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Abstract: Quality improvement 1s one of the most important requirement to strengthen a competitive position
in our markets. This research aims to study the effect of Cu addition on the behavior of mechanical properties
of Aluminum-Copper (Al-Cu) alloy, especially, the value of yield and tensile strength determined by tensile
tests. Fatigue tests were also conducted on Al-Cu samples with various copper additions. Al-Cu samples were
first cast with different percentages of copper (2, 4 and 8 wt.%) and then machmed by a CNC milling to prepare
samples for tensile and fatigue tests. The experimental result showed the clear influence of increasing copper
percent. Tt was observed that the increase in Cu% increase the value of tensile strength.
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INTRODUCTION

The most common added alloying element to
aluminum 1is copper, since, the commencement of Al
production and various alloys with Cu as major addition
were produced. Majority of such alloys include:

Cast alloys having deferent% copper, from 5-14,
85-94% 1ron and not more than 1.5|% of magnesium.
Wrought alloys having 5-6% copper with small amounts
of Mn, Si, Cd, Bi, Sn, Li, V and Zr. Such types of alloys
contain Pb, Bi and Cd and are easy to machine. Dural’s of
4-4.5% copper, 0.5-1.5% magnesium, 0.5-1.0% manganese
and with added S1. Cu alloys with N1 % which are divided
mto two types of alloy, the first 1s Y type containing 4%
copper, 2% nickel, 1.5% magnesium and second 1s the
Hyduminiums which normally possess less Cu% and in
which Fe is changed by 30 me of the Ni.

In majority of such alloys, Al is the principal element
and m cast alloys, the structure contains cored dendrites
of Al solid solution with several elements at the grain
boundaries or inters the dendritic spaces, resulting in a
brittle continuous eutectic network.

When using high-temperature applications of
cast alloys and aluminum-copper-nmckel alloys, creep
resistance 1s important The resistance of wear is
promoted by the high hardness and the existence of hard
elements. Alloys ether having 10-15% copper or heat
treated to the peak hardness possess greater resistance of
wear. Alumina (ALO,) 1s pure alumimun which obtained
from the electrolytic reduction s a relatively weak

material. Therefore, for applications requiring greater
mechanical strength, aluminum is alloyed with metals,
such as copper, zinc, magnesium and manganese and the
combinations of two or more of these elements together
with iron and silicon make the alloy more strong
(Oguocha, 1997). Because of the desirable chemical,
physical and mechanical properties, the aluminum is the
second widely used metal and becomes a significant type
of technological materials. Al and its alloys are utilized in
a broad range of industrial applications for various
aqueous solutions because of the high strength to
weight ratio in addition to other preferred features, for
example preferred appearance, non-magnetic, non-toxic,
non-sparking, high electrical and thermal conductivities,
easy of fabrication and high corrosion resistance.
Such characteristics lead to relate Al and its alloys with
various transportation applications, especially with
aircraft and space vehicles, containers and packaging,
electrical transmission lines and construction and
building (Al-Rawajfeh and Al-Qawabah, 2009). Esabna
stated that numerous Al alloys utilized industrially more
than 400 wrought alloys and more than 200 casting alloys
are presently recorded with the aluminum association. The
most significant consideration faced aluminum welding is
assignment of the kind of aluminum base alloy required to
be welded When kind of the base material of the workpart
to be welded is not available by a sowrce that may be
relied upon, it is hard to choose a proper welding
approach. Certain general guidelines exist for highly
probable types of Al utilized in various applications, like
the abovementioned ones. Nevertheless, it is too
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significant to know that improper assumptions for the
chemical content of an Al alloy can cause too serious
influences upon performance of the weld. Tt is highly
recommended that the positive assignment of the kind of
Al be made and that the welding approaches are evolved
and tested for verifying the performance of weld
Dobrzanski et al. (2006) showed that the AC AlSi,Cu
aluminum alloy has been widely used in the engineering
applications. Tn the design of cast automotive products,
it is necessary to gain closely acquainted awareness of
the way that alloy solidifies various cross sections of the
casting and the way that this effects on the mechanical
properties. This awareness helps the designer to make
ensure that the casting will perform the preferred
characteristics for its required purpose. Polmear (1995)
found that the aluminum alloys are the predominant
alloys. The typical alloying elements are of two main
types, cast alloys and wrought alloys which are more
classified into heat-treatable and non-heat-treatable.
Al wrought products makes about 85% such as foils,
extrusions and rolled plates. Cast Al alloys provide less
cost products because of their low melting point and less
ultimate tensile strengths than the wrought types. Al
alloys are much utilized in engineering frames and
mechanical parts because of their light weight and
resistance to corrosion. Girisha and Sharma (2012)
presented that Cu addition (usually 3-6 wt.%) as a
principal alloying constituent with or without Mg (0-2%)
as an alloying element increases strength of the alloy by
precipitation hardening, making the alloys very strong
with very good fatigue properties. If Cu is present,
nevertheless, the resistance to corrosion is very bad,
since, it precipitates at the grain boundaries, resulting in
very susceptible material to intergranular corrosion,
pitting and stress corrosion. The rich Curegions are more
noble/cathode than the surrounding Al matrix and work
as the desired positions for corrosion by the galvanic
coupling, also Cu is not good for the anodizing process.
Smith and Danielou (Lequeu et al., 2010) discussed the
Al-Cu-Li 2050 alloy that made, qualified and manufactured
by Alcan (Aluminum Company of America), the low
density and high corrosion resistant aerospace plates.
AA2050 alloy offers alternative to incumbent medium to
alloys with thick plate such as AA2024 or tolerant
versions with higher damage. The principles beyond
the selection of Al-Cu-Li chemical structure are
described in addition to the generation of property
balance in a broad thickness range from 12-127 mm
(0.5-5. Drits et al (1983) studied the widely
disseminated utilization cwrently for critical force
components in aviation and space engineering (alloys
based on the Al-Cu-Mg), especially in the shape of
pressed  semi-finished components depicting better
characteristics that enhance the reliability and the needed
working life of products. Higher levels of strength

properties, fatigue strength and fracture toughness with
almost low resistance to corrosion are utilized in the
supersonic-aircraft designs. Greater attention has been
concentrated on the design process “increased viability”
(increased size) and extended life span of aircraft. So, there
is a need to raise the broad use of methods of fracture
mechanics in the calculations and a need of large degree
of increasing the normal characteristics of static strength
and plasticity, such measures are fracture toughness (KC
and KIC), the rate of crack propagation and fatigue life.

Accordingly, the goal of present paper is to study
influence of various percentages of Cu addition on
mechanical properties of aluminum-copper material which
are obtained by tensile and fatigue tests.

MATERIALS AND METHODS

Experimental work

Alloy preparation: Experimental work was carried out
at (State Company for Inspection and Engineering
Rehabilitation (SIER) and 1 this research, Al-Cu alloys
with different percentages (2, 4 and 8%) of Cu were
mvestigated to study their mechanical properties. In order
to cast the Al-Cu alloy, certain casting tools were
prepared as shown in Fig. 1. The aluminum ingots were
first melted m a graphite crucible as depicted in
Fig. 2 and then copper was added with the required
percentage. Finally, the Al-Cu was cast as revealed in
Fig. 3 and then cleaned to be ready for further finishing
operations.

Tensile tests: Prior to tensile test, all Al-Cu samples were
first milled on a CNC milling machine shown in Fig. 4 to
prepare them according to the standard test dimensions as
llustrated m Fig. 5. Then, all tensile experiments were
conducted by a tensile testing machine type “United” as
manifested m Fig. 6. Tensile test was achieved on
specimens of aluminium-copper with different added

Fig. 1. Alloy preparation tools
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Fig. 3: (Al-Cu) alloy as cast

Fig. 4 CNC Milling machine used to prepare all test
samples

copper percentages. The dimensions of tensile sample are
G: Gage length = 75 mm, W: Width =12.5 mm, T: Sheet
Thickness = 3 mm, R: Fillet Radius = 20R, L: Overall
Length = 165 mim, B: Grip section length = 35 mm and C:
Grip section width = 20 mm.

Fig. 6 Tensile test machine used for testing Al-Cu

samples
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Fig. 7: Dimensions of fatigue specimen

Fatigue tests: All fatigue tests were conducted on a
reversed-bending machine (Avery Denison Ltd.,) using
5 Hz frequency at room temperature and stress Ratio (R)
equals to -1. Figure 7 reveals the shapes and diumnensions
of fatigue samples that were cut from rolled plates with a
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thickness of 2.1 mm such that the sample length direction
is parallel to the direction of longitudinal rolling. Finally,
all samples were fine ground and the average surface
Roughness (Ra) of ground samples 1s 0.7-1.3 um.

This research deals with the practical part of the
project where the samples were prepared from various
types as follows:

. Al-Cualloys with thickness 2 mm containg 2% Cu
was added

. Al-Cu alloys with thickness 2.5 mm contains 4%
Cu was added

. Al-Cualloys with thickness 3 mm contains 8% Cu
was added

These models have been cut mto fatigue test
specimens with equal dimensions. The samples were
made from cast Al-Cu alloy which were in form of sheets
with the dimensions 30<20 c¢m) for 3 pieces.

The tools that are used for this purpose are holder,
manual grinding tool containing a cutting dirk, grinding
dirk for removing the sharp edges, special equipment that
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contains a circular dirk for smoothing and cleaning the
samples and a CNC milling machine having a number of
milling cutter to get precise measurements.

RESULTS AND DISCUSSION

Tensile results: After creating the sample according to
standard specification, tensile tests were conducted on
cast Al-Cu samples and the results of the yield and tensile
stresses are shown in Fig. 8-13 and summarized in
Table 1 for six samples of this alloy with three added
copper percentages (8, 4 and 2 wt.%). Table 1, it can be
seen that the addition of copper in the aluminium alloy
increases the tensile stress of the resultant alloy. The
tensile strength of sample 1 was 99.83 MPa with added 2%
Cu, whereas the addition of 4% copper to sample 2 raised
the tensile stress to 132.29 MPa. As copper was further
increased in sample 3, the expected tensile stress would
have been lugher than that of sample 2 and 1t was 135.443
MPa. So, from the results, one can conclude that the best
ultimate tensile stress is 135.443 MPa for the first
specimen with (8% Cu).
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Fig. 8: Al-Cu alloy with 8% Cu (Sample 1)
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Fig. 9: Al-Cu alloy with 8% Cu (Sample 2)
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Fig. 10: Al-Cu alloy with 4% Cu (Sample 1)
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Fig. 11: Al-Cu alloy with 4% Cu (Sample 2)
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Fig. 12: Al-Cu alloy with 2% Cu (Sample 1)
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Fig. 13: Al-Cualloy with 2% Cu (Sample 2)

Table 1: Tensile test results for the three samples

Table 2: No. of cycles to failure for fatigue test at different applied stress

Average Average Average Average
yield force  wield stress  tensile force  tensile stress
Sample (Cu%) (N) (MPa) (N (MPa)
2 1652 44.06 3743.665 99.83
4 1246 33.23 4905.660 132.2%
8 1115.666 34.616 4378.333 135.443

Also, from Fig. 8 t1ll (13), one can see that the Cu %
affected the yield forces, for example, for the first sample,
the yield force was 1652 N while for the third sample it
was 1115.666 N, this means the yield stress was also
mcreased. The reason for increasing both yield and
ultimate tensile strength 15 likely attributed to the
increased Cu% that forms a hard intermetallic compound
within the alloy structure leading to increase both yield
and ultimate tensile strength. Figure 13 manifests the
fractured tensile test of the Al-Cu samples with different
added Cu%.

Regarding the fatigue tests of Al-Cu samples with
different percentages of added copper, Table 2 depicts
the results of number of cycles at different applied
stresses. Tt can be noticed that as the applied stress
increased, the no. of cycles decreased and this indicates

Stress (MPa) No. of cvcles to failure
130 3.2%10°

120 4.1%10°

105 4.7%10°

95 5.03*%10°

that the fatigue resistance is reduced with the decreased
of applied different added copper
percentages.

stress  for

CONCLUSION

The addition of copper up to 8% increased both the
vield and tensile strengths of cast Al-Cu alloy. Fatigue
strength of cast Al-Cu alloy decreased with the increase
of applied stress for different added copper percentages.
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