Tournal of Engineering and Applied Sciences 13 (20): 8426-8431, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Security Testing of Web Applications for Detecting and Exploiting
Second-Order SQL Injection Vulnerabilities

Najla’a Ateeq Mohammed Draib, Abu Bakar Md Sultan, Abdul Azim B. Abd Ghani and Hazura Zulzalil
Department of Software Engineering and Information System,
Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Abatract: SQL 1injection is considered one of the most serious ssues affecting web application’s security. It
occurs when an attacker tries to access the back-end database of web applications by exploiting improper user
mput validation vulnerabilities. There are two types of SQL injection, namely, first-order SQL injection and
second-order SQL injection. Most of the existing research works addressing this 1ssue focus on detecting the
first-order SQL myjection with a commeoen assumption that preventing first-order injection attack makes web
applications secure against other SQL injection attacks. However, second-order injection attacks can occur in
applications that are secured against first-order injection attacks. This is a dangerous security problem which
can occasionally, lead to dire consequences. In this study, we present our work-in-progress that uses a static
taint analysis and symbolic execution approach for detecting second-order SQL mjection vulnerabilities. We
first use static taint analysis to identify candidate vulnerabilities. Then, we use symbolic execution to generate
those input vectors that make the program execution satisfy conditions and confirm the existence of SQL
mjection vulnerabilities. This s the first techmque of which we are aware that generates mput vectors that
expose second-order SQL injection vulnerabilities. The imitial analysis of our proposed approach shows some
promising results.

Key words: Security testing, static analysis, second-order SQL ijection, vulnerability detection, web

applications, promising results

INTRODUCTION

Web applications are becoming among the most
ubiquitous software applications in use. This is because
they can be both an efficient and reliable solution to
communicating and conducting business challenges and
aresource of mformation. Typically, web applications are
designed with hard tune restrictions. Therefore, the
majority of them contain unexpected security
vulnerabilities that have made them main targets of
cyber-attacks. Thereupon, most web attacks take
advantage of these vulnerabilities to get unauthorized
access to the back-end database which often contains
confidential or sensitive information such as user’s
financial and medical data or company confidential
information.

Among web application vulnerabilities, Structured
Query Language Injection Vulnerabilities (SQLIVs) have
consistently been top-ranked for the past years as
reported by Anonymous (2017), SANS mstitute (Calbraith

2012, Anonymous, 2016) as a special type of SQL
Injections (SQLIs), second-order SQL injection attack
tends to be more serious, more difficult to be detected and
has a greater mmpact on the backend database than
first-order SQL wyection attack. This 1s due to the ability
of second-order SQL injection to be seeded first into the
application’s persistent storage which 1s usually, deemed
as a trusted source, prior to its actual exploitation.

There have been a lot of efforts devoted to detecting
SQLIVs and preventing their exploitations using static
analysis/white box testing, dynamic testing/black box
testing or runtime momtoring. Static analysis approaches
utilize taint analysis and similar code analysis techniques
to detect SQLIVs by tracking the flow of intruder/tainted
mput values throughout the application itself but
are unable to track input values across databases
(Huang et al., 2004, Jovanovic et al, 2006, Su and
Wassermann 2006; Xie and Aiken 2006). However, the
attacker can store malignant code mto the database and
triggers its execution at a later ime by taking advantage

Corresponding Author: Najla’a Ateeq Mohammed Draib, Department of Software Engineering and Information System,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM),

43400 Serdang, Selangor, Malaysia

8426

J. Eng. Applied Sci., 13 (20): 8426-8429, 2018

of improper sanitization of data retrieved from the
database which results m second-order SQL imection
attack. Moreover, static analysis 1s not accurate as some
runtime information is required. Due to this maccessible
mformation, static analysis keeps a
approach which leads to producing false positives m large
numbers. Recently, a static analysis tool 1s mtroduced to
detect second-order attacks (Dahse and Holz, 2014).
However, as a static analysis tool, this tool suffers from
reporting many false positives. Moreover, misinformation
may occur, since, static analysis techniques do not
cary out actual attack
vulnerability.

Black box testing techniques cannot guarantee
precision and completeness as they do not explore all
possible program paths of applications. In addition, as
assessed by Bau ef al. (2010, 2012), Deepa and Thilagam
(2016) many existing vulnerability scanners are limited to
detecting first-order SQLIVs and are not capable of
detecting second-order SQLIVs. This tendency is due to
two main reasons, namely, they cannot confirm that the
injected code is already in the storage and they may have
trouble in linking the initial injection event with the
triggering of the stored injected code.

For the runtime monitoring approach, some runtime

conservative

instances to discover a

momtoring approaches address second-order SQLIVs
(Halfond and Orso, 2005; Lam et al, 2008) but their
success and the accuracy of detection 18 dependent on
the accuracy of statically building query model.

The majority of existing solutions only address the
first-order SQLIA. They consider that if first-order attack
is detected and prevented then second-order attack
cammot occur any more. First-order vulnerabilities are
considered not exploitable when the user input is
sanitized properly. However, the attack can be launched
later on by exploiting the second-order vulnerabilities that
make use of the input.

The lack of effective mechanisms for addressing the
detection of second-order SQLIVs associated with an
increasing trend to reprocess submitted data and optunize
its use increases the probability and risks of this kind of
attack.

In this study, we propose an approach for
automatically identifying second-order SQLIVs by using
taint analysis and symbolic execution. Taint analysis is
devoted to identifying candidate vulnerabilities in the
source code of the web application. When candidate
vulnerabilities are detected, we resort to symbolic
execution and constraint solver to find input vectors that
can traverse the vulnerable baths and expose the
existence of false positives.

Background: Tn this study, a relevant background on
second-order SQL injection attack and static taint analysis
1s provided.

SQL injection attack: SQL Injection Vulnerabilities
(SQLIVs) are a security flaws that enable an attacker to
compromise underlying databases of web applications
resulting in unwanted extraction or insertion of data from
or into a database. SQL Injection Attack (SQLIA) is a
hacking technique in which the attacker exploits SQLIVs
to inject SQL code fragments into wvulnerable input
parameters (HTTP requests) generating malicious SQL
query which enables the attacker to gamn an unauthorized
access to the back-end database.

Practically, SQL imection can be introduced mto
vulnerable web applications using two main mechanisms
based on the mjection order: first-order SQL ijection
and second-order SQIL injection (Halfond et al., 2006;
Sharma and Jam, 2014). In first-order attack, the attacker
mserts SQL commands mto a vulnerable mput field
that flows directly from an entry point (e.g., $ GET)
to a sensitive sink (e.g., mySQLI-query). The successful
injection results are delivered immediately upon
user-nput submission.

Second-order SQLIA is a special type of SQLIA
which is more serious and more difficult to be detected. In
such attacks, the attacker first seeds SQL commands into
the database and uses that input at a later stage in a
sensitive sink for launching the attack. Unlike first-order
SQLIA in second-order SQLIA, malicious code is not
imtiated immediately but mstead it 1s first stored in the
application back-end database and then later on retrieved
and activated by the victim/attacker. Table 1 summarizes
the main differences between these two mechamisms.

Table 1: Implementation and detection of first-order and second-order
SQLIAs

Injection Injection mechanism

First-order SQLI The attacker enters a
malicious input and
causes the modified
code to be executed
instantly or in real-time

Detection

Easily filtered out
anti-malware
application and other
detection techniques

as the detection process
does not by involve
tracking taint data
through the database
Difficult to be detected
and prevented

because the injection

in point is different from
that where the attack was
actually
triggered/launch-ed

Second-order 8QLI The attacker initially
injects malicious code
into backend database
and subsequently
ditferent context and
time, triggers the
malicious content
execution

8427

J. Eng. Applied Sci., 13 (20): 8426-8429, 2018

User/attacker Web application Database server

Send a request

Store malicious code
on the server database

Request the content

Execute malicious input

Steal valuable data

A 4

Fig. 1: A high level view of typical second-order SQL
injection attack

Second-order SQL injection
second-order SQLIA stems from missing or iumproper
sanitization of data flowing from web application’s user to
the database and then to sensitive sink (e.g., SQL query
statement) (Anley, 2002; Mederios, 2016). The resulting
security violations of such attacks can be disastrous it
may include identity theft, loss of confidential or sensitive
data, take control of data and destroy back-end database
(Sharma and Jam, 2014). To illustrate, Fig. 1 presents a
typical architecture of the second-order SQLIA.

In such an attack, the following scenario may take
place (Anley, 2002). An attacker may register on a web
site where an “Admin” account exists using a seeded
username “Admin’ #°. Below 1s an example code for
creating an account (Algrothim 1):

attack: Typically,

Algrothim 1; Code for creating an account:
Susername =

mysqli_real escape_string($db,$_POST[username’])
$password =

mysqli_real escape_string($db,$_POST[password’])

$qryl =mysqli_query($db,” INSERT INTO user
(username,password) VALUTES

‘$username’,’ $password’)”)

The application correctly escapes the single quote
in the input before storing it in the database as shown in
the code. In this particular code by applying escaping, the
payload will be stored into the database as “Admin’ #”
but will not cause string termination issues when building
SQL msertion statement, thus, preventing its potentially
malignant effects. Let’s say that the application allows a
user to modify password of his or her account. The
modifying operation typically, involves ensuring that the
user has the old password before changing to the new
password. The code might be as follows (Algrothim 2):

Algrothim 2; Code:

$username =
mysqli_real_escape_string($db,$_POST[username’])
$oldpassword =mysqli_real_escape_string
($db,$_POST[oldpassword’])

$newpassword =mysqli_real escape string(3db,$
POST[newpassword’])

$qry2 = mysqli_query($db,“SELECT * FROM

user WHERE username = ‘$username’ and

password = “$oldpassword™)

$array = mysqli_fetch_assoc($qry 2)

$uname = $array[‘usemarne’]

$qry3 =mysqli_query($db,"UPDATE user SET
password = ‘$newpassword” WHERE username = ‘$uname’)

“$uname” is the stored username “Admin’#” that was retrieved
from the database for building up a new SQL statement. Given the
usemnarne “Admin’#’, the update statement executed by the database is as
shown:

$qry3d = mysqli_query($db,"UPDATE
*‘$newpassword’ WHERE usemarme =
‘Admin’ #)

user SET password =

Everything after the#character will be ignoredby the database so the actual
query is

$qry3 = mysgli_query($db,* UPDATE wuser SET password =
‘$newpassword” WHERE username = ‘Admin’)

As a result, the password of “Admin” will be
updated rather than the username “Admin’#” and thus,
the attack is achieved successfully. This is a dangerous
problem which can occasionally, lead to dure
consequences. Second-order SQLIA is much more
difficult to be detected and prevented. This 1s due to the
different points of injection and attack launching. The
developer may successfully ‘escape’ user input and deem
it safe but later on when the data is reused to create
different types of queries, the previously sanitized nput
may result in a second-order SQL mjection attack.

Static taint analysis: Static analysis, basically, finds the
root cause of a security problems m source codes. They
statically check program texts to discover loopholes in the
early stage of development, even before runmng the
program. It is important to find errors early in the
development as it not only mimmizes the cost of fixing the
errors but also, the coding approach of the developer is
improved due to the quick feedback received. Another
advantage of using static analysis 1s its ability to provide
better coverage compared to dynamic analysis. Static taint
analysis 1s a special type of data flow analysis and it 1s the
most commonly data flow analysis technique for security
analysis due to its ability to flag the tamted data entered
1n the program and detect if it reaches a sensitive sink. In
second-order SQLI vulnerabilities context, a vulnerability

8428

J. Eng. Applied Sci., 13 (20): 8426-8429, 2018

is discovered whenever a possibly tainted variable is
stored into a persistent storage of a web application and
then at another stage this mput is reused m a sensitive
(sink) statement without being validated A smk
point/statement is the SQL statement that uses an input
that is initially, supplied by the user. Although, static
analysis 1s effective n finding vulnerabilities n source

code, it tends to generate many false positives due to its
undecidability (Landi, 1992).

MATERIALS AND METHODS

We now present the proposed approach of
automatic detection and exploitation of second-order
SQLIV. Our main geals are: to automatically identify
vulnerable points to second-order SQLI in the source
code and to generate input vectors that can reveal the real
vulnerabilities and help developers to understand under
which conditions these vulnerabilities can be exploited.
This approach consists of two stages consecutive taint
analysis for detecting the vulnerability, followed by a
combination of symbolic execution and constraint solving
for mput vectors generation Figure 2 shows the
architecture of the proposed approach.

Vulnerability detection: The static analyzer first parses
the source codes and generates Their Abstract Syntax

| PHP source code |

Taint analyzer
[First taint analysis]
Taint input l s
[Second taint analysis

Pair of candidate vulnerabilities

Input vector generator

First phase

Second phase
A

v

First input generator Taint Second input generator
set
Input > Input
Executor 1 Executor 2
(symbolic execution+ (symbolic execution+ ’
constraint solver) constraint solver)
1.

First input vector ‘j

v
SQL attack

Fig. 2: Architecture including main modules

r' Second input vector
Attack generator

|
v

Attack vectors II

Trees (AST). Then it does taint analysis based on the
generated ASTs. Lastly, it generates trees that describe
candidate vulnerable control-flow paths. Second-order
SQLIA consists of two phases, one that seeds the
malicious code into the database and another that triggers
its execution to cause second-order attack. Therefore,
detection method consists two phases, first phase to
detect the mserting process and second phase to find out
the triggering process.

First static taint analysis phase: The goal of doing static
analysis first 13 to identify vulnerable paths where tamnt
data flows from source to insertion statement without
appropriate validation. In this context,
corresponding to imput data supplied by the user
Insertion statements correspond to SQL database
insertion statements (INSERT, UPDATE or REPLACE)
that store that input into a field in the database table
sanmtization. The mformation

source is

without appropriate
about the targeted table’s name, column names and
corresponding input values i3 determined by
tokenizing the SQL query. In the case when the target
column name 13 not specified, the parser uses database

schema.

Second static taint analysis phase: The second static
analysis of our approach is to teke the mformation
collected from first static analysis as input and checks for
the existence of sensitive sink (mysql query) that uses
the same column name to generate SQL query without
proper samtization. Here, the source 15 the data retrieved
from the column of database table and sensitive sk 1s
the statement (e.g., SQL query) that does retrieves the
values from database for buillding up a new SQL
statement. Our analysis then issues a warning. For this
phase of analysis, tant sources are elements (e.g., table
name, column name, etc.) inferred by the first analysis. On
the other hand, sensitive sinks are statements that retrieve
this column values from the database.

Generating input vectors: The main aim of first stage
of our method is to identify wvulnerable paths to
second-order SQLIA. However, taint analysis has two
mature limitations: It does not consider infeasible paths
which leads to produce false positives (not exploitable
paths). In addition, taint analysis just reports information
about the tanted data that gave rise to the vulnerability
without reporting executable test cases or providing
information about under which conditions the detected
vulnerability would be exploited. Hence, in the second
phase mput vector generation engine will generate
mput vectors to confirm the existence of false positives

8429

J. Eng. Applied Sci., 13 (20): 8426-8429, 2018

and help programmers to understand wvulnerabilities
reported by the tool. The attack vector for exploiting
second-order SQLI vulnerabilities consists of two mputs.
The first input represents data supplied by the attacker
which contains malicious code, associated with other
user inputs needed to traverse the target path. The
second input represents data provided by the victim
along with other inputs needed to traverse the second
target path.

First input vector generation: The algorithm takes the
first target path as an input. This path represents the
process of msertion to the database. Algrotlum 3 presents
the algorithm for generating first attack vector. In the first
step (line 3) the code 1s mstrumented in a way where we
can get the execution path for any input. Then the
algorithm generates new concrete inputs until a time limit
expires (line 5) in each iteration the algorithm picks an
mput set (line 7). Then the algorithm executes the input
set using symbolic execution and constraint solver. This
is to traverse the target path and check which input set is
able to reach the msertion statement. Whenever an input
set reaches mnsertion statement (e.g., msertion query) the
input set will be saved and the tainted value (which would
be used to build up the insertion query) of the input set is
mutated using a dataset of SQLI attack patterns in an
attempt to create attack vectors by modifying the
inputs.

Algrothim 3; Algorithm for creating first input attack

vectors:
Parameters : P1
Result : First input attack vectors

1. Input 1 =@

2. InputSetl " =3

3. P1' = makelnstromented Copy (P1)

4. while (! timeLimitExpired()) do

5. Inputs1 = inputs1 U generateNewInput(P1)

6. while (! covered (P1) AND ! inputListEnd()) do

7 { mputSetl = selectInput {inputl)

8 P = sembolicExecutoion & constraintSolver(pl' inputSetl)
9 if (covered (P17))

10. TnputSet] ' = rmtate(inputSetl); }
11 Retum (P, inputSetl ©)

Second input vector generation: The second phase works
similarly as the first one except that it 1s sumpler,
since, the input vector can be generated without mutating.
Mutation is not necessary because the attack can be
triggered with non-malicious input string. Hence, we can
have a satisfying assignment with backwards symbolic
execution of the generated constraint. Algrothim 4
describes the algorithm for generating second input
vectors.

Algrothim 4; Algorithm for creating first input attack

vectors:

Parameters : P2

Result : Second input vectors

1. Input2=0

2. InputSet2’ =@

3. P2’ = makeInstromentedCopy(P2)

4. while (! timeLimitExpired()) do

5. Inputs2 = inputs2 U generateNewInput(P2)

6. while (! covered(P2") AND ! inputListEnd(}) do
7. { inputSet2 = selectInput (input2)

8. P =sembolicExecutoion & constraintSolver(P2° inputSet2)
Q. it (covered (P27))

10, inputSet2 ' = rmtate(inputSet2); }

11. Retum (P, inputSet2 *)

RESULTS AND DISCUSSION

This research is ongoing worlk. The initial analysis of
the proposed approached shows some promising results.
This research is expected to produce a new approach for
detecting second-order SQI. injection vulnerabilities in
PHP-based web applications with less false positives.
Furthermore, we expect this approach to benefit web
application developers by enabling them to easily test
their application’s source codes and precisely detect
vulnerabilities before deployment which in tumn will
benefit the users of these applications by protecting them
from potential attacks. Furthermore, generating attack
vectors helps the developers to understand how the
detected vulnerabilities being exploited.

CONCLUSION

In this study, we presented our research plan towards
detecting second-order SQLIVs using a combination of
static taint analysis, symbolic execution and constraints
solving. The candidate vulnerable paths are detected
using taint analysis and then input vectors are generated
to expose the false positives and to help the developer to
understand under which constraint the vulnerabilities
might be exploited.

SUGGESTIONS

The future work on this progressive work is to
accomplish the research plan, develop a prototype to
automate the process and conduct an exhaustive
experiment to evaluate the proposed approach.

ACKNOWLEDGEMENTS

We acknowledge that this research received support
from the Fundamental Research Grant Scheme
FRGS/1/2015/1CTO1/UPM/02/12 awarded by Malaysian
Ministry of Higher Education to the Faculty of Computer
Science and Information Technology at Universiti Putra
Malaysia.

8430

J. Eng. Applied Sci., 13 (20): 8426-8429, 2018

REFERENCES

Anley, C., 2002. Advanced SQL mjection 1 SQL server
applications. NGS Secure, Manchester, England, UK.
http:/iwww.cgisecurity. com/lib/advanced sql injec
tion.pdf

Anonymous, 2016. Trustwave global security report.
Trustwave Holdings, Chicago, Illincis, USA.
https://www.trustwave.com/Resources/Global-
Security-Report-Archive/

Anonymous, 2017. OWASP top 10-2017: The ten most
critical web application security risks. OWASP,
Maryland, USA. https://www.owasp.
org/images/7/72/OWASP Top 10-
2017 %28en%29.pdf. pdf

Bau, I, E. Bursztein, D. Gupta and J. Mitchell, 2010. State
of the art: Automated black-box web application
vulnerability testing. Proceedings of the 2010 TEEE
International Symposium on Security and Privacy,
May 16-19, 2010, IEEE, Betkeley, Califorma, USA. .,
ISBN:978-0-7695-4035-1, pp: 332-345.

Bau, I, F. Wang, E. Bursztein, P. Mutchler and
I.C. Mitchell, 2012. Vulnerability factors in new web
applications: Audit tools, developer selection and
languages. J. Web Des., 1. 1-15.

Calbraith, B., 2012, CWE/SANS top 25 most dangerous
software errors: What errors are included in the top
25 software errors?. SANS Institute, USA.

Dahse, J. and T. Holz, 2014. Static detection of
second-order vulnerabilities in web applications.
Proceedings of the 2014 International Symposium on
USENIX Security, August 20-22, 2014, USENIX, San
Diego, California, USA., TSBN:978-1-931971-15-7, pp:
989-1003,

Deepa, G. and P.S. Thilagam, 2016. Securing web
applications from mjection and logic vulnerabilities:
Approaches and challenges. Inform. Software
Technol., 74: 160-180.

Halfond, W.G. and A. Orso, 2005. AMNESIA: Analysis
and monitoring for NEutralizing SQL-imection
attacks. Proceedings of the 20th TEEE-ACM
International Conference on Automated Software
Engineering, November 07-11, 2005, ACM, Long
Beach, California, ISBN:1-58113-993-4, pp: 174-183.

8431

Halfond, W.G.J., J. Viegas and A. Orso, 2006. A
classification of SQL imjection attacks and
countermeasures. Proceedings of the 2006 TEEE
International Symposium on Secure Software
Engmeering Vol. 1, March 13, 2006, IEEE, New York,
USA., pp: 13-15.

Huang, Y.W., F. Yu, C. Hang, C.H. Tsai and D.T. Lee
et al., 2004. Securing web application code by static
analysis and runtime protection. Proceedings of the
13th International Conference on World Wide Web,
ACM, New York, USA., May 17-20, 2004, ISBN:
1-58113-844-X, pp: 40 52-10.1145/988672.988679.

Tovanovic, N., C. Kruegel and E. Kirda, 2006, Pixy: A static
analysis tool for detecting web application
vulnerabilities. Proceedings of the Symposium on
Security and Privacy, May 21-24, 2006,
Berkeley/Oakland, CA., USA | pp: 263-269.

Lam, M.S., M. Martin, B. Livshits and . Whaley, 2008.
Securing web applications with static and dynamic
information flow tracking. Proceedings of the 2008
ACM SIGPLAN International Symposium on Partial
Evaluation and Semantics-Based Program
Mampulation, January 7-8, 2008, ACM, San
Francisco, California, USA., ISBN:978-1-59593-977-7,
pp: 3-12.

Landi, W., 1992. Undecidability of static analysis. ACM.
Lett. Program. Lang. Syst., 1: 323-337.

Medeiros, I.V.D.S., 2016. Detection of vulnerabilities and
automatic protection for web applications. PhD
Thesis, University of Lisbon, Lisbon, Portugal.

Sharma, C. and S.C. TJain, 201 4. Analysis and classification
of SQL iyjection vulnerabilities and attacks on web
applications. Proceedings of the 2014 International
Conference on Advances in Engineering and
Technology Research (ICAETR=14), August 1-2,
2014, IEEE, Unnao, India, ISBN:978-1-4799-6393-5, pp:
1-6.

Su, Z. and G. Wassermann, 2006. The essence of
command injection attacks in web applications. ACM.
SIGPLAN Not., 41: 372-382.

Xie, Y. and A. Aiken, 2006. Static detection of security
vulnerabilities in scripting languages. Proceedings of
the 15th International Symposium on USENIX
Security, July 31-August 4, 2006, USENIX, San Diego,
California, USA., pp: 179-192.

	8426-8431 - Copy_Page_1
	8426-8431 - Copy_Page_2
	8426-8431 - Copy_Page_3
	8426-8431 - Copy_Page_4
	8426-8431 - Copy_Page_5
	8426-8431 - Copy_Page_6

