Nutritional Composition, Antioxidative and Inhibitory Effects Against Pancreatic Lipase, α-Amylase and α-Glucosidase of Lasia spinosa

${ }^{1}$ Nurul Husna Shafie, ${ }^{1}$ Syaza Lyana Idris, ${ }^{1}$ Nurul Nadiah Hamdan, ${ }^{1}$ Saadiah Abu Bakar, ${ }^{1}$ Amirah Haziyah Ishak, ${ }^{1}$ Nai'mah Isa, ${ }^{2}$ Hasnah Bahari and ${ }^{3}$ Khairul Kamilah Abdul Kadir ${ }^{1}$ Department of Nutrition and Dietetics
${ }^{2}$ Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
${ }^{3}$ Natural Product Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia

Abstract

The different parts (leaves, stems and roots) of Lasia spinosa in aqueous (hot and cold) and ethanol extracts were analyzed for nutrient composition, antioxidant capacity and enzyme inhibition of pancreatic lipase, α-amylase and α-glucosidase in vitro. Nutrient composition was determined using standard methods. Folin-Ciocalteu and aluminium chloride colorimetric were carried out to determine Total Phenolic Content (TPC) and Total Flavonoid Content (TFC), respectively. Antioxidant activities were evaluated by 1,1-diphenyl-2picrylhydrazyl (DPPH) assay and β-Carotene Bleaching (BCB) assay. Enzymes inhibition assays were determined using commercial enzyme kits. Proximate analysis of the samples showed content of moisture (78.20 , $89.60,79.09 \%)$, ash $(0.97,1.00,0.97 \%)$, protein $(1.24,1.63,5.33 \%)$, fat $(0.13,0.03,0.07 \%)$, dietary fiber ($42.40,52.35$, 45.34%), carbohydrate ($19.45,7.65,14.33 \%$) and energy value ($168.77,142.94,171.88 \mathrm{kcal} / 100 \mathrm{~g}$) of leaves, stems and roots, respectively. Results showed that stems contain higher mineral contents compared to leaves and roots. Hot aqueous leaves extracts contained the highest TPC and TFC. The cold aqueous leaves extract possess high antioxidant activities with EC_{50} value of $312 \mu \mathrm{~g} / \mathrm{mL}$. The highest pancreatic lipase inhibitory effect was the ethanol stems extract. For α-amylase, hot aqueous leaves extract showed the highest inhibition whereas ethanol leaf extracts showed the highest inhibitory effects of α-glucosidase. Lasia spinosa exhibits excellent nutrient composition, antioxidant contents and activities and inhibitory effects against pancreatic lipase, α-amylase and α-glucosidase which imply the inhibition of dietary fat and sugar absorption and thereby might have a great potential in chemoprevention of obesity and diabetes.

Key words: Nutrient composition, antioxidant content, antioxidant activity, enzyme inhibition, chemoprevention, obesity, diabetes

INTRODUCTION

Lasia spinosa (L.) Thwaites is belong to the family Araceae which is a perennial herb with watery, bitter or milky juice and usually an elongated or tuberous rhizome (Cook et al., 1974). L. spinosa is distributed in Bangladesh, Bhutan, India, Nepal, Sri Lanka, Cambodia, Laos, Myanmar, Thailand, Vietnam, Indonesia, Malaysia, Papua New Guinea, China and Taiwan (Deb et al., 2010; Napiroon et al., 2014). This plant is known locally as Kantakachu (Bengali) (Goshwami et al., 2012) Phaknam (Thailand) (Nauheimer et al., 2012), Kohila (Sri Lanka) (Shefana and Ekanayake, 2009) Turang (India) (Kichu et al., 2015) and Geli-geli or Gegeli (Malaysia) (Bachok et al., 2014).

Traditionally, L. spinosa is used as vegetables (Shefana and Ekanayake, 2009) added in curry to acidify the taste (Burkill, 1953) or eaten raw as "Ulam" (Bachok et al., 2014).

Nutritional composition of L. spinosa includes polyphenols, vitamin C and dietary fibres (Shefana and Ekanayake, 2009). Phytochemical consituents of this plant includes β-sitosterol acetate and stigmasterol from the rhizome (Dinda et al., 2004) and flavonol 3'-methyl quercetin-3-o- $\alpha-\mathrm{L}-\quad$ rhamnopyranosyl- $(\rightarrow 6)-\beta-\quad \mathrm{D}-$ glucopyranoside (Van et al., 2006). The leaves and rhizomes are used in folk medicine to treat intestinal diseases such as worm's infections, colic, hemorrhoid and constipation (Shefana and Ekanayake, 2009). Scientific studies have demonstrated rhizome of L. spinosa was

[^0]used for treatment of lung inflammation, bleeding cough and the whole plant in uterine cancer and high antimicrobial activities and significant toxicity to brine shrimp (Alam et al., 2011). Hydroalcoholic root extract of L. spinosa demonstrated antioxidant (Shefana and Ekanayake, 2009), antinociceptive, antinflammatory, antidiarrhoeal activity in a dose dependent manner (Deb et al., 2010) and antihyperglycemic properties (Hasan et al., 2014).

The use of plant-based antioxidant compounds in foods and preventive medicine are gaining a great deal of interest because of their potential health benefits (Parida et al., 2014). Epidemiological studies have suggested that relationships exist between the consumption of phenolic-rich foods or beverages and the prevention of chronic diseases such as cancer and cardiovascular diseases. Many plant phenolic compounds exhibiting antioxidant properties have been studied and proposed for protection against oxidation (Habauzit and Morand, 2012). An antioxidant is a stable molecule that can donate an electron to a rampaging free radical and neutralize it, thus reducing its capacity to damage. Antioxidants can delay or inhibit cellular damage through their free radical scavenging property. These low molecular weight antioxidants can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged (Sharma et al., 2012). Hence, diseases associated with free radicals such as the risk for cancer, hypertension and heart disease can be avoided by antioxidant therapy which gained an immense importance.

There are also increasing research in exploring the therapeutic agents for obesity and diabetes from natural sources such as medicinal plants. This is because medicinal plants are affordable, easily accessible and excellent alternatives for safer and more effective therapeutic agents although further research is required to test on its efficacies (Prakash et al., 2015). Since, dietary triglyceride and carbohydrate are the main source of ingested lipid and glucose, respectively, controlling the absorption of these nutrients is the most effective approach to prevent excess calorie and sugar intake by inhibiting the main digesting enzymes of lipid (lipase) and carbohydrate (α-amylase and α-glucosidase) (Tucci et al., 2010). Broad studies have been demonstrated the phytochemicals in plants as the contributor to these inhibitory effects (Oboh et al., 2012). Furthermore, the excellent antioxidant properties could consequently improve the inhibitory activities, adding the potential to be used as natural therapeutic agents (Maiti and Majumdar, 2012).

This study has demonstrated the potential of L. spinosa as a functional food and natural therapeutic
agent evidenced by its nutrient composition, antioxidant capacities and the inhibitory activities against lipase, α-amylase and α-glucosidase with optimal extraction conditions.

MATERIALS AND METHODS

Sample collection and extraction: The plant was collected from Kedah, Malaysia. Samples were separated into three different parts; Leaves, stems and roots. After that samples were cleaned and washed by tap water. For drying process, the samples were dried in the oven at $60^{\circ} \mathrm{C}$ for 24 h . Next, samples were grinded and proceed with crude extraction. The samples were subjected to three types of extraction; hot $\left(70^{\circ} \mathrm{C}, 12 \mathrm{~h}\right)$ (Cheurfa and Allem, 2015) and cold (room temperature, 2 days) (Santos et al., 2014) aqueous extractions and 70\% ethanol extraction (AOAC, 2005; Roh and Jung, 2012). The dried extracts were kept at $-20^{\circ} \mathrm{C}$ until further analysis (Cheurfa and Allem, 2015; Nurdiana et al., 2013).

Proximate and mineral analysis: The proximate analysis of the samples for moisture, ash and carbohydrate contents were determined as described by AOAC (2005). The contents of $\mathrm{Ca}, \mathrm{Zn}, \mathrm{Na}, \mathrm{K}, \mathrm{Mg}$ and Fe in foods were measured by Atomic Absorption Spectrophotometer (AAS). Briefly, 5 g sample was placed in a previously weighed porcelain crucible and heated. The resulting white ash was weighed, dissolved in 3 mL of concentrated nitric acid and diluted with distilled water in a 25 mL calibrated flask. The solution was used to determine of Calcium (Ca), Zinc (Zn), sodium (Na), potassium (K), Magnesium (Mg) and iron (Fe). Standard stock solution of these minerals were prepared from AAS grade chemicals (Sigma, USA) by appropriate dilution (Santos et al., 2014).

Determination of Total Phenolic Content (TPC): The Folin-Ciocalteu (FC) reagent assay was diluted by added 1 mL of FC in 9 mL of distilled water. Then 0.6 g of sodium bicarbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ was prepared in 10 mL of distilled water. The serial dilution of gallic acid concentrations ($1.95,3.9,7.8,15.63,31.25,62.5,125,250,500$ and 1000 $\mu \mathrm{g} / \mathrm{mL}$) also were prepared. After that $50 \mu \mathrm{~L}$ of sample, 50 $\mu \mathrm{L}$ of FC reagent and $100 \mu \mathrm{~L}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were added in the 96 well plates. The absorbance was measured at 725 nm by using FLUOstar Omega microplate reader. The mean of three readings were used and the content of phenolic was expressed as Gallic Acid Equivalent (GAE) per 1 g of extract. The total phenolic content was calculated by September 29, 2018 using the following formula (Eq. 1):

> TPC for 1 g of extract $=$
> TPC per mL sample \times Dilution factor \times
> Total sample volume used
> Sample weight

Determination of Total Flavonoid Content (TFC): All reagents were prepared which are mixed 50 mL of distilled water with 2.5 g of 5% sodium nitrate $\left(\mathrm{NaNO}_{2}\right), 50 \mathrm{~mL}$ distilled water with 2.5 g of 10% aluminum chloride $\left(\mathrm{AlCl}_{3}\right)$ and 2.5 g sodium hydroxide (NaOH) with 62.5 mL distilled water. The serial dilution of catechin concentrations (1.95, $3.9,7.8,15.63,31.25,62.5,125,250,500$ and $1000 \mu \mathrm{~g} / \mathrm{mL}$) also were prepared. After that $20 \mu \mathrm{~L}$ of each sample was added in 96 well plates. Then the samples were mixed with $6 \mu \mathrm{~L}$ of NaNO_{2} solution and $48 \mu \mathrm{~L}$ of distilled water and incubated for 5 min . Six microliter of AlCl_{3} solution was added to the mixture and allowed to stand for 6 min . Then $40 \mu \mathrm{~L}$ of NaOH solution was added with $80 \mu \mathrm{~L}$ of double distilled water and the mixture was allowed to stand for 15 min . The absorbance was measured at 510 nm . The mean of three readings were used and the content of total flavonoids was expressed as Catechin Equivalent (CE) per 1 g of extract. The total phenolic content was calculated by using the following formula (Eq. 2):

> TFC for 1 g of extract $=$
> TFC per mL sample \times Dilution factor \times
> Total sample volume used
> Sample weight
β-Carotene Bleaching (BCB) assay: The β-Carotene (βC) reagent was prepared by mixing 2 mg of $\beta \mathrm{C}$ in 10 mL of chloroform. A stock solution was prepared by mixed 1 mL of $\beta \mathrm{C}$ reagent, $20 \mu \mathrm{~L}$ of linoleic acid and $200 \mu \mathrm{~L}$ of tween 40 into a round bottom flask. Then it was evaporated at $50^{\circ} \mathrm{C}$ using a rotary evaporator. Then, 50 mL of distilled water was added to form an emulsion. The $20 \mu \mathrm{~L}$ of sample and $200 \mu \mathrm{~L}$ of emulsion were added in the 96 well plates. Butylated Hydroxy Toluene (BHT) was used as standard. The absorbance was measured at 470 nm by using FLUOstar Omega microplate reader. The reading of absorbance was measured at time 20, 40, 60, 80, 100 and 120 min . Degradation Rate (DR) was calculated according to first order kinetics by using the following Eq. 3:

$$
\begin{equation*}
\text { Antioxidant } \operatorname{activity}(\%)=\frac{A_{t}-C_{t}}{C_{0}-C_{t}} \times 100 \tag{3}
\end{equation*}
$$

where, A_{t} and C_{t} referred as the absorbance values measured for the extraction sample and control, respectively, after incubation for $t \mathrm{~min}$ and C_{0} is the absorbance value for the control measured at zero time during the incubation.

1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging

 assay: The DPPH working solution was prepared by adding 2.4 mg of DPPH in 30 mL of methanol. Then the serial dilution of sample concentrations $(15.63,31.25,62.5$, $125,250,500,1000 \mu \mathrm{~g} / \mathrm{mL}$) were prepared. The $100 \mu \mathrm{~L}$ of sample and $100 \mu \mathrm{~L}$ of DPPH were added in the 96 well plates. Butylated Hydroxy Toluene (BHT) was used as standard. The absorbance was measured at 517 nm by using FLUOstar Omega microplate reader. Radical scavenging capacity was expressed as percentage (\%) and calculated using the following Eq. 4:$$
\begin{align*}
& \text { DPPH radical scavenging activity }(\%)= \\
& \frac{\text { Absorbance of control }- \text { Absorbance of sample }}{\text { Absorbance of control }} \times 100 \tag{4}
\end{align*}
$$

Different sample concentrations were used in order to obtain antiradical curves for calculating the EC_{50} values.

Pancreatic lipase inhibition assay: The lipase inhibition assay was carried out using lipase activity assay kit (Sigma) with modifications (Roh and Jung, 2012). The reaction mixture ($50 \mu \mathrm{~L}$) were prepared by mixing lipase assay buffer ($46.5 \mu \mathrm{~L}$), peroxidase substrate ($1.0 \mu \mathrm{~L}$), enzyme mix $(1.0 \mu \mathrm{~L})$ and lipase substrate $(1.5 \mu \mathrm{~L})$. The reaction mixture was then pipetted into 96 -well plate. The assay was initiated by transferring $25 \mu \mathrm{~L}$ of the sample extracts $(0.1 \mathrm{mg} / \mathrm{mL})$ into the wells. After that the plate was incubated at $37^{\circ} \mathrm{C}$ and in every 5 min the absorbance were measured at 405 nm using FLUOstar Omega microplate reader.
α-amylase inhibition assay: The α-amylase inhibition assay was performed using amylase activity assay kit (Sigma) with modifications (Liu et al., 2013). The sample extracts $(0.1 \mathrm{mg} / \mathrm{mL})$ were mixed well with reaction mix ($50 \mu \mathrm{~L}$ of amylase buffer and $50 \mu \mathrm{~L}$ of amylase substrate mix). After that the plate was incubated at $37^{\circ} \mathrm{C}$ and the absorbance were measured in every 5 min at 540 nm using FLUOstar Omega microplate reader.
α-glucosidase inhibition assay: The α-glucosidase inhibitory activity was performed using glucosidase activity assay kit (Sigma) with modifications. Briefly, an appropriate $20 \mu \mathrm{~L}$ of sample extracts ($0.1 \mathrm{mg} / \mathrm{mL}$) was added into 96 well plates. After that, $200 \mu \mathrm{~L}$ of master reaction mix ($200 \mu \mathrm{~L}$ of assay buffer and $8 \mu \mathrm{~L}$ of $\alpha-\mathrm{NPG}$ substrate) was transferred into the sample wells. Then the plate was incubated at $37^{\circ} \mathrm{C}$ and the absorbance were measured in every 5 min at 405 nm using FLUOstar Omega microplate reader (Liu et al., 2013). The percentage of inhibition of all enzymes activity is calculated by using following Eq. 5:

Percentage of inhibition(\%) $=$
$100-\left[\begin{array}{l}(\text { Absorbance of Sample }) / \\ (\text { Absorbance of Control }) \times 100\end{array}\right]$

Statistical analysis: Statistical analysis was performed by one-way Analysis of Variance (ANOVA) with post hoc test (Tukey HSD) and bivariate Pearson correlation test was used to determine the correlation between antioxidant content (TPC and TFC) and antioxidant activity (BCB and $\mathrm{DPPH})$. All results were expressed in mean \pm standard deviation and were considered statistically significant when $\mathrm{p}<0.05$.

RESULTS AND DISCUSSION

Proximate and mineral analysis: Results of proximate analysis of different parts of L. spinosa are shown in Table 1. The proximate analysis revealed that moisture content is within the range of $78-90 \%$. Ash content was found ranging from $0.97-1.00 \%$ and not significant ($\mathrm{p}>0.05$) between different parts. L. spinosa roots contained the highest and significant ($\mathrm{p}<0.05$) protein (5.33%) compared to other parts. Proteins play important roles in human body such as act as enzyme, hormones and antibodies (Gropper and Smith, 2012). The fat composition in all parts of L. spinosa was very low. Thus, this may suggested that L. spinosa has low energy content which could benefits in prevention of obesity and other related diseases. Total dietary fibers were higher in all parts; Leaves, stems and roots (42.40, 53.35 and 45.34%, respectively). High-fiber intake is associated with the prevention of various chronic diseases such as cardiovascular diseases, diabetes and cancer (Kaczmarczyk et al., 2012). Carbohydrate content was the highest in leaves (19%). L. spinosa leaves and stems contained high iron content (35.47 and $44.53 \mathrm{mg} / 100 \mathrm{~g}$, respectively) whereas roots contained high zinc content $(13.35 \mathrm{mg} / 100 \mathrm{~g})$. Iron and zinc are essential micronutrients for human growth, development and maintenance of the immune system. Deficiencies of both nutrients remain a global health problems (Nguyen et al., 2012).

Results are expressed as mean \pm standard deviation ($\mathrm{n}=3$). Different letters in the same row indicate significant difference at $\mathrm{p}<0.05$. Proximate is expressed by percentage and minerals by $\mathrm{mg} / 100 \mathrm{~g}$.

Total phenolic and flavonoid content: Table 2 shows the Total Phenolic Content (TPC) in hot aqueous extract, cold aqueous extract and ethanol extract of different parts (leaves, stems and roots) of L. spinosa. In hot aqueous extract, leaves had the highest TPC ($42.36 \pm 0.42 \mathrm{mg}$ GAE/g

Table 1: Proximate and mineral composition of different parts of L. spinosa Plant parts

Nutrients	Leaves	Stems	Roots
Energy (kcal/ $/ 100 \mathrm{~g}$)	$168.77 \pm 2.13^{\mathrm{a}}$	$142.94 \pm 5.14^{\mathrm{b}}$	$171.88 \pm 2.38^{\mathrm{a}}$
Moisture	$078.20 \pm 0.60^{\mathrm{b}}$	$089.60 \pm 1.13^{\mathrm{a}}$	$079.09 \pm 0.66^{\mathrm{a}}$
Ash	$000.97 \pm 0.01^{\mathrm{a}}$	$001.00 \pm 0.02^{\mathrm{a}}$	$000.97 \pm 0.02^{\mathrm{a}}$
Protein	$001.24 \pm 0.09^{\mathrm{c}}$	$001.63 \pm 0.19^{\mathrm{b}}$	$005.33 \pm 0.08^{\mathrm{a}}$
Fat	$000.13 \pm 0.12^{\mathrm{a}}$	$000.03 \pm 0.00^{\mathrm{a}}$	$000.07 \pm 0.01^{\mathrm{a}}$
Total dietary fiber	$042.40 \pm 0.46^{\mathrm{c}}$	$052.35 \pm 0.43^{\mathrm{a}}$	$045.34 \pm 0.57^{\mathrm{b}}$
Carbohydrate	$019.45 \pm 0.63^{\mathrm{a}}$	$007.65 \pm 0.81^{\mathrm{c}}$	$014.33 \pm 1.04^{\mathrm{b}}$
Potassium	$003.09 \pm 0.01^{\mathrm{b}}$	$003.37 \pm 0.03^{\mathrm{a}}$	$002.71 \pm 0.13^{\mathrm{c}}$
Sodium	$000.20 \pm 0.00^{\mathrm{a}}$	$000.25 \pm 0.04^{\mathrm{a}}$	$000.12 \pm 0.01^{\mathrm{b}}$
Calcium	$003.71 \pm 0.66^{\mathrm{a}}$	$003.11 \pm 0.08^{\mathrm{a}}$	$003.51 \pm 0.04^{\mathrm{a}}$
Manganese	$000.04 \pm 0.02^{\mathrm{c}}$	$000.08 \pm 0.02^{\mathrm{b}}$	$000.23 \pm 0.01^{\mathrm{a}}$
Magnesium	$000.50 \pm 0.01^{\mathrm{c}}$	$000.91 \pm 0.01^{\mathrm{a}}$	$000.70 \pm 0.0^{\mathrm{b}}$
Iron	$035.47 \pm 0.92^{\mathrm{b}}$	$044.53 \pm 0.70^{\mathrm{a}}$	$001.82 \pm 0.18^{\mathrm{c}}$
Zinc	$003.77 \pm 0.20^{\mathrm{b}}$	$002.93 \pm 0.11^{\mathrm{c}}$	$013.35 \pm 0.33^{\mathrm{a}}$

Table 2: Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) of L spinosa

	Total Phenolic Content (TPC) (mg GAE/g extract)	Total Flavonoid Content (TFC) (mg CE/g extract)
Types of extraction $42.63 \pm .42^{\mathrm{a}}$ $15.62 \pm 1.23^{\mathrm{a}}$ Hot aqueous extract $27.42 \pm 2.33^{\mathrm{b}}$ $10.34 \pm 3.75^{\mathrm{a}}$ Leaves $13.68 \pm 1.29^{\mathrm{c}}$ $06.21 \pm 1.34^{\mathrm{b}}$ Stems $35.06 \pm 0.20^{\mathrm{d}}$ $11.57 \pm 1.02^{\mathrm{c}}$ Roots $15.20 \pm 3.25^{\mathrm{e}}$ $08.51 \pm 0.85^{\mathrm{c}}$ Cold aqueous extract $13.22 \pm 0.57^{\mathrm{e}}$ $02.90 \pm 3.12^{\mathrm{d}}$ Leaves $09.78 \pm 2.74^{\mathrm{e}}$ Stems $34.56 \pm 1.21^{\mathrm{f}}$ $00.99 \pm 1.76^{\mathrm{f}}$ Roots $05.00 \pm 0.20^{\mathrm{g}}$ $04.93 \pm 1.60^{\mathrm{e}}$ Ethanol extract $09.85 \pm 1.40^{\mathrm{g}}$ Leaves Stems		

extract) followed by stems ($27.42 \pm 2.33 \mathrm{mg}$ GAE/g extract) and roots ($13.68 \pm 1.29 \mathrm{mg} \mathrm{GAE} / \mathrm{g}$ extract). In cold aqueous extract, leaves had the highest TPC ($35.06 \pm 0.20 \mathrm{mg}$ GAE $/ \mathrm{g}$ extract) followed by stems and roots. For ethanol extract, leaves also showed the highest TPC ($34.56 \pm 1.21 \mathrm{mg}$ GAE/g extract) followed by roots and stems. The optimum condition to obtain the TPC in L. spinosa was hot aqueous leaves extraction.

Results are expressed as mean \pm standard deviation $(\mathrm{n}=3)$. Different letters in the column within the same types of extraction indicate significant difference between parts at $\mathrm{p}<0.05$.

Similar results in other studies revealed that sample in hot water extraction gives the higher value of total phenolic content (Nyirenda et al., 2012; Stankovic, 2010). It may due to some antioxidants such as polyphenolic compounds have greater solubility in polar solvents such as water and some others dissolve well in slightly-polar solvents such as ethanol (Boeing et al., 2014). It was also found that the phenolic content were lowest at room temperature compared with those obtained on heating. Increased temperature could promote the phenolic extraction by increasing both diffusion coefficient and solubility of phenolic compounds in

Table 3: Antioxidant activity of selected samples assay ed by BCB

Types of extraction	Antioxidant activity $(\%)$
Hot aqueous extract	
Leaves	$85.27 \pm 1.97^{\mathrm{a}}$
Stems	44.86 ± 0.44^{b}
Roots	ND
Cold aqueous extract	
Leaves	$92.04 \pm 3.514^{\mathrm{c}}$
Stems	$3.07 \pm 9.96^{\mathrm{d}}$
Roots	ND
Ethanol extract	
Leaves	9.71 ± 6.68^{e}
Stems	13.55 ± 2.92^{e}
Roots	16.68 ± 9.49^{e}

${ }^{\mathrm{a}-\mathrm{d}}$ Significant values
extraction solvent. Besides, intense heat from solvent was also able to release the cell wall phenolics and bounded phenolics by breaking down of cellular constituents and hence increases the phenolic yield in extract (La et al., 2013).

Table 2 also shows the mean of Total Flavonoid Content (TFC) in hot aqueous extract, cold aqueous extract and ethanol extract, of different parts (leaves, stems and roots) of L. spinosa. In hot aqueous extract, leaves had the highest TFC ($15.62 \pm 1.23 \mathrm{mg}$ GAE/g extract) followed by stems and roots. Similarly, in cold aqueous extract, leaves contained the highest TFC ($11.57 \pm 1.02 \mathrm{mg}$ GAE/g extract) followed by stems and roots. In ethanol extract, leaves had the highest TFC ($9.78 \pm 2.74 \mathrm{mg} \mathrm{GAE} / \mathrm{g}$ extract) followed by roots and stems. In similar to TPC, the optimum condition to obtain the TFC in L. spinosa was hot aqueous leaves extraction. Similar finding also indicate that the highest flavonoid content was measured in water extract. This is because the concentration of flavonoids in plant extracts depends on the polarity of solvents used in the extract preparation (Wong et al., 2014) and may be useful as aqueous extract as it is safe and non-toxic either for direct consumption or application in foods or cosmetic products.
$\boldsymbol{\beta}$-Carotene Bleaching (BCB) assay: Table 3 shows the of β-carotene bleaching activity of different parts (leaves, stems and roots) of L. spinosa. In hot aqueous extract, leaves had the highest antioxidant activity ($85.26 \pm 1.97 \%$) followed by stems ($44.86 \pm 0.44 \%$). In cold aqueous extract, leaves also showed the highest antioxidant activity ($92.04 \pm 3.51 \%$) followed by stems ($3.07 \pm 9.96 \%$). The antioxidant activity of roots in hot and cold aqueous root extract was not determined. In ethanol extract, root had the highest antioxidant activity ($16.68 \pm 9.49 \%$) followed by stems ($13.55 \pm 2.92 \%$) and leaves ($9.71 \pm 6.68 \%$). Overall results demonstrated the highest scavenging activity was cold aqueous leaves extract and to some extent possess higher antioxidant activity when compared to BHT ($54.34 \pm 9.49 \%$). The presence of antioxidant compounds can hinder the extent of β-carotene bleaching by

Table 4: The value of EC_{50} in different parts of L. spinosa

Types of extraction	$\mathrm{EC}_{80}(\mu \mathrm{~g} / \mathrm{mL})$
Hot aqueous extract	
Leaves	455
Stems	970
Roots	825
Cold aqueous extract	
Leaves	312
Stems	912
Roots	ND
Ethanol extract	
Leaves	656
Stems	ND
Roots	ND
BHT	53

Fig. 1: Percentage of DPPH scavenging activity of L. spinosa
neutralizing hydroperoxides (Othman et al., 2016). Thus, the low degradation rate has been increased in antioxidant activity. Results from previous research also showed the plant that homogenate extracted into water (polar solvent) shows higher antioxidant activity than that extracted into non-polar solvent (Boeing et al., 2014).

Values are expressed as meantstandard deviation $(\mathrm{n}=3)$. Different letters in the same column within the same types of extraction indicate there are significant differences ($\mathrm{p}<0.05$). ND indicates the antioxidant activity was not determined within the selected concentrations.

DPPH radical scavenging assay: Figure 1 and Table 4 show the percentage of DPPH radical scavenging activity and the EC_{50} value different parts (leaves, stems and roots) of L. spinosa, respectively. As shown in Fig. 1, cold aqueous leaves extract had the highest percentage of scavenging activity but lower when compare to BHT. In hot aqueous extract, the lowest $E C_{50}$ value was in leaves ($455 \mu \mathrm{~g} / \mathrm{mL}$) followed by roots ($825 \mu \mathrm{~g} / \mathrm{mL}$) and stems (970 $\mu \mathrm{g} / \mathrm{mL}$). In cold aqueous extract, leaves also had the lowest EC_{50} value ($312 \mu \mathrm{~g} / \mathrm{mL}$) followed by stems (912
$\mu \mathrm{g} / \mathrm{mL}$). The EC_{50} value of ethanol leaves extract was 656 $\mu \mathrm{g} / \mathrm{mL}$. The EC_{50} was not determined in the cold aqueous roots extract and both ethanol stems and roots extract. The highest antioxidant activity was cold aqueous leaves extract. The EC_{50} value for BHT was $53 \mu \mathrm{~g} / \mathrm{mL}$.
EC_{50} values represent 50% of the radicals scavenged by the samples. Lower EC_{50} value indicates higher antioxidant activity. ND indicates the EC_{50} value was not determined within the selected concentrations.

According to some study in the different extract, similar results reveal that hot water extract gave the higher value of DPPH radical scavenging activity (Nyienda et al., 2012; Wong et al., 2014). This is because aqueous extracts gave significantly higher radical scavenging rates compared to organic extract. Polar compounds are more soluble in aqueous solvents compared to organic solvents. This finding was similar to the previous study which stated that aqueous extract gave the lowest EC_{50} value compared to organic extract (Kaewpiboon et al., 2012). This may be due to phenolics compounds present in the samples are the main contributors to their antioxidant capacity (Khoo et al., 2012).

Correlation of antioxidant content and activity: Table 5 shows the correlation between Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and antioxidant activities (BCB and DPPH). There were positive correlation between TPC and BCB $(\mathrm{p}<0.05)$ and TPC and DPPH ($p<0.05$). Similarly, there were positive correlation between TFC and BCB ($\mathrm{p}<0.05$) and TFC and DPPH ($\mathrm{p}<0.05$).

Inhibition effects of L. spinosa against pancreatic lipase,

 $\boldsymbol{\alpha}$-amylase and $\boldsymbol{\alpha}$-glucosidase: As shown in Table 6, inhibition of pancreatic lipase was the highest in ethanol stems extract ($45.59 \pm 1.76 \%$) and followed by cold aqueous roots extract ($37.57 \pm 0.70 \%$). The ethanol extract shows the highest and significant inhibitory effects ($\mathrm{p}<0.05$) when compared with aqueous (hot and cold water) extracts. Previous studies also showed that ethanolic extract had higher result in the inhibition of pancreatic lipase when compared with hot and cold water extracts (Yang et al., 2014). The pancreatic lipase inhibitory phytochemicals includes polyphenols and flavonoids (Seyedan et al., 2015; Hassan, 2014).Results are expressed as mean \pm standard deviation. Different letters in the same column indicate significant difference at $\mathrm{p}<0.05$.

The inhibition of α-amylase in hot aqueous leaves extract showed the strongest inhibition effects ($46.03 \pm 0.01 \%$) followed by cold aqueous leaves extract $(45.71 \pm 0.44 \%)$ and ethanol leaves extract $(33.80 \pm 3.27 \%)$

Parameters	Values	BCB	DPPH
TPC	r value	0.699*	0.901 *
TFC	r value	0.657*	0.837**
*Correlation is significant at $\mathrm{p}<0.05$			
Table 6: Enzymes inhibition of different parts of L. spinosa			
Types of extraction	Pancreatic lipase	α-amylase	α-glucosidase
Hot aqueous extract			
Leaves	$21.27 \pm 14.72^{\text {a }}$	$46.03 \pm 0.01^{\text {a }}$	$28.86 \pm 2.34^{\text {a }}$
Stems	$27.75 \pm 0.01^{\text {a }}$	$12.76 \pm 0.01^{\text {b }}$	$10.66 \pm 1.56^{\text {b }}$
Roots	$29.32 \pm 1.67^{\text {a }}$	$28.47 \pm 2.69{ }^{\circ}$	$09.56 \pm 1.56^{\text {b }}$
Cold aqueous extract			
Leaves	$17.74 \pm 2.5^{\text {a }}$	$45.71 \pm 0.44^{\text {a }}$	$22.24 \pm 5.46^{\text {a }}$
Stems	$21.66 \pm 1.94{ }^{\text {a }}$	ND	$29.41 \pm 2.20^{\text {c }}$
Roots	$37.57 \pm 0.70^{\text {b }}$	$22.82 \pm 1.81^{\text {c }}$	$17.83 \pm 0.78^{\text {d }}$
Ethanol extract			
Leaves	$18.07 \pm 0.01^{\text {a }}$	$33.80 \pm 3.27^{\text {a }}$	$36.24 \pm 0.20^{\text {a }}$
Stems	$45.59 \pm 1.76{ }^{\text {c }}$	ND	$04.21 \pm 1.05^{\text {a }}$
Roots	$15.30 \pm 0.44^{\text {a }}$	15.37 ± 0.53^{c}	$27.73 \pm 4.00^{\text {acd }}$

(Table 6). Overall, the optimum conditions to obtain the α-amylase inhibitor in L. spinosa was hot aqueous leaves extract which is more polar extraction (water) compared to the less polar extraction (ethanol). Similarly, Park et al. (2013) also demonstrated that α-amylase inhibitory activity was at the highest in polar extracts of plant material.

Table 6 also shows the α-glucosidase activity of L. spinosa. The strongest inhibition of α-glucosidase activity was ethanol leaves extract ($36.24 \pm 0.20 \%$) followed by cold aqueous stems extract ($29.41 \pm 2.20 \%$) and ethanol roots extract $(27.73 \pm 4.00 \%)$. Overall, the ethanol extraction demonstrated the strongest α-glucosidase inhibitory activity. Previous study by Lordan et al. (2013) also showed that ethanolic extract had higher inhibition of α-glucosidase when compared with water extract. Plant polyphenols such as flavonoids and tannins are known to have inhibitory effects on α-amylase and α-glucosidase (Bello et al., 2011).

CONCLUSION

Based on overall results, L. spinosa leaves demonstrated as a functional food with potent antioxidant content and activities and provide strongest inhibition effects against pancreatic lipase, α-amylase and α-glucosidase which strongly indicated their great potential as natural therapeutic agents.

REFERENCES

AOAC., 2005. Official Methods of Analysis of AOAC International. 18th Edn., AOAC International, Gaithersburg, MD., USA., ISBN-13: 978-0935584752.

Alam, F., M. Haque, H. Sohrab, M.A. Monsur, C.M. Hasan and N. Ahmed, 2011. Antimicrobial and cytotoxic activity from Lasia spinosa and isolated lignan. Latin Am. J. Pharm., 30: 550-553.
Bachok, M.F., B.N.M. Yusof, A. Ismail and A.A. Hamid, 2014. Effectiveness of traditional Malaysian vegetables (ulam) in modulating blood glucose levels. Asia Pacific J. Clin. Nutr., 23: 369-376.
Bello, A., A.A. Aliero, Y. Saidu and S. Muhammad, 2011. Phytochemical screening, polyphenolic content and alpha-glucosidase inhibitory potential of Leptadenia hastate (Pers.) Decne. Niger. J. Basic Appl. Sci., 19: 181-186.
Boeing, J.S., E.O. Barizao, B.C. e Silva, P.F. Montanher, V. de Cinque Almeida and J.V. Visentainer, 2014. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J., Vol. 8. 10.1186/s13065-014-0048-1
Burkill, I.H., 1953. The vegetables eaten with the rice in two typical Malay households of the neighbourhood of Telok Anson, Southern Perak. J. Food Technol., 14: 1-13.
Cheurfa, M. and R. Allem, 2015. Study of hypocholesterolemic activity of Algerian Pistacia lentiscus leaves extracts in vivo. Braz. J. Pharmacog., 25: 142-144.
Cook, D.K.C., B.J. Gut, E.M. Rix, J. Schneller and M. Seitz, 1974. Water Plants of the World: A Manual for the Identification of the Genera of Freshwater Macrophytes. Dr. W. Junk b.v. Publishers, The Hague, Netherlands, ISBN-13: 9789061930242 , Pages: 561.

Deb, D., S. Dev, A.K. Das, D. Khanam and H. Banu et al., 2010. Antinociceptive, anti-inflammatory and antidiarrheal activities of the hydroalcoholic extract of Lasia spinosa Linn. (Araceae) roots. Latin Am. J. Pharmacy, 29: 1269-1276.
Dinda, B., S. Debnath, S. Arima, N. Sato and Y. Harigaya, 2004. Chemical constituents of Lasia spinosa Mussaenda incana and Wendlandia tinctoria. J. Indian Chem. Soc., 81: 73-76.
Goshwami, D., M.M. Rahman, M.A. Muhit and M.S. Islam, 2012. Antinociceptive activity of leaves of Lasia spinosa. Arch. Appl. Sci. Res., 4: 2431-2434.
Gropper, S.S. and J.L. Smith, 2012. Advanced Nutrition and Human Metabolism. Cengage Learning, Boston, Massachusetts, USA., ISBN-13:978-1-133-10405-6, Pages: 586.

Habauzit, V. and C. Morand, 2012. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. Therapeutic Adv. Chron. Dis., 3: 87-106.
Hasan, M.N., M. Munshi, M.H. Rahman, S.N. Alam and A. Hirashima, 2014. Evaluation of antihyperglycemic activity of Lasia spinosa leaf extracts in Swiss Albino mice. J. Pharm. Sci., 3: 118-124.
Hassan, H.M.M., 2014. Inhibitory effects of red grape seed extracts on pancreatic á-amylase and lipase. Glob J. Biotechnol. Biochem., 9: 130-136.
Kaczmarczyk, M.M., M.J. Miller and G.G. Freund, 2012. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 61: 1058-1066.
Kaewpiboon, C., K. Lirdprapamongkol, C. Srisomsap, P. Winayanuwattikun and T. Yongvanich et al., 2012. Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC. Complementary Altern. Med., 12: 1-8.
Khoo, H.E., A. Azlan, A. Ismail and F. Abas, 2012. Influence of different extraction media on phenolic contents and antioxidant capacity of defatted dabai (Canarium odontophyllum) fruit. Food Anal. Methods, 5: 339-350.
Kichu, M., T. Malewska, K. Akter, I. Imchen and D. Harrington et al., 2015. An ethnobotanical study of medicinal plants of Chungtia Village, Nagaland, India. J. Ethnopharmacol., 166: 5-17.

La, S., C.M. Sia, A. GAb, O. PNa and H.S. Yim, 2013. The effect of extraction conditions on total phenolic content and free radical scavenging capacity of selected tropical fruits peel. Health, 4: 80-102.
Liu, S., D. Li, B. Huang, Y. Chen, X. Lu and Y. Wang, 2013. Inhibition of pancreatic lipase, á-glucosidase, áamylase and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol., 149: 263-269.
Lordan, S., T.J. Smyth, A. Soler-Vila, C. Stanton and R.P. Ross, 2013. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem., 141: 2170-2176.
Maiti, D. and M. Majumdar, 2012. Impact of bioprocessing on phenolic content and antioxidant activity of two edible seeds to improve hypoglycemic functionality. J. Natur. Pharm., 3: 31-31.

Napiroon, T., D. Sookchaloem and S. Vajrodaya, 2014. Effect of lipophilic extract from Lasia spinosa (L.) Thwaites (Araceae) on seed germination and seedling growth of the invasive plant Mimosa diplotricha C. Wright ex Sauvalle. Kasetsart J. Nat. Sci., 48: 696-703.

Nauheimer, L., P.C. Boyce and S.S. Renner, 2012. Giant taro and its relatives: A phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region. Mol. Phylogenet. Evol., 63: 43-51.
Nguyen, P., R. Grajeda, P. Melgar, J. Marcinkevage and R. Flores et al., 2012. Effect of zinc on efficacy of iron supplementation in improving iron and zinc status in women. J. Nutr. Metab., 2012: 1-8.
Nurdiana, S., N.S. Ajeerah, N.A.S. Farhana, S.M.H. Khairiyah and M.J. Norashirene, 2013. Hypoglycaemic, antioxidant and wound healing activities of Mikania micrantha leaves extract in normal and alloxan-induced diabetic rats. Focus Scope, 7: 6-10.
Nyirenda, K.K., J.D.K. Saka, D. Naidoo, V.J. Maharaj and C.J.F. Muller, 2012. Antidiabetic, anti-oxidant and antimicrobial activities of Fadogia ancylantha extracts from Malawi. J. Ethnopharmacol., 143: 372-376.
Oboh, G., A.O. Ademiluyi, A.J. Akinyemi, T. Henle, J.A. Saliu and U. Schwarzenbolz, 2012. Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J. Funct. Foods, 4: 450-458.
Othman, A., A. Ismail, F.A. Hassan, B.N.M. Yusof and A. Khatib, 2016. Comparative evaluation of nutritional compositions, antioxidant capacities and phenolic compounds of red and green sessile joyweed (Alternanthera sessilis). J. Funct. Foods, 21: 263-271.
Parida, R., I. Sandeep, B. Sethy, S. Sahoo and S. Mohanty, 2014. Chemical composition, antioxidant and antimicrobial activities of essential oil from lime basil (Ocimum americanum): A potent source for natural antioxidant. Intl. J. Pharm. Sci., 6: 481-486.
Park, H.J., U.J. Jung, S.J. Cho, H.K. Jung and S. Shim et al., 2013. Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose-and lipidregulating enzymes in $\mathrm{db} / \mathrm{db}$ mice. J. Nutr. Biochem., 24: 419-427.
Prakash, O., R. Kumar, R. Srivastava, P. Tripathi and S. Mishra, 2015. Plants explored with anti-diabetic properties: A review. Am. J. Pharmacol. Sci., 3: 55-66.

Roh, C. and U. Jung, 2012. Screening of crude plant extracts with anti-obesity activity. Int. J. Mol. Sci., 13: 1710-1719.
Santos, J., M.T. Oliva-Teles, C. Delerue-Matos and M.B.P.P. Oliveira, 2014. Multi-elemental analysis of Ready-to-eat baby leaf vegetables using microwave digestion and high-resolution continuum source atomic absorption spectrometry. Food Chem., 151: 311-316.
Seyedan, A., M.A. Alshawsh, M.A. Alshagga, S. Koosha and Z. Mohamed, 2015. Medicinal plants and their inhibitory activities against pancreatic lipase: A review. Evidence Based Complementary Altern. Med., 2015: 1-13.
Sharma, P., A.B. Tha, R.S. Dubey and M. Pessarakli, 2012. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012: 1-26.
Shefana, A.G. and S. Ekanayake, 2009. Some nutritional aspects of Lasia spinosa (kohila). Vidyodaya J. Sci., 14: 59-64.
Stankovic, M.S., 2010. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J. Sci., 33: 63-72.
Tucci, S.A., E.J. Boyland and J.C. Halford, 2010. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes, 3: 125-143.
Van, N.T.H., V.C. Minh, D.M. Leo, T. Siciliano and A. Braca, 2006. Secondary metabolites from Lasia spinosa (L.) Thw.(Araceae). Biochem. Syst. Ecol., 34: 882-884.
Wong, J.Y., P. Matanjun, Y.B.H. Ooi and K.F. Chia, 2014. Evaluation of antioxidant activities in relation to total phenolics and flavonoids content of selected Malaysian wild edible plants by multivariate analysis. Intl. J. Food Prop., 17: 1763-1778.
Yang, J., C. Chen, S. Zhao, F. Ge and D. Liu, 2014. The inhibitory effect of different solvents extracts from Walnut shell (Juglans regia L.) on pancreatic lipase and Adipogenesis of 3T3-L1 Preadipocytes. J. Food Nutr. Res., 2: 664-670.

[^0]: Corresponding Author: Nurul Husna Shafie, Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

