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Position Control of Vehicles with Multi-Contour Adaptation

Viacheslav Pshikhopov and Mikhail Medvedev
Southern Federal University, Rostov-on-Don, Russian Federation

Abstract: The study presents multi-contour position vehicle control system ensuring astaticism and adaptive
tuning of parameters. Positioning of the controlled object in a pre-defined point is considered. In the first
contour the control action 13 calculated to provide the desired dynamics of the closed-loop system with
astaticism of the second order. The second control contour performs tumng of the parameters according to the
known algorithms of searchless adaptation using the reference models. An algorithm is proposed resulting in
pre-set values of the characteristic equation of the tuned system. The first and the second contours of the
control system compensate the external disturbances and adapt to parametric disturbances. The third contour
performs tuning of the reference model that makes it possible to change the requirements to the closed-loop
system depending on whether the system satisfies the limitations on control actions. When the limitations on
the amplitude of control actions are reached, the system increases the time constants of the reference control.
Stability of the closed-loop system was analyzed using the Lyapunov functions method. The proposed control
algonthms are demonstrated using an example of a vehicle described by equations of solid body kinematics and
dynamics. In the equations of dynamics the resisting forces are accounted. The disturbances are presented in
a form of linear functions of time. The presented modeling results confirm the correctness of the theoretical

conclusions. The proposed algorithms can be used as well for controlling the trajectory of the vehicle.
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INTRODUCTION

The foundations of vehicle’s adaptive control were
laid in the works (Parks, 1966, Zemlyalkov and Rutkovskii,
1966; Donalson and Leondes, 1963; Zemlyakov, 1966)
presenting the methods of synthesis of self-tuning
systems. A survey of the main results obtained in the
class of searchless adaptive systems is presented m the
works (Voronov and Rutkovsky, 1984; Tao, 2014). At
the present tune this approach i1s being developed
both theoretically and 1in practical applications
(Rutkovsky et al., 2011; Kharisov et al, 2014). In the class
of searchless systems one can notice the same type active
development of a scientific direction connected to
estimation and compensation of unmeasured disturbances
(Tomita et al., 1998; Nikiforov, 2004). Basing on the
analysis of works on searchless adaptive systems, it can
be mentioned that at the present time the most theoretical
development was achieved in methods of adaptation of
linear and stationary systems. So, it seems to be
promising to apply the methods of adaptation of linear
systems to the objects described by nonlinear equations.

This research presents a position-path control
system with multi-contour adaptation. Lately, the method
of position-path control (Pshikhopov and Medvedev,
2001) was successfully used m the control systems for

various vehicles (Pshikhopov et al., 2014). In the research
Pshikhopov et al. (2015) a method of synthesis of
adaptive position-path control systems provides the
quality of astaticism for the closed-loop system and
adaptation using the reference model. This method was
applied for control of autonomous underwater vehicle. By
Pshikhopov et al. (2015) 1t was shown that characteristic
equation of the closed-loop system consists of
multiplication of 3 polynomials ensuring independent
tuning of the basic controller, adaptation algorithm and
astaticism  contour. This research presents the
development of approach presented in works
(Pshikhopov et al., 2015).

MATERIALS AND METHODS

Position controller with a reference model: Here, we
consider a vehicle model based on equations of

kinematics and dynamics of a solid body
(Pshikhopov et al., 2014, 2015).
J=R(y)x. x=M"(F,+F,) 1)
Where:
y = Vector of linear and angular coordinates of
vehicle positions i external system of
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coordinates

X = Vector of vehicle’s linear and angular velocities in
the bound system of coordmates

R(y) = Kinematics matrix

M = Matrix of inertial parameters

F, = Vector of controlling forces and torques

F, = Vector of other forces and torques acting on the
vehicle, vector F, can include components

depending on state variables x and y as well as
external disturbances.

In addition to the Model (1) a nominal model of the
following form is introduced:

Vo = R(yn) %, %, =M'(E_+F,) ()

Where:

Y., = Vector of linear and angular coordinates of
nominal model positions in external system of
coordinates

X, = Vector of linear and angular velocities of the
nominal model m the bound system of
coordinates

R(y,) = Kinematics matrix of the nominal model

F.. = Vector of controlling forces and torque of the
nominal model

Fuo = Nominal vector of other forces and torques.

Matrix R(Y ) and vector F,, match the structure
of the matrix R(y) and vector F,, respectively

Let’s synthesize control for the nominal Model (1).
Let the requirements to the steady state model of the
nominal Model (2) be represented in the form of the
following equation

=Ay,+tA,=0ory, =-A'A 3

2
where, A, and A, matrix and vector of constant
coefficients. Vector A, consists of elements reflecting the
requirements put on positiomng point and matrix A, 1s
often selected to be diagonal. T.et’s take the first and
second derivatives of the Eq. 3 accounting for the Eq. 2:

E.:m = AlYm = AIR(ym)Xm (4)

€. = AR(y, )X, TAR(

m

v )M?(E_+F_) (5)

Let’s require of the vector (Eq 3) to satisfy the
reference differential Eq:

8 T2 _+Te =0 (6)

where, T, and T, positively definite diagonal matrices of
constant coefficients, determining requirements to the
behavior of the nominal model. Tet’s substitute the Eq. 3-5
in the Eq. 6 and solve it with respect to vector of
controlling forces and torques F,;

F,, = F, +{AR(y, M) < {-AR(y,)x, - T, -Te,}

(7

In Eq. 7 it 1s assumed that the matrix R(y,) is
nonsingular. For the solid body this requirement comes
down to the pitch angle not to be equal to 90°. Tt is also
assumed that elements of the matrix R(y,) are calculated
basing of measuring the vectors x,, and y,, according to
the following Eq:

Ru(ym)=zaR” Yal _ ZBR“ Sal, (3, %, )

Where:

Riym) = Matrix elements R(y,,)

Ry, = Matrix elements R(y,,)

Va = Vector elements y,,

Vo = Vector elements y,,

Ry(y5)k™ Row of the matrix R(y, ), 1j, k=1,6

Equations 2-4 and 7 form the reference model of the
vehicle that has the following form:

Yo = R(Ya)xa 9
o AR ) (AR (3 ) T8, < T

Let’s demonstrate stability of the equilibrium point of
the reference Model (9). Assuming the derivatives in
left-hand sides of the system (Eq. 9) to be equal to zero we
obtain the steady state mode:

{O=R(ym)xm,

0= _(AlR(Ym ))1 (AlR(Ym)Xm +T2ém +Tlem)

Since, #. =0,5: =0 Then accounting for (Eq. 3, 4 and
8) the last system 13 transformed to the following form:

{O=R(ym)xm,
0= (AR () (T (AR (I )T (A, +A2)

Noting that matrix R(y,,) is nonsingular from the last
system we get the equations of the state varable of
reference model in the steady state:
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X, =0,y =-AlA, (10)
Let’s introduce the following function:

V. =05e Tle_+0.56Te -
0.5(ATntA,) TN (A, +tA, )+ (1)

0.5(AR(¥.)%n) AR(Ya )X

Now let’s prove that function (Eq. 11) 1s a Lyapunov
function for the reference model. Time derivative of the
function (Eq. 11) along the system trajectories (Eq. 3-9) is:

3 — TT - ST — JTT =T .

Vm - emTl em + emem - emTl em +em (_Tzem _Tlem)

— TT4 5T - =T — AT 4

=e¢, T ¢, -6 Té -¢Te =-¢Te - (12)

(AR(Ya )% ) TAR(y, )%,

Nonsingularity of the matrix R(y,,) results in function
V,, being negative semidefinite. In order to show that V,,
is negative definite, let’s show that it zerces only at the
point (Eq. 10). Let’s consider 3 cases:
Let ¢.=0 Then accounting for Eq. 4 we get:

AR(y,)x,=0

Differentiating the left and the right sides of this
equation yields:

AIR(Ym)Xm+A1R(Ym )Xm - 0
Let’s rewrite the last equation as follows:
Xm - (A1R (ym ))1 (_AIR (ym )Xm)

Comparing the right sides of the last equation and
second equation of our system (Eq. 9) yields:

(AR(y)) (AR(5.)x,) =
(AR(y)) ((AR(y,)x, -Té, -Te,)
~Té, —Te, =0

Since é.=9 , from the last expression we obtam:

e, . =0o0ry, =-Al'A,

So, in case function (Eq. 12) zeroes only at point (Eq. 10).
Let vu=-A'A; (e =0), Suppose, MR{¥a)® 060  Then
V.. should change (e, should become not equal to zero)
which contradicts the supposition. The obtained
contradiction proves that y. =-A'A, (s. =0) . So, in case the
function (Eq. 12) zerces only at pomt (Eq. 10) as well. ¢)
Let v. =-A'A; and AR (%)% =0 In this case from (Eq. 12)
it follows that V= 0.

So, the function V (Eq. 12) zeroes only at the pomnt
(Eq. 10) at all the other points it remains negative, so, the
function (Eq. 11) 1s a Lyapunov function or the reference
Model (9). Now let’s synthesize the wvehicle control
(Eq. 1). The following 1s the control system’s error:

€= AY-AY 1Bz 4Bz, (13)
21 T2y Zz - A1Y'A1ym (1 4)

where, z,, z, vectors of additional variables mtroduced to
ensure astaticism B, 1 = 1, 2-matrices of arbitrary
coefficients.

Assume that the system error e (Eq. 13) satisfies the
expression (Eq. 6). Calculating the first and the second
time derivatives of the expression (Eq. 13) accounting for
the equations (Eq. 1, 9, 13 and 14) yields:

¢=AR(Y)IX-AR(y, )%, +Bz,+B,(Ay-Ay, )13

E=AR(y)x+*AR(y)%-AR(y.)x,-AR(y,)
Bl (Aly_Alym)+B2(A1R(y)X_A1R(Ym)Xm)

*=T16)

Substituting e, with e in (Eq. 6) and accounting for
(Eq. 16) we obtain the following algebraic equation:

AR(y)x+AR(y)%-AR(y, )%, -
AIR(Ym)Xm - Bl (A1Y'A1ym)+
B,(AR(y)x-AR(y, )x, )+T&tTe=0

Then we rewrite the second equation:

AIR(y)X - 'A1R(Y)X +A1R(Ym)xm +
AIR(Ym)Xm_BI(Aly_AIYm)_
B,(AR(y)x-AR(y, )X, )-T:é-Te

And substitute the Eq. 9, 13 and 15 into the second
equation:
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AR(y)x=-AR(y)x + AR(y, )%, -
(AR(Yn)%a + TAR(Y, )%, + T(Ay, +A,))-
B, (Ay-Ay,)-B(AR(y)x-AR(y, )%, )-
T,(AR(y)x-AR(y, )x, + Bz, +B,(Ay-Ay,))
T (Ay-Ay, *Bz +Bz,).

Let’s expand and simplify the last expression:

Mt
(AR(y)+B,AR(y)+ TAR(y))x+
(B1A1 + TZBZAI)Ym +BzAlR(Ym)Xm -

T1B1Z1 '(T2B1 + Tle )Zz 'T1A2

AlR(y)X = —(BlAl +T,B.A +T1A1)y-

Substituting the second equation of the system
(Eq. 2) into the second expression yields the followmng
expression for the controlling forces and torques:

E =-F +(A1R (Y)M-l)rl {_(BIAI +T.B,A +T1A1)Y'

(AR{y)*BAR(y) + TAR(y))x + a7
(BA, + T,B,A, )y, +B,A R(y, )X, -

27720

TRz -(T,B, +TB,)z -TA,}

1171

Equation 1, 9, 14 and 17 are the equations of the
closed-loop system. Let’s bring them together for
comnvernience

y=R{y)x

% =(AR(Y)) -(BA, + T,BA, +TA, )y-
(AR(y)*BAR(y)+ TAR(y))x +

(B/A, + T,B,A, )y, +BAR(y, )X, -

TBz-(T,B, +TB,)z,-TA,}, (18)
Voo =R(Van) %o

o =-(AR(Ya)) (AR (ya)x, +

TAR(Y, )%, +T(Ay, +A,)),

Z = Z

1 22

Z, = AY-AY,

The structure of the closed-loop system is presented
m Fig. 1. It matches the structure of a position-path
control system with astaticism of the second order
provided by introduction of two mtegrators.

Assuming that the derivatives in the left side of the
system (Eq. 18) are equal to zero, let’s consider the steady
state mode. Note that R(y) =R (y,,) in the steady state:

F,,= FuH(AR(y,)m")’
{-AR (y)x, T, -Te,}

A

F,=-F+HARM")" {AR+ARX,*ARX,-
Bi(Ay-Ay,)-By(A(y)x-AR(Y,)x,)-T.e-T,e}

Fig.1: Structure of Astatic Position Control System with
a Reference Model

0=R{y)x

0=(AR(y)) {-(BA, +TBA, +TA,)y-
(AR{y)*B,AR(y) + TAR(y))x+

+(BA, +T,B,A )y, +BAR(y,. )X, -

-TBz -(T,B, +TB,)z,-TA,}, 19)
0=R{y, )%,

0=-(AR(y.)) (AR(y.)x, +

FTAR (Vo)X T Ay, +A,)),

0=z,

0=Ay-Ay,.

From the last equation it follows that:
y=v. 2> R{y}]=R{y,)=R (20)

Since, in the steady state the derivatives are equal to zero,
we obtain:

¥=¥, >Rx=Rx, »x=x, (21)

Substituting (Eq. 20 and 21 into the first five
equations of the system (Eq. 19), we find:

0 =Rx,

0=-TAy-T,ARx-TBz -

(T,B, +T,B, )z, -TA,, 22)
0 =Rx,

0=-T,ARx-TA y-TA,,

0=z,
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Expressing T,A; from the fourth equation of (Eq. 22)
and substituting it together with the 5th equation mnto the
second equation of (Eq. 22) yields:

0=-TBz

So, the equilibrium point of the closed-loop control
system is defined by the following expressions:

Y =Vu=-AALX =x, =07 =7,=0 (23

Asymptotic stability of the equilibrium point (Eq. 23)
15 analyzed using a Lyapunov function that has the
following form:

V=05¢"T"e_+0.561 & +0.5¢" T et+0.58"é =
0-5(A1Ym+A2 )TET(A1Ym+A2 )+
0.5(AR(y, )x,) AR(y, %, +
0-5(A1Y'A1ym+B121+B222)TT1T 24
(A1Y'A1ym+B121+Bzzz)+

T
0-5(A1 R(Y)X'A1R(ym )Xm Bz, B, (Al VA Yo ))
(Al R(y)X'AlR(Ym )Xm +Bl Zy +Bz (Al Y'Alym ))

Structure of the function (Eq. 25) lets us claim that it
is negative semi-definite. Tn order to prove that is negative
definite, we should prove that it becomes equal to zero at
the point (Eq. 23) only. The first item of the expression

(Eq. 25) matches the expression (Eq. 12), So, let’s consider
the second item. There are 3 cases.

Assume e = 0 then:
Ay-Ay, TBz + Bz, =0
Differentiating the last expression we get:

AIR(y)x-AlR(ym)Xm +
B,z,+B, (A1Y'A1Ym ) =e=0

Now, assume ¢=0. then:
AIR(y)X-AlR(ym )Xm + BIZZ +B2 (Aly_‘Alyﬂ]) =0

Differentiating the last expression with respect to time
yields:

ARx+ARX-AR x _-AR _%_+
B1 (A1Y'A1ym)+ Bz(AlR(Y)X'A1R(ym)Xm) =0

Substituting the derivative % from the system
(Eq. 18) into the last equation and simplifying, we get:

-T-Te=0

Assuming ¢=0 from the last expression we see that
e=0. Lete=0and ¢=0. In this case from (Eq. 25) we see
that, the second item of V is equal to zero.

For automatic tuning of the matrices B, and B, the
algorithms basing on the known results (Zemlyakov and
Rutkovskii, 1966, Zemlyakov, 1966) were used. We were
using the following procedure. As it was shown by
(Pshikhopov ef al., 2015) in the linear case the adaptive
system 18 described by the characteristic equation of the
following for

D(s)=(Is* + T+ T, )(Is* +Bs + B, }{Is* + Ts + T,

(25)
where, [-a unity matrix:

Assume that matrices B, and B, are selected so that
the roots of the second item of the characteristic equation
(Eq. 26) are real and are connected by a certain relation:

Is" +Bs +B, =(Is+8 )(Is +as,) =

Is* +{1+a)Ss +as]

(26)

Where:
S, = Matrix of adjustable parameters
¢ = DPositive constant coefficient

In this case adaptation of matrices B, and B, can be
performed using the following expression:

§=-22/A (y-v,). B, =as}, B,=(1+a)s, (27)
RESULTS AND DISCUSSION
Numerical modeling results: Let’s consider a vehicle

described by the following matrices of kinematics and
inertial parameters:

A 0
R =
0 A,
-cos? sinJcos? +  cos? sinJsin? +
cos? cosl ) ] )
+sin? sin? +sin? cos?
A= sinlt cosJcos? -coslsin?
) cos? sin? + cos? cos? -
-sin? coslJ

+sin? sinJcos? -sin? sinJsin?
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o cos? ) sin?
cosd cosd
A, 0 sin? cos?
1 -tgScos? tg9sin?
(10 0 0 0 0]
0 10 0 0O 0 0
M= 0 0 10 0 0 0
0 0 30 0 0
0 0 O 0 200 0
|0 0 0 0 0 200

The vector of dynamic forces and torques 1s defined
by the following expressions:

c,
CY
F_ =F =057V’ o
m,1
myl
_mll_
Where
2., ¢. = Coefficient of environmental
B, B, resistance forces
P = 1000 kg/m*-water density
v = Oject’s linear speed M/c
3 = 018 M'1=3M
. e, =0,06 - 0,0037 - 0,142a — 0,050
. 5,=-0,0009+1,07a+0.31ala|- 0,0077[8|- 0,3983*
. o, ==1,2076 - 0,563B3|
. m, =0,0980 +0,162al — 0,0 56af3 |0
. m, =0,0713+0,042B |
. #m, =0,00058 + 0,03 1a + 0,086aa|
. ¥, 27 Buler angles;x and P-pitch and yaw
angles

The modeling results for the closed-loop
system are presented in Fig. 2. Controller parameters
are T,=025L, T,=1 A, =L A,=-[101010000], I-6x6
unity matrix. Adaptation contour parameters: v, =1 3,(0)
= diag (3), = 1.

Figure 2a presents variables y,, and y, Figure
2b presents changing of the tuning parameters according
to the expressions (Eq. 22). Changing of the initial value
S, reduces the control system’s error. An increase of 5
and therefore, coefficients T, and T,. leads to an increase
mn amplitude of control actions that can be unacceptable
due to limitations put on control. Unmeasured parametric
and external disturbances:

(Yma,y2)

120 rorrmrmmm e possaemee e SECEREY .

100 f-rrreem gl omm

0] PP o N SO LN . ST

B0 M e B bt BiEe i

(Ym2,Y2)

40 p------ ...............i...............:.......

20 -

0 5 10 15 20 25 30
(o

Fig. 2: Adaptive control system modeling results
F,=0,3F!+[5+0.2t -3+0,5t 1403t 0 0 0]

In order to account for lumnitations, we propose to
introduce another adaptation contowr changing the
parameters of the reference model T, T,, depending on
the amplitude of controlling forces and torques.
Particularly, we propose add the following algorithms to
the considered adaptive system.

if abs(E )>u™™
0 min

t; - t;
then t, =t’ -+
u’

if t <t™ then t, =t™"

(28)

(abs(E, )-um)

where, « -maximal allowed control actions; t— parameter
determining the of eigenvalues of matrices T,, T,;
t'values of parameter t ,for controls within the
limitations; t™*—mimmal value of parameter ti, u, =
calculated value of control, when parameter t, reaches the
value of t™". Figure 3 explains the parameters introduced
mEq. 23.

Figure 4 presents the modeling results for the
considered adaptive control system using algorithm (Eq.
23) to tune the parameters of the reference control (Eq. 6).
Figure 4a presents varables y,, and vy, and Fig. 4b
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Fig. 3: Changing of parameters of matrices

(a)
10 !

¢ /] —L

(Ym2)
G

(b)

40
_._..\_/

S ot
0 5 10 15 20 25
()
Fig. 4: Modeling of the adaptive system with a reference
control

10

coefficients of the matrices B, and B,. Comparing Fig. 2a
and 4a we can see that transients in the system increased
their duration by approx. 20%, vet the accuracy of
following the reference signal increased, significantly.

CONCLUSION

The proposed procedure of adaptive centrol
synthesis made it possible to synthesize position-path
vehicle control algorithms. Three contours were

introduced into the system. The first one forms a basic
control algorithm ensuring astaticism of the closed-loop
system. The second contowr ensures adaptation of
controller’s parameters according to the pre-set reference
signal. Finally, the third one ensures fine-tuning of the
reference object itself depending on whether the control
action limitations are satisfied or not This research
develops a method of adaptation in a position-path
control system for a vehicle, a method that was originally
presented by Pshikhopov et al. (2015). Unlike the
approach presented by Pshikhopov et af. (2015), this
study performs an analysis of a closed-loop nonlinear
system. Besides, we presented a new adaptation algorithm
(Eq. 22) for the coefficients of the matrices B, and
Additionally, an adaptation algorithm for the reference
syetem 1s proposed.
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