Tournal of Engineering and Applied Sciences 13 (Special Issue 12): 9468-9473, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

A Smart Fuzzing Tool for Vulnerability Analysis of Open Source Software

'Kwang-Jik Kim, 'Yong-Sun Ko, *Jae-Pyo Park and *Jong-Hee Lee
'Department of IT Policy Management,
*Department of Information Security, Soongsil University, 07027 Secul, Republic of Korea

Abstract: Recently, program developed by open source tends to be utilized in various industrial fields but
mexperienced developers can produce the open source code vulnerable to security such as not complying with
secure coding standard or standard of programming language, etc., rather due to the advantages of open source
which anyone can view, correct and distribute source code freely. Tn this study, it suggests the smart fuzzing
tool mterworked white box test and black box test in order to analyze the effective vulnerability of open source.
The smart fuzzing tool was mnplemented as a prototype and it was found that the accuracy of the vulnerability
detection was improved through the vulnerability analysis regarding the open source. It 13 expected that the
suggested smart fuzzing tool detects the vulnerability with automated measure, more exactly and effectively
and overcomes the limit which existing fuzzing system has.

Key words: Open source, secure coding, vulnerability analysis, black and white box testing, smart fuzzing,

automated measure

INTRODUCTION

Open source is the program source code or software
given for free and anyone can view open source code
freely. Tt should be kept the right of original producer of
open source, so0, it can be corrected and distributed
(Wikitree, 2015). However, inexperienced developers can
produce the open source code vulnerable to security such
as not complying with secure coding standard or standard
of programming language, etc., rather, due to the
advantages of open source which anyone can view,
correct and distribute source code freely. Also,
developers may have wrong cognition that wide review
and test could be progressed for open source codes,
produced and distributed like this, vulnerable to
security.

On the basis of wrong realization, developers
distribute and use many open source code vulnerable to
security or use compilers not suitable to standard without
specialized analysis of source code. Tt can be re-produced
serious vulnerabilities of security for open source such
as Heartbleed of open SSL (Hacksum, 2015, Anonymous,
201 5a, b) or vulnerability in execution of remote command
of GNU Bash. Therefore, specialized developers should
remove security vulnerabilities consciously, doing exact
coding based on standard in order to increase the security
not occurring security vulnerabilities of open source.
Besides, CERT coding standard is being used as one of
guideline for it (Kang, 2015).

In addition, although, developers try to develop the
program on the basis of standard when developing, it

cannot be perfect coding without any vulnerabilities, so,
it should be complemented through additional analysis of
vulnerabilities to minimize such security vulnerabilities
(Zerkane et al., 2016). Thus, it suggests the smart fuzzing
tool interworked white box test and black box test for
secure coding of open source in this study. The proposed
smart fuzzing tool was implemented as a prototype and it
was found that the accuracy of the vulnerability detection
was improved through the vulnerability analysis
regarding the open source.

Literature review

Black box test: The black box test is the one wlich tester
executes, just understanding which function software
performs. Tester does not know how software acts
internally. Tt tests in drawing the result value
corresponding with input value, on the basis of software
function and requirement only (Zhao and Liu, 2016;
Michael et al., 2007). The black box test has advantages
which not require the information and technical skill of
source code but useful in big system. However, it can
hardly test all input values for short periods, detect logical
error and make test case without knowledge for definite
functional specification.

White box test: The white box test is the one which tester
accesses to code of software and inspects and tester can
know the internal process of action of software. On the
contrary, it can verify how software input value draws
result value but it has a risk of not testing objectively,
while executing test in accordance with action of code

Corresponding Author: Jong-Hee Lee, Department of Information Security, Soongsil University, 07027 Seoul, Republic of Korea
9468

J. Eng. Applied Sci., 13 (Special Issue 12): 9468-9473, 2018

(Khan and Khan, 2012; Ron, 2006). Tt can be accessed to
code, checked all codes clearly and distinguished the
error for unveiled codes. Besides, it has advantage to be
easy in mferring mmput value and making test scenario in
white box test. To execute white box test, its disadvantage
is to need practiced skill, to be expensive and not
guaranteed to meet the specification of test.

Fuzzing: Fuzzing is the security test to identify the
potential vulnerabilities and errors, inputting ineffective
value or selected value randomly, inducing unexpected
result. Fuzzing is divided mto sorts depending on the
selecting method of input value to test and there are dump
fuzzing, inputting data randomly and smart fuzzing,
understanding software properly, selecting and inputting
the related data (Cha et al., 2015; Kim ef al., 2016a, b).
Generally, fuzzing refers to the automated verification on
the program. The fuzzing test is conducted while the
program uses various data including the unexpected data
at random. The usefulness of fuzzing is placed in the data
set creation for finding vulnerability.

Symbolic execution: The symbolic execution 1s basically
expressed as an unknown quantity instead of the concrete
value. If the program meets the branching statement, it
creates the symbolic value as following routes on both
sides. That 1s, it 15 a way to figure out what values each
variable has at which point after watching the conditions
of several branching statements. The symbolic execution
engine applies this principle to the program to see the
route condition the engine 1s accumulated and follow it.
That 1s, we can dramatically improve the code coverage
that the dynamic analysis is done through the symbolic
execution (Kim er al., 2016a, b).

MATERIALS AND METHODS

Process of smart fuzzing: Unlike the conventional
fuzzing, the smart fuzzing is an automated method to
detect the vulnerable points of the software. A data model
should be created regarding the targeted software that
needs fuzzing and analysis is automatically performed
regarding the data file and software itself.

Unlike the conventional fuzzing, proposed smart
fuzzing models the vulnerability mformation and mnput file
structure through the static analysis of the white box
test as shown in Fig. 1. Tt then connects and fuzzes the
modeled data structure and vulnerability code through the
dynamic analysis of black box test to extract the input
data and detects and reports the vulnerability.

Smart fuzzing executes code as initial input value,
using generated mnput data value. It collects the scope for

input value and generates new scope in symbolic
execution. Figure 2 shows the composition of smart
fuzzing and data flow of each composition.

The following shows a detailed data treatment
process of the smart fuzzing tool for the vulnerability
analysis.

Uploading of the analysis target source and registration
of the target of fuzzing: Register the targeted open source
website or open-source application as well as the basic
information mcluding URL to the smart fuzzing tool,
through the vulnerability analysis DB.

Vulnerability inspection by the static analysis (white box
test) and the detection of external data inflow source code:
Detect vulnerability that could be attained through the
static analysis by registering the open source data that
are registered on the vulnerability analysis DB to the
static analysis engine. In addition, the Java source code
inflowing data from the external source through the static
analysis and the source code that mcludes the logic
having the suitability and possibility of flow analysis for
symbolic execution 13 detected based on the Java source
code.

Store the analysis data in the vulnerability analysis DB:
The data (the source code data that will be sent to the
symbolic execution engine) that are attained through the
static analysis are stored in the vulnerability analysis DB.

Register fuzzing information to the fuzzer: The basic
information mncluding the URL that was imtially registered
in the vulnerability analysis DB is registered to the fuzzer
to prepare for the black box test.

Black box test of the service web through the fuzzer:
Perform a black box test through the data that are
registered to fuzzer, regarding the service web (a website
that is under service with the operation of open source)
which is the subject of the analysis.

Store the test result in the vulnerability analysis DB:
Store the resulting information through the fuzzer’s black
box test to the vulnerability analysis DB. The information
attained through the black box test mcludes the detected
vulnerability and the URL information that 1s extracted
from the targeting web.

Create the target information by matching the resulting
data from the static and dynamic analyses and send them
to the symbolic execution engine: Match the data
detected through the white box test (static analysis) that

9460

J. Eng. Applied Sci., 13 (Special Issue 12): 9468-9473, 2018

rL White box testing

Source code

Static analysis
(symbolic execution)

r

Vulnerable
code

Vulnerability >

Fuzzing

Fig. 1: Conceptual diagram for smart fuzzing

Subject information

- —
\.

to fuzzing
Service web
-
q q | S
sElvenElss Vulnerability analysis DB RIZE] {

engine

Symbolic

execution Report

engine

Fig. 2: Architecture and process of smart fuzzing tool

are stored in the vulnerability analysis DB with
the data detected through the black box test
(fuzzer). Find the source code that can create the
test data through the symbolic execution engine
from the matched mformation and send it to the
symbolic execution engine to be used as the target of
analysis.

Store the test data that are created through the symbolic
execution engine in the vulnerability analysis DB: Store
the test data set that are created through the symbolic
execution engine in the vulnerability analysis DB. Since,
the test data could not always be attained from all the
source codes that are registered in the symbolic execution
engine, select the data that could be used in the final
smart fuzzing and store them in the vulnerability analysis
DB.

Register the data and URL for smart fuzzing to the
fuzzer: Register the data set and URL for the smart
fuzzing by integrating the test information through the
white box test, black box test and symbolic execution
engine.

Perform the smart fuzzing through fuzzer: Perform the
vulnerability mspection through the fuzzer's smart
fuzzing, targeting the finally registered data.

RESULTS A AND DISCUSSION

Process of smart fuzzing: The smart fuzzing tool
interworked with the designed white box test and black
box test is implemented in prototype. Tt is the execution
screen of black box test for analysis target (service web)
through fuzzer in Fig. 3. Tt performs the black box test into
service web by registered data in fuzzer.

9470

J. Eng. Applied Sci., 13 (Special Issue 12): 9468-9473, 2018

SURo BRI

Fig. 3: Black box test by fuzzer

2 Console 2
ExSymExe,jpf(run)

system under test

gov.nasa. jpf.symbc.ExSymExe.main()

unreachable

br3|

PC constraint # = 2

((z_2_SYMINT[-1000000] + x_1_SYMINT[999995]) + CONST_6) > CONST @ &&
(z_2_SYMINT[-1000000] + x_1_SYMINT[999995]) > z_2_SYMINT[-1000000]
br2

PC constraint # = 2

((z_2_SYMINT[-1000000] + x_1_SYMINT[1]) + CONST_6) <= CONST_O &%
(z_2_SYMINT[-1000000] + x_1_SYMINT[1]) > z_2_SYMINT[-1000000]

br3

PC constraint # = 2

((z_2_SYMINT[-5] + x_1_SYMINT[@]) + CONST_6) > CONST_O &&
(z_2_SYMINT[-5] + x_1_SYMINT[@]) <= z_2_SYMINT[-5]

br2

PC constraint # = 2

((z_2_SYMINT[-1000000] + x_1_SYMINT[-1000000]) + CONST_6) <= CONST_© &&
(2_2_SYMINT[-1000000] + x_1_SYMINT[-100000@]) <= z_2_SYMINT[-1000000]

Method Summaries

Inputs: x_1_SYMINT,z_2 SYMINT

gov.nasa.jpf.symbc.ExSymExe. test (999995, -1000000) --> Return Value: --
gov.nasa.jpf.symbc.ExSymExe.test(1,-1000000) --> Return Value: --
gov.nasa.jpf.symbc.ExSymExe.test(0,-5) --> Return Value: --
gov.nasa.jpf.symbc.ExSymExe.test(-1000000, -1000000) --> Return Value: --
Inputs: x_1_SYMINT,z_2_ SYMINT

gov.nasa.jpf.symbc.ExSymExe. test (999995, -1000000) --> Return Value: --
gov.nasa.jpf.symbc.ExSymExe.test(1,-1000000) --> Return Value: --
gov.nasa.jpf.symbc.ExSymExe.test(0,-5) --> Return Value: --
gov.nasa.jpf.symbc.ExSymExe. test(-1000000, -1000000) --> Return Value: --

AR CEA =R

search started: 15. 7. 29 2%7:16

Fig. 4: Extracting test data by the execution engine

In Fig. 4, it is the screen extracting test data through
symbolic execution engine, matching static and dynamic
data and transmitting into symbeolic execution engine of
target information.

9471

Figure 5 shows the screen when the analysis of the
open source’s vulnerability is being performed by the
fuzzer. It 1s shown that a vicious script and an
inappropriate method are detected.

J. Eng. Applied Sci., 13 (Special Issue 12): 9468-9473, 2018

ERRFTrE T

Fig. 5. Analysis of the open source’s vulnerability by the fuzzer

Table 1: Test results for vulnerability detection accuracy of the smart fuzzing

White box test Black box test Combined with black and white box test
Security Find bugs Symbolic execution Fuzzing Smart fuzzing
(vulnerabilities
detection using Detection Detection Detection Detection Detection Detection Detection Detection
Juliet code) time (sec) accuracy (%) time (sec) accuracy (%) time (sec) accuracy (%) time (sec) accuracy (%)
Race condition N/A N/A 0.71 25.2 N/A N/A 0.82 72.5
Divide by 0 0.89 35.9 0.75 43.4 0.81 45.3 0.78 66.4
Not reachable 0.72 15.5 0.71 23.6 0.65 21.0 0.79 55.2
Null pointer exception 0.35 63.1 0.31 65.2 0.23 67.5 0.39 78.3
Assertion errors N/A N/A N/A N/A 0.21 23 0.23 583

*Juliet code can be downloaded from http //samate.nist.gov/S ARD/testsuite.php

The vulnerability detection accuracy measurement
was performed through an experiment to evaluate the
performance of the realized smart fuzzing tool. Table 1
shows the results of the vulnerability detection status
when the vulnerability is analyzed through the white box
test, black box test and the smart fuzzing that integrates
both the white box test and the black box test. The find
bugs was used for the static analysis engine and for the
symbolic execution engine and fuzzer, a program that, we
have developed for this study was used. For the open
source files, Juliet code 25,477 Java files were used as the
targets of the experiment.

The results show that the vulnerability detection time
was relatively longer then the vulnerability detection
performed by the white box test and black box test but the
accuracy was higher when the smart fuzzing was used for
the vulnerability test.

CONCLUSION

In this study, we suggest the smart fuzzing tool
mterworked white box and black box test for secure
coding of open source. In addition, it tests whether

vulnerability analysis acts normally, realizing proto type
of suggested smart fuzzing tool. The suggested smart
fuzzing tool provides higher test coverage than existing
vulnerability analysis method and it interworks with
exploit. Tt is planned to assess and inspect the capacity
for suggested tool through experiment and evaluation,
after realizing the perfect tool of reporting module and
service web from now on. We expect that it overcomes the
limits existing fuzzing system has and detects
vulnerability more exactly and efficiently in automated
measure, through suggested smart fuzzing tool and
interworking with white box test and black box test.

REFERENCES

Anonymous, 2015a. Heart bleed memory disclosure
upgrade open SSL now!. Cisco Systems, Inc., San
Jose, Califorma, USA. hitp://blog talosintelligence.
com/201 4/04/heartbleed-memory-disclosure-upgrad
e.html

Anonymous, 2015b. To prevent a second heart bleed
should mcrease support open source developers.
CBS Interactive Inc, San Francisco, California, USA.

9472

J. Eng. Applied Sci., 13 (Special Issue 12): 9468-9473, 2018

Cha, SK., M Woo and D. Brumley, 2015.
Program-adaptive mutational fuzzing. Proceedings of
the IEEE Symposium on Security and Privacy (SP),
May 17-21, 2015, IEEE, San Jose, Califormia, USA.,
ISBN:978-1-4673-6949-7, pp: 725-741.

Hacksum, 2015. OpenSSL heartbleed vulnerability
(CVE-2014-0160). United States Computer Emergency
Readmess Team (US-CERT), Arlington, Virginia.

Kang, M., 2015. Static analysis of hypervisor open source
based on secure coding. Master Thesis, Korea
University, Seoul, South Korea.

Khan, M.E. and F. Khan, 2012. A comparative study of
white box, black box and grey box testing techniques.
Intl. J. Adv. Comput. Sci. Appl., 3: 12-15.

Kim, I.H., M.C. Ma and I.P. Park, 2016a. An analysis on
secure coding using symbolic execution engine. T.
Comput. Virol. Hacking Tech., 12: 177-184.

Kim, S., W. Jo and T. Shon, 2016b. A novel vulnerability
analysis approach to generate fuzzing test case in
industrial control systems. Proceedings of the TEEE
Conference on Information Technology, Networking,
Electronic and Automation Control, May 20-22, 2016,
TEEE, Chongqing, China, ISBN:978-1-4673-9195-5, pp:
566-570.

Michael, 5., A. Greene and P. Amini, 2007. Fuzzing: Brute
Force Vulnerability Discovery. Pearson Education,
Addison-Wesley, Boston,
ISBN:9780321446114, Pages: 543.

Ron, P., 2006. Software Testing. 2nd Edn., Pearson
Education,London,England, ISBN:978-81-7758-031-0,
Pages: 377.

Wikitree, 201 5. How open source 18 used for?. Wikitree,
New York, USA.

Zerkane, 3., D. Espes, P.L. Parc and F. Cuppens, 2016.

Massachusetts,

Vulnerability Analysis of Software Defined
Networking. In: Foundations and Practice of
Security, Cuppens, F., L. Wang, N.

Cuppens-Boulahia, N. Tawbi and J. Garcia-Alfaro
(Eds.). Springer, Switerzland, [SBN:978-3-319-51965-4,
pp: 97-116.

Zhao, M. and P. Liu, 2016, Empirical Analysis and
Modeling of Black-Box Mutational Fuzzing. In:
Engineering Secure Software and Systems,
Caballero 1, E. Bodden and E. Athanasopoulos
(Eds.). Springer, Switzerland, ISBN:978-3-319-30805-0,
pp: 173-189.

9473

	9468-9473 - Copy_Page_1
	9468-9473 - Copy_Page_2
	9468-9473 - Copy_Page_3
	9468-9473 - Copy_Page_4
	9468-9473 - Copy_Page_5
	9468-9473 - Copy_Page_6

