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Abstract: Among the vital signs of acutely 1ll hospital patients, Respiratory Rate (RR) 1s a highly accurate
predictor of health deterioration. The most common method for measuring RR in hospitals is transthoracic
Impedance Pneumography (IP). The drawback of TP which measures impedance at the electrocardiogram
electrodes 1s the injection of igh-frequency alternating current into the tissue through drive electrodes. Thus,
IP becomes an active electronic device. The usage of IP may also cause natural breathing disturbance in
patients and eventually contributes to discomfort. This study aims to evaluate the RR from passive and
noninvasive acquisition module, Photoplethysmogram (PPG) signals. Algorithms comprise signal quality
indices. The RR estimation method for extracting three respiratory signal-induced vanations of PPG was
described. The three respiration rates were combined through a weighted average using quality metrics for each
signal. The weights were determmed using good quality MIMIC II benchmark datasets. PPG signal and
reference breathing signal using nasal air flow sensor of 20 healthy subjects have also been recorded and the
RR has been combined. The Mean Square Error (MSE) was 0.86 breath/min compared with the reference RR.
The proposed methodology could replace the mamual counting method of RR, uncomfortable nasal airflow
sensor, chest band and IP which are often used in hospitals. Given its simple setup, the future system can
increase the efficiency of the RR monitoring frequency for patients with critical illnesses.
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INTRODUCTION

Obtaining multiple vital signs from a single, simple,
low-cost and easy-to-use non-invasive peripheral sensor
15 desirable to facilitate physiological telemonitoring.
Reliable methods for tracking cardiorespiratory activity
over time to monitor patients in intensive care
environment or patients at home with long-term disease-
associated instability in respiratory or cardiovascular
function are clearly needed (Garde et al, 2014).
Respiratory Rate (RR), Heart Rate (HR) and adequacy of
oxygenation are the most important vital signs being
measured and provide physiological indicators of
critically ill ward patients (Goldhill et al., 1999). Among
the vital signs, RR is the most essential parameter to
monitor the condition of a patient’s respiratory
status and thus, prevent life-threatening complications
(Addison et al., 2015). RR monitoring is done through
many traditional methods including measuring air flow in
or out of the lungs directly and measuring body volume
changes indirectly.

Spirometry, inductance

Impedance

plethysmography  and
Pneumography (IP) are examples of
cumbersome devices used to evaluate RR. The usage of
those devices is troublesome as they may cause
discomfort and are quite expensive. Transthoracic IP 1s
the most common method used in hospitals to measure
RR (Drummond et af., 1996). The principle of IP device 1s
to measure changes mn the electrical impedance of the
person’s thorax during respiration. The drawback of using
TP is the injection of high-frequency alternating current
into the tissue through drive electrodes thus, IP becomes
an active electronic device (Prutchi and Norris, 2005).
Alternatively, pulse oximetry is widely used in health
facilities to monitor physiological vital signs. Tt is based
on the principle of Photoplethysmography (PPG), an
optical measurement technique to detect blood volume
changes in the microvascular bed of tissues; PPG consists
of two light-emitting diodes to illuminate the tissue and a
photo detector to detect the light reflected by the tissue.
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Fig. 1: Graph shows the PPG signal and three different modulation induced by the respiration: RIIV, RIAV and RIFV

The intensity of the detected light varies with each
heart beat as the blood volume changes over time
(Nilsson et al., 2000).

PPG signal 1s composite in nature and has 5 different
frequency components at intervals of 0.007-1.5 Hz
(Varady et al., 2002). Sources of these frequency
components may be respiration, blood pressure control,
thermoregulation, autonomous mnervous system and
heart-synchronous pulse waveform (Madhav et al., 2010).
The pulsatile component of the PPG waveform signal is
synchronous with cardiac rthythm and thus can be
identified as the source of HR mformation. In addition to
heart-synchronous variation, the respiratory activity may
lead to three fundamental wave form modulations of
PPG as shown in Fig. 1. They are Respiratory-Induced
Intensity  Variations (RIIV)  Respiratory-Induced
Amplitude Variations (RIAV) and Respiratory-Induced
Frequency Variations (RIFV). RITV is a baseline DC
modulation of the PPG signal. During inspiration, decrease
i mtrathoracic pressure results in a small decrease in
central venous pressure and eventual increase in the
venous retuwrn. The opposite during
expiration. As more blood 18 shunted from low-pressure
venous system at the probe site and wvenous bed
cyclically fills and drains, the baseline i1s modulated
accordingly (Addison et al., 2015). RTAV is caused by the
corresponding decrease in cardiac output because of
reduced ventricular filling (Saced ef af., 2011). Moreover,
RIFV 1s caused by an autonomic response to respiration
causing variation of HR to synchronize with the
respiratory cycle. RIFV is also referred to as respiratory
sinus  arrhythmia 1 which 1t increases durng

state occurs

ingpiration and decreases during expiration. Three
respiratory-induced  variations are present. Thus,
combiming them to obtain the most accurate RR is
necessary.

In this study, we use a quality metric to combine the
RR extracted from RITV, RIAV and RIFV. Thus, we derive
the RR of the subject.

MATERIALS AND METHODS

PPG signals and the reference respiratory signals
from two different studies were used are MIT Physionet
Multiparameter Intelligent Monitoring in Intensive Care 1T
(MIMIC IT) (Karlen ef ai., 2013; Orphamdou et al., 2015)
and clinical study on healthy South-East Asian citizen
(denote MH).

MIMIC 1T dataset is available for public use via
MIT/Physionet website and consisting of 1017 patient
data and sampling at 125 Hz and collected using
patient momitors (component momtoring system mtellivue
MP-70, Philips healthcare) placed in every ICTT bed. The
reference respiration signals from TP are employed in this
dataset.

MH database 15 collected as part of a feasibility study
to investigate the suitability of the available wearable
sensors. The PPG data are measured using blue finger
pulse oximeter CMD 50+ and sampled at 75 Hz. The
reference respiratory signals for MH are measured using
nasal air flow sensor commected to Arduino UNO board at
sampling frequency of 125 Hz. The sensor is placed near
the nose of the subjects to measure the RR. The air flow
sensor uses e-Health with two commections to e-Health
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board. The recordings were performed by the researcher.
The subject population consists of 20 healthy South-East
Asians, aged between 13 and 60 years old. The subjects
were required to breathe normally. The data from the pulse
oximeter and nasal air flow sensor are then synchronized
analytically. Mean Squared Error (MSE) for MIMIC 1T and
MH are determined after the analysis.

Signal quality index: Signal Quality Tndex (SQT) is an
evaluation of the quality of PPG signals in two ways.
Low-quality signals refer to any segments containing
artefacts. Then, the correlation between an averaged
beat’s morphology and that of each individual beat is
quantified using template matching. The signal quality is
low if the average correlation coefficient across a segment
1s below an empirical threshold.

SQI for PPG starts with the PPG pulse-peak detection
(Orphanidou et al, 2015) by usmng three-point peak
detector. The peaks are as shown in Fig. 1. The PPG pulse
and the entire detected peak will be selected for the
regularity in a segment for the next template matching
searches. First, median beat-beat mterval of the detected
PPG pulse peak is identified. Then, individual PPG pulses
are extracted by taking a 10s-window. The window 1s
centered on each detected PPG pulse peak. Afterward, the
mean PPG pulse-wave template 13 obtamed by taking the
means of all PPG pulse waves in each sample. The
correlation coefficient of each individual PPG pulse wave
and the average PPG pulse wave template is calculated
and will give a score between 0 and 1 (Orphanidou ef al,,
2015). Finally, the average correlation coefficient is
obtammed by averaging all correlation coefficients over the
whole PPG sample. At this point, the threshold of good
and bad segment or window is set as 0.8. This process
aims to demonstrate that by restricting the amount of the
low-quality signal which may be caused by the motion
artefacts from the irregularity artefact presents in a
segment of PPG signal, the MSE can be reduced in the RR
estimation.

Respiratory rate estimation: As shown in Fig. 1, RIFV is
derived from the PPG pulse peak (beat) mtervals by
converting it into tachograms. The tachogram is regularly
resampled at 4 Hz grid to enable the Fast Fourer
Transform (FFT) process. Each data is grouped into
shifting windows of 1s and multiplied using Hamming
window. After the FFT process, the signal is filtered using
a finite mmpulse response band pass filter with cut-off
frequencies of 0.1 and 0.6 Hz (equivalent to RRs of 6-36
breaths/min).

The maximum peak or intensity of the PPG pulses is
used to extract RIIV and the amplitude of the PPG pulse 1s
used to extract RTAV. As done in RIFV, the intensity and

amplitude trend data are then resampled at 4 Hz by using
linear interpolation. Finally, the RR 15 derived from the
respiratory signal.

Quality metric and weighting method 13 needed to
combine the estimated RR of different source of
respiratory information from the PPG, depending on the
quality. High-quality PPG data from 57 patients of MIMIC
IT data has been selected. The data have been
evaluated through the SQT algorithm and the correlation
coefficients of 0.98-1.0 for 8 min PPG recording were
gained. A quality Q, ranging from 0-1 is computed for
each respiratory-induced variations (mtensity (QRIIV),
amplitude (QRIAV) and frequency (QRIFV) to denote the
reliability of the estimated rate from the signal. The final
RR is computed as the weighted mean of the breathing
rate of all signals and 1s defined in Eq. 1:

Combined .. =

SRR SRR tRR 1
QRIIV ( ’ RIIV )+QRIAV ( ’ RI&V ) +QRIFV ( * RIFV) ( )
Qrire Txmav Trirv

We use the combined RR in Eq. 1 to estimate the RR
of 20PPG data from MH and compare with reference RR.
The final RR is then assessed using the MSE
(breaths/min) and is defined:

2

1 . 2
MSE :EZ:(COmbmedgstRRi —Re ferenceRR) 2)

1=1

RESULTS AND DISCUSSION

RR is widely used in hospitals as an indicator of
health status. It 1s useful m diagnosing and determmning
the prognosis of a patient. Moreover, it is a key element
in determination of physiclogical state and clinical
deterioration of a person. RR can be used to monitor and
simultaneously mmprove quality of life. The available
devices used to evaluate RR cause quite a discomfort to
patients. PPG which is simple, convenient and low cost is
widely used in clinical settings to evaluate RR.

Three respiratory-induced variations, namely, RIFV,
RITY and RTAV can be obtained through the PPG. These
variations correlate with each other. The heart rate will
increase and decrease during inhalation and exhalation to
form RIFV. Intrathoracic pressure variation will exchange
blood between pulmonary and systemic circulation. RITV
or perfusion baseline variation will be formed. Next, the
ventricular filling will be reduced to decrease cardiac
output. Hereby, RIAV occurs.

TIn this study, we used quality metric to fuse the three
respiratory-induced PPG modulations. The respiratory
signals of 57 ligh-quality MIMIC I PPG dataset are used
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Fig. 2. Graph shows the PPG signal and three different modulation induced by the respiration: RITV, RTAV and RIFV,
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Fig. 3: RTIV, RIAV and RTFV of 11th subject from PPG data and its reference respiratory signal: a) RTAV for patient 11
of recorded dataset; b) RIIV for patient 11 of recorded dataset; ¢) RIFV for patient 11 of recorded dataset and d)

Refrences respiratory signal

to determine the weights. The high-quality data of PPG
signal are determined through the score of the signal
quality index. The low-quality data of PPG signal, as
shown in Fig. 2 are excluded because they contain only
noisy PPG signals. This contributes to difficulty in RR
estimation.

Figure 3 shows the example of the extracted
respiratory signal from the 11th patient of MIMIC-TI. After
all the 57 subjects with good-quality PPG signal have
been examined, the quality metric, 1.e., QRIIV 15 0.94,
QRIAV 15 0.92 and QRIFV 1s 0.88.

In this study, the quality signals for RITV are highest,
followed by RIAV. RIFV shows the lowest quality signals.
The combmed RR method has been used to estunate the
RR for MH dataset and the result is shown in Fig. 4 and
Table 1. The average RR from the 20 subjects is 21
breaths/min.

The obtained PPG signal is compared with the
standard RR from nasal air flow sensor as the PPG signal
is easily affected by poor blood perfusion, ambient light
and patient motion (Karlen et al., 2013). The mnterpretation
of PPG signals may result in errors caused by such
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Fig. 4: Comrelation between estimated and reference RR for
our 20 samples

Table 1: The result of the estimated RR and the reference RR

Variables Values

Nurmber of subjects 20

MSE 0.86 breaths/min
p-value 1.63x10!

R? 0.92

artefacts (Elgendi., 2016). As shown in the graph of the
estimated RR vs. reference RR, the method is useful with
MSE of 0.86 breaths/min and p<0.01.

CONCLUSION

The method is reliable because an Mean Squared
Error (MSE) of 0.86 breaths/min of the combined RR
estimation using quality metrics for respiratory rate
estimation is achieved. The proposed methodology could
replace the manual counting method, uncomfortable nasal
airflow sensor, chest band and IP. Given its sumple setup
it can increase the frequency of RR monitoring for
patients with critical illnesses in the future.

This analysis 1s limited in terms of management of
low-quality data. SQI was used to detect and exclude
low-quality data. A complex technique that combines the
results of multiple SQI 15 suggested to evaluate the signal
quality. Such a technique should strengthen the RR
algorithm performance in clinical practice (Charlton ef al.,
2016). An alternative method is needed to ensure that the
data are accurate even when low-quality data are used.
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