet Too
Big” belong among those that are necessary for the
Ipv6 communication and they generally must not be
filtered.

In Scenario No. 4 fragmented fragments were created
normally there is no real reason for such packets to be
created. GNU/Linux distributions with older core ver-sions
(Debian and CentOS in our test) pass such packets;
Ubuntu 14.04 LTS and Fedora 21 block them. Therefore,
development towards the correct firewall behaviour can
be seen. NetBSD and Oracle Solaris with their IP Filter
firewall, also had mteresting results. Wlale IP filter version
distributed with Oracle Solaris blocked such traffic,
NetBSD version did not.

All the firewalls coped well with Scenarios 5-7 where
packets with source addresses that should not be passed
further were generated.

In Scenarios 8-10 we focused on routing headers. By
default, Netfilter/TPtables do not work with such headers
at all it 1s necessary to make use of “rt” module and
perform the filtering in specifically created rules chain.
Once the specific rules have been created it is possible to
achieve the behaviour completely compatible to RFC. IP
Firewall and packet filter in default settings each managed
to succeed once. FreeBSD system’s TP Firewall correctly
did not forward routing header with unallocated type,
however it did not follow REFC 5095 in regard to outdated
type O routing header. OpenBSD system’s packet filter
apparently performs inspection of routing header type but
it 1gnores “Segments Left” field, otherwise it would
discard the packets from Scenario No. 9. For IP filter it is
necessary to create explicit prolibition or prohi-bitions
(with use of “v6hdrs” keyword) otherwise it does not
work with such headers.

In Scenarios 11-13 packets with invalid header chams
were generated. Neither of the firewalls succeeded 1n 1its
default settings here. Netfilter/TPtables must make use of
ipvEheader or ipbheaderorder modules and create special
rules chain. On top of that the admimstrator must
manually define all header combinations that should
be rejected by the firewall. Similar situation occurs in other
firewalls as well. IP firewall and IP neither of the firewalls
checks the content of PadN (Scenario No. 14) and it 1s not
possible to solve this situation with explicit firewall rules
definition either. Creation of the packets with invalid
extension header settings chains was the main aim of
Scenarios No. 15-20. Netfilter/IPtables packets from
Scenarios No. 15 and 19 were discarded automatically for

explicit work with these settings “hbh” and “dst”
modules were necessary and so was stating all the
combinations to be discarded. IP firewall, packet filter, nor
IP filter mention how to define the rules for these
scenarios in their respective reference guides. However,
they always implicitly block some of the packets in these
scenarios. The exact cause of thus behaviour remains
unknown. Neither of the firewalls checks the length of
PadN (Scenario No. 21) and again it is not possible to
solve this situation with explicit firewall rules definition.
Scenarios No. 22 and 23 where IPv6 packets were
encapsulated m another IPv6 and IPv4 header,
respectively, resulted in a failure as well. By encapsulating
the packet its UDP header gets changed and the
permission rules are avoided based on the protocol and
port m all firewalls. The admimstrator must be ready for
such traffic and filter it based on protocol 41 (an example
of such a rule in ip6tables:- A FORWARD-p 41-] DROP).
The best of the tested fwewalls 15 probably
Netfilter/IPtables, especially, thanks to the system of
modules that allow the creation of granular rules. From the
results it is apparent that real TPv6 firewall environments
are not generally in accordance with RFC documents.
Moreover, creating it can require a great amount of work
(necessity to implicitly name combinations of extension
headers to be discarded) and therefore it is susceptible to
errors. It 13 also, related to high knowledge and time
requirements on the adminmistrator. This mplies that
speaking of firewalls TPv6 protocol does not make life any
easier as many new possibilities have arisen (extension
headers) and therefore, there can be higher variety of
attacks. In some firewalls, extension headers are not even
adequately supported which is also, true for ICMPv6
message content (TooBig).

CONCLUSION

The aim of this study was to analyse the issues of
firewalls in the environment of [Pv6 protocol. First, the
analysis of the current state has been made with
researchers relying mainly on corresponding RFC
documents. Relevant parts of TPv6 protocol have been
presented along with the definitions of the essential
terms. IPv6 firewalls have then been practically tested
virtualized lab environment. Several host firewalls
distributed with selected operating systems have been
tested. These firewalls are likely to become of even greater
importance m IPv6 as an idea of true end-to-end
connectivity is emerging. Higher parts of the
responsibility for safety will go from the centralized
defence of the network perimeter to every host. Every
firewall has been the subject to the series of tests using

6971

J. Eng. Applied Sci., 13 (Special Issue 9): 6967-6972, 2018

selected software utilities being aimed at known weak
points in TPv6 specification. The behaviour of respective
firewalls has been recorded and discussed. In
conclusion, 1t can be stated that firewalls work
inconsistently not only with RFC but also with each
other. To achieve more correct performance that
would be closer to RFC, a quality access rules setmust be
created.

ACKNOWLEDGEMENTS

This research and the contribution were also,
supported by project “Smart = Solutions for
Ubiquitous Computing Environments™ FIM,
University of Hradec Kralove, Czech Republic (under
ID: UHK-FIM-SP-2016- 2102).

REFERENCES

Afilias, J.A., P. Savola and G.N. Neil, 2007. Deprecation of
type O routing headers in ipv6. Stand. Track, 1: 1-7.

Barre, 3., T 2011.
Implementation and evaluation of the Shimé protocol
inthe Limux kernel. Comput. Commun., 34: 1685-1695.

Davies, E.C., S.K. Ericsson and P. Savola, 2007. IPv6
transition-coexistence security considerations. Inf.,
1:1-41.

Deering, S.C. and R.N. Hinden, 1998. Internet protocol,
version 6 (Ipv6) specification. Stand. Track, 6: 1-39.

Hain, T., 2000. Architectural implications of NAT. Inf., 1:
1-29.

McCann, T., S. Deering and J. Mogul, 1996. Path MTU
discovery for IP version 6. Stand. Track, 6: 1-15.
Nordmark, E. and M. Bagnulo, 2009. Shimé: Level 3
multihoming shim protocol for ipve. Stand. Tracl, 3:

1-124.

Steffann, S., S.TMP.C. Steffann and1.V. Beijnum, 2013. A
comparison of [Pv6-over-IPv4 tunnel mechanisms.
Inf., 1:1-41.

Van, G.D.V.,, T. Hain and R. Droms, 2007. Local network
protection for ipv6. Inf., 1: 1-36.

Ronan and O. Bonaventure,

6972

	6967-6972 - Copy_Page_1
	6967-6972 - Copy_Page_2
	6967-6972 - Copy_Page_3
	6967-6972 - Copy_Page_4
	6967-6972 - Copy_Page_5
	6967-6972 - Copy_Page_6

