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Abstract: In this study, we propose a structure for model size reduction and speeding up of classifier using
mverted residual block. Model size reduction for convolutional neural network computation in embedded
systems is one of the main technique. To get a classifier structure that small and fast, we compare and analyze
the experimental results of channel expansion parameter structure in inverted residual block proposed in
MobileNetV?2. Experiments were conducted on the Cifar-10 dataset for training and testing and compared with
the method of MobileNetV2, 1.7% accuracy reduction, 60% model size reduction and 50% reduction in inference

time were achieved.
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INTRODUCTION

Recently, image processing mnplemented by deep
Neural Networks (DNNs) (LeCun et al, 1989,
Krizhevsky, et al., 2012) has attracted attention. As a
result, in the 2015 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), the object classifier
using DNN outperformed the human’s Top-5 accuracy of
94.9% (Krizhevsky et al, 2012) with a DNN’s top-5
accuracy of 96.47% (He et al, 2016). However,
high-accuracy models like (Krizhevsky et al, 2012;
Szegedy et al., 2017) have many layers, so those models
are required high computational power and memory
because many model parameters and
computation. Because of these reasons, it 13 difficult to
imnplement DNN algorithms on a low-end embedded
system with low computational power and memory.

To improve those problems, Xception (Chollet,
2017) and MobileNetV1 (Howard et af., 2017) proposed a
depth-wise separable convolution that increases
efficiency of convelution operation. And Sandler et al.
(2018) proposed a linear bottleneck to reduce loss of the
mformation n an activation space and mverted residual
block to mmprove efficiency of the DNN. As a result, it
became possible to classify objects into a smaller size
model faster.

However, in an embedded system such as a
smartphone,  varlous  programs  are  executed
simultaneously. This results in less computational power
and memory actually available. Therefore, in this study,

there are

we study how to perform object classification in less
inference time with smaller model size. We implement a
classifier using methods by Sandler ef al. (2018), Chollet
(2017) and Howard et al. (2017) with a basic feature
extractor structure by Sandler et al. (2018). The channel
expansion parameters in the inverted residual block
proposed at Sandler ef al. (2018) are adjusted to compare
the influence of accuracy, mference time and model size
and find out the most efficient channel expansion
structure. After finding the most appropriate channel
expansion structure, we will experiment that structure on
Cifar-10, Cifar-100, Street View House Numbers (SVHN)
and STL10 datasets.

MATERIALS AND METHODS

Depth-wise separable convolution: Standard convolution
which is commonly used, computes the spatial direction
and the channel direction at a time and outputs the result
as a single value at a time. However, the depth-wise
separable convolution initially introduced by Sifre and
Mallat (2014) is operated by dividing the convolution
operation into two orders, depth-wise for the spatial
direction and point-wise for the charmel.

Figure 1 and Table 1 compare the difference between
the method and the computational cost according to the
method by convolution operation when the number of
input channel 13 ¢, size of mput kemel 1s kxk and size of
output vector is fxfxN. In the case of standard
convolution, N kxlkxc sized kemels are applied to input
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Fig. 1: Difference between two convolution methods
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Fig. 2: Structure of linear bottleneck

Table 1: Comparison of computation cost by difference of two methods
Convolution method Computational cost
kxkxexN=f=f
kxkxexfxftexNxfxf

Standard convolution
Depth-wise separable convolution

image and N sized vector 1s output by using weighted
sum of spatial direction and channel direction. The
computational cost of standard convolution 1s calculated
as kxdexexN xfxf.

However, in the case of the depth-wise separable
convolution, the kxk=1 sized kernel is applied to the
spatial direction without considering the channel size ¢ of
the input image, then fxf>c¢ sized vector is medium output.
The computation cost at this time 1s kxk*cxfxf. Next, N
1x1xc sized kernels are applied to channel direction of
the medium output without considering the spatial
direction. The size of the output of each convolution
fxfxN but the
computational cost is greatly reduced standard method’s
to kexdexexfxfrexN= fxf.

Considering the experimental result by Howard et al.

methods are same sized vector

(2017), the 3%3 depth-wise separable convolution reduces
the computational cost by &8-9 times compared with the
standard convolution.

Linear bottleneck: For every d-channel pixel in the deep
comvolution layer, the information for each layer is
encoded m some mamfold. The mamfold existing in the
high-dimensional activation space passes through the
non-linear activation function like ReL. U, resulting loss of
information. The loss of information degrades the quality

Current inverted residual_block

Depth-wise separable convolution

e plegic T L

of the feature map obtained from the neural network. In
mformation loss can be prevented by
existing in the high

dimensional manifold of the activation space mnto a low

this case,
embedding  information
dimensional subspace. Sandler ef al. (2018) proposes a
structure called linear bottleneck to prevent loss of
information.

Figure 2 is an intuitive representation of a linear
bottleneck structure. When this structure 1s used, it
becomes possible to embed the information of the
manifold existing in the high dimension of the activation
space into the low dimensional manifold subspace. As a
result, the mformation existing in the high dimension 1s
simultaneously present in the low dimension, so that the
loss of the high dimensional information by applying
non-linear activation function can be prevented. In
the other word, if the input manifold i1s embedded in
the low dimensional subspace in the activation space,
the trensformation by the non-linear activation
function such as Rel.U acts as a good expressive
function without losing information. Experimental
results show that the structure with linear bottleneck
improves accuracy in (Sandler et al., 2018, Han et al.,
2017).

Inverted residual block: Residual block structure is
proposed by He et al. (2016). Unlike a typical DNN
block has few stacked
convolutional layers together and the inputs and outputs
are concatenated directly. As a result, it is possible to use

structure, the residual
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Fig. 3: One of the inverted residual block structure that proposed in this study

Table 2: The structure of proposed method

Input Operator t C n S
323 Conv2d - 32 1 1
1122x32 Bottleneck 1 16 1 1
112°x16 Bottleneck 3 24 2 1
56°x24 Bottleneck 3 32 3 2
28%32 Bottleneck 2 64 4 2
142%64 Bottleneck 2 96 3 1
142296 Bottleneck 1 160 3 2
72160 Bottleneck 1 320 1 1
72x320 Conv2d 4x1 - 1280 1 1
72x1280 Avgpool 4x4 - 1

1x1=1280 Conv2d 1x1 - k -

the feature map that comes in as mput of the residual
block, so that, the feature map can be obtained more
than the
parameter.

By He et al. (2016), the channel inside of residual
block 1s reduced and increased. But, in the case of
inverted residual block, proposed by Sandler et al. (2018),
this method expands the channel nside of residual block
opposed to He et al. (2016). Figure 3 shows an example of

actual amount of calculatbon and

an inverted residual block. The channel expansion is
multiplied by the channel expansion parameter and the
point-wise convolution (Chollet, 2017) is used. The
mverted residual block has the advantage that the
memory efficiency is improved because the amount of
mformation m feature map 1s larger than input/output of

block.

Experiment

TImplementation: In the experiment, the structure of the
feature extractor proposed by Sandler et af. (2018) 1s
modified and used. Table 2 shows the proposed structure,
where t is the channel expansion parameter, ¢ is the
number of output channels, n 1s the number of
repetitions of the block and s is the stride value. The
experiment compares and analyses the experimental
results according to the channel expansion
parameters. For the experiment using the Cifar-10 dataset,

select the model with the highest accuracy per umt

model size and have additional validation using the
Cifar-100, SVHN and STL10 dataset for that model.

Experimental environment: The experiment is conducted
on Ubuntu 16.04L TS using Pytorch 0.4 interworking with
CUDA. The Geforce GTX 1080 8GB Model is used for the
CUDA. Traimng 1s conducted total of 3 steps which 1
step is 100 epochs with different learning rate. For each
step, the learning rate is adjusted to 0.1, 0.01 and 0.001.
the model with the highest top-1 accuracy 1s stored for
each 1 step and the learning rate is adjusted in the next
step. For each dataset, use 128 traimng batch size and 100
testing batch size but use 50 training and testing batch
size only for STL10 dataset.

RESULTS AND DISCUSSION

Table 3 shows the experimental results according to
changes i channel expansion structure when
training/testing using a Cifar-10 dataset. In the Table 3, N
is the number of repetitions of the corresponding block
and the inner channel of the block is multiplied by the
channel expansion parameter in the block of the
corresponding size. Experimental results show that the
structure of E is 60% smaller and 2 times faster than the
method proposed by Sandler et of. (2018) with only 1.7%
loss of accuracy.

Table 4 compares model size per unit inference time
and model size per umt accuracy to compare
inference time, accuracy and model size according to each
channel expansion structure. As a result, the structure E
showed the highest model accuracy per unit accuracy of
2.49.

Table 5 shows the experimental results of the
structure E according to the changes of the dataset.
Structure E shows an average of 1.7% reduction in
accuracy over four datasets. However, mference times are
two time faster and model sizes are 60% smaller than
method by Sandler et al. (2018).
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Table 3: Experimental results by changing channel expansion structure with Cifar-10 dataset

Charmnel expansion parameter (t)

Input size N [1] A B C D Efours] F G
1122x16 1 6 6 3 3 6 3 6 3
562x24 2 6 6 3 3 6 3 6 3
282%32 3 6 3 6 3 2 2 6 3
142=64 4 6 3 6 3 2 2 2 2
142%96 3 6 3 3 6 1 1 2 2
72x160 3 6 3 3 6 1 1 2 2
Inference time (msec) 26 21 18 17 19 13 22 14
Accuracy (%) 93.47 92.24 92.28 91.64 91.91 91.77 92.63 92.15
Model size (kB) 9179 5845 6727 8295 3804 3691 5162 4672
Table 4: Model size per unit inference time and model size per unit accuracy

Stricture [1 A B C D Elours] F G
Inference time (msec) 26 21 18 17 19 13 22 14
Accuracy (%) 93.47 92.24 92.28 91.64 91.91 91.77 92.63 92.15
Model size (kB) 9179 5845 6727 8205 3804 3691 5162 4672
Inference time/model size (psec/B) 2.83 3.59 2.68 2.05 4.99 3.52 4.26 3
Accuracy/Model size (%o'B) 1.02 1.58 1.37 1.1 2.42 249 1.79 1.97

Table 5: Experimental results of structure changing dataset

Dataset  Structure Inference time (msec) Accuracy (%%) Model size (kB) Inference time reduction (msec)  Accuracy loss (%) Model size reduction (kB)
Citar-10 [1] 26 93.47 9179 13 1.70 5488 (-59.799%)
E [ours] 13 91.77 3601
Citar-100 [1] 25 7232 9863 12 1.33 5714 (-57.93%)
E [ours] 13 70.99 4140
SVHN [1] 26 96.27 9402 13 0.46 5714 (-60.77%)
E [ours] 13 05.81 3688
STL10  [1] 13 75.15 9402 [ 3.60 5711 (-60.74%%)
E [ours] 7 71.55 3691
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