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Abstract: Tn this study, some inequalities for uncertain random variables are first proved based on the concept

of chance measure and expected value operator.
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INTRODUCTION

Uncertainty theory, founded by Liu (2009a, b) and
refined by Liu (2010) is a branch of mathematics based on
the normality, duality, subadditivity and product measure
axioms. In uncertainty theory, uncertamn wvariable (L,
2008, 2009a, b) is one of the most important concepts
which is defined as a measurable function from an
uncertainty space to the set of real numbers. A sufficient
and necessary condittion of uncertamty distribution was
proved by Guo and Twamura (2011). After introduced the
definition of independence by Liu (2010, 2011) presented
the operational law of uncertain variable. Up to now,
uncertainty theory has already applied to uncertain
programming (Liu, 2009a, b, 2010), uncertain process (Yao,
2012).

Liu (2013) proposed chance theory by giving the
concepts of uncertain random variable and chance
measure in order to describe the situation that
uncertainty and randomness appear in a system. In
addition, the chance distribution, expected value and
variance of an uncertain random varable were also
provided Following that, Liu (2013a, b) gave an
operational law of uncertain random variables and
proposed uncertain random programming as a branch of
mathematical programming involving uncertain random
variables. In addition, Yao and Gao (201 2) verified a law of
large numbers for uncertain random variables, etc.

Preliminary

Definition (2-1); (Liu, 2007): Let  be a nonempty set
and let F be a o algebra over €. Each element AeF is
called an event. Uncertain measure M was introduced as
a set function satisfying the following axioms (Liu, 2011 ):

¢ Axiom 1 (Normality) M{Q)=1

*  Axiom 2 (Monotoricity) M(A)<M(B) whenever AcB

*  Axiom 3 (Self-duality) M(AMM(A®) = 1 for any event

¢+  Axiom 4 (countable subadditivity). For every
countable sequence of events {A}, we have:

@

M(Japs Y M)

i=1

Axiom 35 (product measure axiom). Let €, be a
nonempty sets on which M, are uncertain measures k=1,
2,3, ..., n, respectively. Then the product measure M is an
uncertain measure on the product o algebra F xF,x, ..., xF
satisfying:

> n

M A= minM, (A,)
k=1 -

where A,cQ,. k=1,2 3, ..n

Definition (2-2); Liu (2007): Let Q be a nonempty set, let
F be a o algebra over and { an uncertain measure. Then
the triple (€, F, M) is called an uncertainty space.

Definition (2-3); Liu (2007): An uncertain variable 1s a
measurable function X from an uncertainty space (£, F,
M) to the set of real numbers such that {XeB} is an event
for any set B of real numbers.

Definition (2-4); Liu (2007): The uncertain variables
X, X, X, .., X, are said to be independent if
M(ﬁ (XHEBi)):IlEian(XIEBI) for ary Borel Bl, Bz, . Bn
of tdal numbers.

Definition (2-5); Lin (2007): Let X be an uncertain

variable. Then the expected value of X 13 defined by:

E(X)= TM(X 2r)dr-lj[M(X5r)dr provided that at least one of
i} -
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the two integrals is finite. The variance of X is defined by
E(X) = E(X-ey where X is the finite expected value of X
Generally, the expected value E((X))* is called the k th
absolute moment of the uncertamn variable X for any
positive integer k.

Theorem (2-6); Liu (2007): Let X be an uncertain variable
with uncertainty distribution ®. Then:

E(X)= T(l-(b(ca)da— i O(e)do

Definition (2-7); Liu (2007): Let (Q, F, M) be an
uncertainty space and (I, W, Pr) be a probability space.
Then (Q, F, M)=(I", W, Pr) = (=T, FxW, MxPr) is called
a chance space.

Definition (2-8); Hou (2014): Let (QxI", FxW, MxPr) is
called a chance space and AeFxW be an uncertain
random event. Then the chance measure CH of A s

defined by:

Ch(A)= .I[Pr(w S F|M(y€ Q)| (y, w)zr)dr

Liu (2013a, b) verified that the chance measure Ch
satisfies normality, duality and monotonicity properties,
that is:

o Ch{QxIM=1
¢ Ch(AChi{A®) =1 for any event A
¢ Ch{A)<Ch(B) for any event A and B with AcB

Besides, Hou (2014) proved the subaddivity of

chance measure that is ¢p (U A)<Y Ch(A) for a
sequence of events A, A, i=1 =1

Definition (2-9); Hou (2014): An uncertain random
variable 13 a measurable function X from a chance space
(Q=I, FXW, MxPr) to the set of real numbers such that
{XeB} 1s an uncertain random event for any Boreal set B.

Definition (2-10); Hou (2014): Let X be an uncertain
random variable. Then, the expected value of X is defined
by:

E(X) = TCh(X > r)dr-j Ch(X < r)dr

—o

provided that at least one of the two integrals 1s fimite.

Definition (2-2); Hou (2014): Let X be an uncertain
random variable. Then its chance distribution @ is
defined by ¥(x) = Ch(X<x). For any xeR.

Theorem (2-6); Hou (2014): T.et X be an uncertain random
variable with chance distribution ®. Then:

E(X):T(l-@)(cx)d(x—j O(o)do,

Theorem (2-4); Liu (2007): Let X be an uncertain random
variable with chance distribution @. Tf the expected value
exists, then:

E(X)= ch" (@) do

Proof: It follows from the defimtion of expected value
operator and uncertainty distribution that:

E(X)= TCh(X > r)dr-j Ch(X<r)dr =

j[ @ ((x)dowcpjnjtl)'1 (a)da = _l[(D'l (aydo

()
The theorem 1s proved.
Some inequalities of uncertain random variables

Lemma(3-1) (rthinequality): Tet be X, X,, ..., X, be
uncertain random variables and 0. Then:

r

PIp

1=1

} <n'> E[X
1=1
Proof: 1t is clear that for any mumber x:

X3+, L X 2 x o iX) ZE}U
n

D0 L uiX =S
n n

By the subadditivaty of chance measure, we have:

Ch{zn:Xl > x} <Zn:Ch{Xl > ﬂ

1=1 i=1

Furthermore, we obtain:

.

n

2%

i=1

p x} < Zn: Ch[|Xi| p X}
i=1 n
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Tt follows from the definition of expected value for
uncertain random variable:

HZ n
S—ZZEX

i=1

HZ n
2
= STZ E(Xl)
i=1

The theorem is proved.

Theorem (3-2) (Kolmogrov inequality): Let X, X, ..., X,
be uncertain random variables and:

sﬂ:ix
i=1
If:
E[XZ} cwi=1, 2, ..,

Then for any given number £>0, we have:

n & 2
<> B(X)

g 1=1
Proof: By Markov inequality, we have:

1<1<n |S ” }

Ch{{gii(‘si‘ >gh < -

€

Since:

E{ o= } 1

B |
then, we have:

E{ mex } 2
11 %n 1 n
Ch{max|$ | > &} <7Z<—2E MIx|
Sisn & g |5
By rth inequality, we have:
n’ & 2
ST_ Xi|
Finally, since:
2 n 2 2 n

n n

— Y EX| = 5D EX)

£ a1 € ia
Thus:

n’ & 3
Chi{max|S | zegp<— > E(X)
1=1=n £ Y

Theorem (3-3): Tet X, X, ..,
variables and g _ % If there exists a constant k>0 such

¥, be uncertain random

that [X|<fori=1, 2, ...,
we have:

n, then for any given numberg=0

2+k2j

n’( &
Ch{m_m(‘Sl| >g}< 2[
1=15n £ 0

Proof: Since:

n
2
1
i=1

And since:

ZJEE
i=1
B n
} EE[ xJ-
i=1

2 n
_E{
i=1

Then, we have:

n{iE|X1—E(Xl)| JEE{EQXJ

Since, |X;|<k, then E(| X))z -k. Furthermore:

E{% XJFE{“

'k)} ‘E@xi .

Since:

E{Z(X 1+n2k2J

i=1

Furthermore:

n n

H .2 | _

E X, [)°- ; k*|=
1=1 1=1

E{ > X, )zj-zIﬂ(E(iX1|J+H2k2
i=1 i=1

E[Z"j(xi |—k)} = E{(Z szkz

So that:

Thus:

n? [iE|X1-E(Xi)2 } > E[(Zn:xl )2-2nkzn:xi|}+n2k2
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Since:
%, <2k >[5 = 20k
That is: .
\ . .
E[(Z; X, )2—2nk§ X, szkz > E{ZXJ 207k 0k

2
E{(Z|Xi)2}—2n2k2 'k = E[ X, J n’k?
i=1

i=1

n n 2
{Z E[X-E(X,) J > nz(E[ZXi |] n’k?)
i=1 i=1
By Markov inequality:

Ch{max S,| g} =

1=12n £

n 2
nz [ZEX'E(X)| JESZ Ch{l;[(lax_|sl‘ 28}—1121(2
i=1 Z1%n
n 2
“Z[ZEP?-E(XJ szkz 2 &'Ch{max S | = &}
i=1 1=2j=n
ZJJrnzkz

{iEXI—E(XI)FJrkZJ

&' Ch{max
1<y2n

S]‘>s}<n2{zn:EXl—E(Xl)
1=1

2
Ch{max n_2

12j<n

Sj‘zs}gg

The theorem is proved.

CONCLUSION

The main aim of this study is to provethe inequalities
for uncertain random variables (ith and Kolmgorov
inequality) in chance measure.
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