Tournal of Engineering and Applied Sciences 13 (Special Issue 12): 9336-9340, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Autonomous Marine Vehicles for Open-Source Middleware Nested Communication

R.N. Raju
GMDSS, AMET University, Chennai, India

Abstract: Software systems for robotics increasingly require support for robust interprocess communication
with standard interfaces which has given rise to the use of “middleware” software projects. However,
Autonomous Underwater Vehicles (AUVs) have a sigmficantly different mter vehicle communication regime
than other branches of robotics due to the physical realities of the ocean as a communication medium. Goby3
is a new middleware, the first specifically designed to address inter vehicle inter process and inter thread
communication on AUVs in a unified mammer. Goby3 1s based on C++11 and 1s mimmally restrictive on the types
that can be published and subscribed using it. A reference implementation 1s given that uses C++ shared
pointers for interthread, ZeroMQ for interprocess and Goby-Acomims for inter vehicle commumication. This
application is shown to provide similar or better performance to existing middlewares.

Key words: ZeroMOQ), application, middlewares, communication, Goby3, AUVs

INTRODUCTION

Developing and maintaining software systems for
Vehicles (AUVs) and
autonomous surface craft 1s rapidly becoming one of
the most complex tasks for successful development
of these platforms as hardware components
(sensors, actuators, computing elements) reach a plateau

Autonomous Underwater

of matunity and commoditization. Managing this
complexity can be accomplished through several means:
standardization of mterfaces,
modularization of software components and leveraging of

abstraction and

existing open source resources. To assist in these goals,
various software projects have become widely used in
the marine robotics community. These projects are
referred to as “middlewares” for their intermediary role in
between the operating system resources (especially,
those about commurmication) and the robotic application
software. Several examples of middleware that have
been wused on marine vehicles include MOOS
(Bemjamin et al, 2009), the Robot Operating System
(ROS)Quigley et al, 2009) and the Lightweight
Communications and Marshalling (LCM) project
(Huang et al., 2010).

From the prospective of middleware, the marine
environment poses a significant unique challenge:
the extremely low throughput typically available for
inter-vehicle communications, since, acoustic modems
and low throughput electromagnetic-based systems, (e.g.,
satellite modems) are often the only practical choice. None
of the existng middleware’s addresses this specific
challenge and approaches to intervehicle communication

tend to be decoupled from intervehicle communication. At
the same time, users are increasingly fielding multiple
AUVs due to reduced vehicle cost and increased need for
individual coverage.

Thus, Version 3 of the Goby underwater autonomy
project (Goby3) offers a new middleware specifically
designed for allowing nested autonomy (Bernjamin ef af.,
2010) where de-decisions are made as close to the data
source as possible to avoid excessive data traffic.
However, as needed, messages can be requested to a
scope further from the source. To mcrease its general
applicability, the design of Goby3 can support any choice
of transport mechamsms used, (e.g., TCP/AP for
interposes) or data marshaling schemes, (e.g., google
protocol buffers, DCCL, TSON, msg pack). However, a
reference implementation that makes use of various
high-quality open source libraries 1s presented for
immediate use by the community.

This study also, reviews, a study of optical, surface
morphological and electrical properties of manganese
oxide nanoparticles (Roy er al, 2016). A comparative
study of saline and non-saline water in the application of
tomato yield by using photonic sensor.

MATERIALS AND METHODS

Existing middleware used in the marine community: To
the degree any middleware is run on an acuatic robot, the
most common choices are ROS or MOOS and to a lesser
extent LCM. All of this middleware provide an
interprocess communication
suggested or required marshaling
converting native system types, (e.g., C++ classes) into

mechanmsm and a
scheme for

9336

J. Eng. Applied Sci., 13 (Special Issue 12): 9336-9340, 2018

and vice-versa at the receiver. ROS also,

interthread communication mechanism

bytes
provides an
(*“mode lets™).

The ROS and MOOS transport mechanisms are built
on the Transmission Control Protocol (TCP) and thus,
provide reliability at the layer of carriage for published
packets. LCM uses the User Datagram Protocol (UDP)
multicast functionality and thus, provides no security
guarantees (but high
through- put applications).

ROS and LCM use a conceptually similar Interface
Description Language (IDL) that allows the user to define
data structures in a language neutral format from a
collection of primitive types (integers of various sizes,
floating point values, strings, etc.). These message
def-initials are then compiled by a tool provided by
the middleware into one or more language-specific
pre-sensations, (e.g., C++ class, Python class) that can be
used 1n the user’s code. The standalone protocol buffers
also, provides a similar (though richer) functionality but
without any transport mechamsm. MOOS uses a single
class for all data transferred, the C++ “CMOOSMsg”
which 1s a thin wrapper around either a string, a
double-precision fleating point value or an array of bytes.
Thus, users of MOOS develop their own marshallings
schemes or adopt a standalone library such as protocol
buffers.

Interoperability between applications written in

increased performance for

dif-weren’t middlewares is inefficient as it requires writing
code that both ferries data between two different
transport mechanisms and converts between similar yet
mcompatible data representations (marshaling schemes).
Goby3 aims to improve this situation by camrying
objects of any types that can be serialized to bytes in a
cross-platform compatible manner. This includes types
from existing middlewares, (e.g., LCM types, ROS msgs)
and standalone projects, (e.g., protocol buffers, msg
pack).

Nested communications: Nested communications (which
is a subset of nested autonomy (Schmidt et al., 2016) is a
concept that splits the of possible
commumicating entities mto subgroups where each
subgroup shares a common order of magnitude with
regards to data throughput. For example, processes on a
single vehicle will likely deliver at similar speeds,
regardless of whether they reside on a single
computer or multiple computers, given the rate of
copper and fiber-based ethernet. However, processes
between vehicles will communicate at a vastly different
rate if underwater acoustic wireless connections only link
the two vehicles.

collection

/_-'_ _-_\-"'-\.__
-
- Inter squadron .

/ ;'-&f . '?'&\,\
\

oy \
[&=/ ‘é:‘ \E L
/’ ,/ // Inter process ALY 4

Inter vehi cle

-

A
\"l L"\ \I I

Fig. 1: Ilustration of four possible scores

Throughput (b/sec)

T
Inter head Inter process Inter vehicle Inter squadron

Fig. 2: The order of magmtude data transfer speed

The innermost scope is that which delivers the
fastest, out to the slowest outermost scope. All messages
sent to outer scopes are automatically forwarded to all
inner scopes. An illustration of four possible scores is
given m Fig. 1 and the order of magnitude data transfer
speeds are shown in Fig. 2.

The publish/subscribe
communications:

model using nested
The publish/subscribe paradigm is
common to many of the middlewares, smce, its
asynchronous nature lends itself well to systems that
have many heterogeneous parts operating on different
real-time constraints. In the nested implementation of
publishing/subscribe in Goby3, an entity publishes its
value (of some type) to a “group” at the given nested
scope. On the first publication, it is advertised to any
existing nodes that are subscribed to that group and type.
If no subscribers exist, the published values are not
transmitted anywhere. Multiple types can be sent in the
same group but customers will only receive (in the form of
a callback function) the type (3) they have explicitly

subscribed for. This allows both publications and

9337

J. Eng. Applied Sci., 13 (Special Issue 12): 9336-9340, 2018

subscriptions to be strictly typed and not require any
parsing or serialization of messages directly by the
enduser.

Subscribers can request a variable of a given type or
types from a group. Subscriptions will be forwarded mto
the innermost scope that is fully qualified and if the
variable i1s bemg published at that scope, all future
publications will be escalated to the subscriber’s range.
This allows data to stay as local as possible until needed
by an outer scope, saving bandwidth while maintaining
operational flexibility.

Each layer of the nested communications is
simple-mounted through two C++ classes, the forwarder,
(e.g., InterVehicleForwarder) class and the Portal class,
(e.g., InterProcessPortal). The forwarder class 1s used by
entities one scope inside (threads in the case of
InterProcessForwarder, processes in the case of
InterVehicleF orwarder, etc.) which do not directly talk to
the transport mecha 1s at that layer. As the name mnplies,
the for warder passes publications and receives
subscribed data from the Portal class via the inner
transport layer, (e.g., interthread
InterProcessForwarder). The Portal class communicates

i the case of

on the wire with another mstant-actions of the Portal and
only one Portal exists for each entity at that scope, (e.g.,
one InterProcessPortal for each process, one
InterVehiclePortal for each vehicle).

The publish/subscribe interface for the end-user
application 1s essentially the same for Portals and
Forwarders, except portals need to be configured with the
transport related parameters and Forwarders do not, since,
they use the internal scope transport mechanism.

The exception to this is the interthread layer
which has only one implementation class (the
InterProcess Transporter) which is shared by all the
threads and is essentially the same as a Portal level
design, (since, a Forwarder would be meamngless as there
is no further inner scope to forward data through). An
example of the interaction between these classes is given
mFig. 3.

Reference implementation: The Goby3 reference
implementation 1s entirely in C++ as defined by the 2011
standard (C++11). C++11 provides numerous new features
that are necessary to create this middleware without
significant reliance on outside projects such as boost.
The major new features used by Goby3 are C++ std:
threads, lambda expressions, std: function and smart
pointers (std:: shared ptr). Goby3 includes a reference
implementation that uses three scores and similar
transport mechanisms:

Interthread: Zero-copy communication between threads
using C++11 shared pointers. Since, no data are copied
(Just the pomters), the types used at the interthread layer
do not need to be serializable into a byte stream. In our
experience, multithreading can be error prone and
confuse for newcomers to AUV Software. The Goby3
interthread layer allows the transfer of any CH++ objects
between threads in a publish/subscribe manner that
shares the same paradigm and software mterface as the
outer layers. This allows application designers to write
reliable and memory safe multithreaded applications using
the same familiar publish/subscribe model without
understanding or debugging custom thread data sharing
concepts.

TOCESS
e\(? 'DO,[
&)

» (callback)

Process 3

Thread 3

Inter thread

Process 2

Vehicle 2 |

transporter

Process 1

Vehicle 1/

Fig. 3: Interaction between these classes

9338

J. Eng. Applied Sci., 13 (Special Issue 12): 9336-9340, 2018

Interprocess: TCP/AP or UUNIX socket communication
using ZeroMQ (Hintjens, 2013). This layer of Goby3
uses the ZeroM(Q transport layer to allow either
single-computer interprocess communications via UNTX
sockets or multi-computer, (e.g., connected by a gigabit
copper ethernet) interprocess networks using TCP. The
assumption is that these processes are all resident on a
single vehicle or another node (moeoring or topside on the
research vessel).

Intervehicle: Acoustic, satellite or other “slow-link”
communications using the Goby-Acomms Li-library
(Vijayaman et al., 2016).

The supported data types (or marshaling schemes)
of the three

implementation are:

for each scopes 1 the reference

Interthread: Any C++ class.

Interprocess: Any serializable C++ type, (e.g., pro-tool
buffers, the Dynamic Compact Control Lan-gauge Version
3 (DCCL3) or msgpack).

Intervehicle: The Dynamic Compact Control Lan-gauge
Version 3 (DCCL3)Roy et al., 2016). DCCL3 is an interface
description language (based on protocol buffers) and
extensible suite of marshaling algorithms specifically
designed for extremely low throughput links such as
acoustic modems.

RESULTS AND DISCUSSION

The success of some of the primary aims of Goby3
will only be bome out with use by the wider
community:bringing the ease of publishing/subscribe to
mterthread and mtervehicle communications and reducing
the interopability of different systems by relaxing the
marshaling scheme requirements that existing middlewares
have.

However, the performance of Goby3’s reference
m-implementation needs to be acceptable to merit the
wider use that will be necessary to assess and realize the
aims above. Thus, benchmark testing of the Goby3
reference implementation was performed against the
MOOS, LCM and ROS middlewares.
messages were tested: a small one on the order of tens of
bytes with the exact size depending on the details of the

Two sizes of

middleware’s marshaling scheme and a large one equal to
about 1 MB. Ten thousand to one million messages of
each size were published and subsequently received by

a subscriber. The mean time to publish, transfer and
receive each message was calculated. The results of this
testing are plotted for the scopes supported by each
middleware. This figure shows that the performance of
Goby3 1s smnilar or better to that of the comparable
middlewares. Some of the minor performance deficit
relative to ROS 1s due to the flexibility of Goby3 (which
allows any serializable type whereas ROS only allows ROS
msgs).

CONCLUSION

Existing middlewares do not address the “slow link™
problem that is very common for marine intervehicle
communications. In the researcher’s experience, solutions
to mtervehicle commumnication tend to be “add-ons™ to the
leading middleware used for mterprocess commurncation
and thus, tend to be difficult to extend or modify when
new data needs to be shared between vehicles or the
operator topside. Goby3 is designed to provide a standard
interface to ease this mismatch.

Existing middlewares tightly couple a required
transport layer with a required marshaling scheme. Goby3
relaxes the marshaling system requirement as much as is
reasonable, allowing easier development between
applications and research groups which “talk” different
data were marshaling “languages.” Also, the core design
of Goby3 does not mandate any particular transport
layers so a different choice, (e.g., UDP for mterprocess)
could be implemented by the user while still using other
parts, (e.g., mtervehicle and mterthread)
reference implementation. This modularity aims to provide
flexibility at the same time as providing working, field
quality level code that is ready to use.

Goby3 is open source software (distributed under
the TLGPL license) and at the time of this writing is in what
is considered an “alpha” stage of development.

from the

Infrastructure (such as middlewares) are essential pieces
of AUV software but difficult to find the time interest or
money to create well. Thus, the more shared work that
can be done 1 the AUV community on this topie, the
better. Feedback and contributions at this stage are
greatly appreciated. The project page for software 1ssue
tracking, etc. is https://github.com/GobySoft/goby.

REFERENCES

Benjamin, M.R., H. Schmidt, P.M. Newman and I.J.
Leonard, 2010. Nested autonomy for unmanned
marine vehicles with MOOS-IvP. I. Field Rob., 27:
834-875.

9339

J. Eng. Applied Sci., 13 (Special Issue 12): 9336-9340, 2018

Benjamin, M.R., I.J. Leonard, H. Schmidt and P.M.
Newman, 2009. An Overview of Moos-Ivp and a Brief
Users Guide to the Ivp Helm Autonomy Software.
Open Arclives Imtiative, Rijeka, Croatia,.

Hintjens, P., 2013. ZeroM(Q: Messaging for Many
Applications. OReilly Media, Sebastopol, Califorma,
[SBN:978-1-449-33406-2, Pages: 328,

Huang, A.8., E. Olson and D.C. Moore, 2010. LCM:
Lightweight communications and marshalling.
Proceedings of the 2010 TEEE-RST International
Conference on Intelligent Robots and Systems
(TROS), October 18-22, 2010, 1 EEE, Taipei, Taiwan,
[SBN:978-1-4244-6674-0, pp: 4057-4062.

Quigley, M., K. Conley, B. Gerkey, J. Faust and T.
Foote et al., 2009. ROS: An open-source Robot
Operating System. ICRA. Workshop Open Sour.
Software, 3: 1-5.

Roy,

S.K., M. Harshitha and P. Sharan, 2016. A
comparative study of saline and non-saline water
in application of tomato vield by using photonic
sensor. Proceedings of the 3rd International
Conference on Computing for Sustainable Global
Development (INDIACom), March 16-18, 2016, [EEE,
New Delhi, India, ISBN:978-9-3805-4421-2, pp: 2733-
2735,

Schmidt, H., M.R. Benjamin, S.M. Petillo and R. Lum, 2016.

Nested Autonomy for Distributed Ocean Sensing. In:
Springer Handbook of Ocean Engineering, Manhar,
RD. and I.X. Nikolaos (Eds.). Springer, Berln,
Germany, TSBN:978-3-319-16648-3, pp: 459-480.

Vyayamari, A., K. Sadayandi, S. Sagadevan and P. Singh,

9340

2016. A study of optical, surface morphological and
electrical properties of manganese oxide
nanoparticles. J. Mater. Sci. Mater. Electron., 3: 2739-
2746,

	9336-9340 - Copy_Page_1
	9336-9340 - Copy_Page_2
	9336-9340 - Copy_Page_3
	9336-9340 - Copy_Page_4
	9336-9340 - Copy_Page_5

