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Solving a Large-Scale Nonlinear System of Monotone Equations by using a
Projection Technique
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Abstract: In this study, we suggest a new projection algorithm for solving nonlinear systems of monotone
equations. The projection methods are an efficient family of derivative free methods for solving nonlinear
systems of monotone equation that is in each iteration, the current iterate is strictly separated from the solution
set of the problem by an appropriate hyperplane that constructs by the new projection algorithm. Then the
current iterate is projected onto this hyperplane to determine the new approximation. Under standard
assumptions, the global convergence of the proposed algorithm are proved. The numerical experiments indicate
the efficiency of the proposed algorithm.
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INTRODUCTION

The  nonlinear  systems  and  their  solutions  are  of
great importance in the various sciences which have
included different fields and aspects. It is an important
part   of   the   sciences   of   mathematical   and   physics
(since,   most   physical   systems   are   nonlinear)   as
well as their importance in engineering, especially,
mechanical engineering, electricity, management,
economy, population growth, weather and other natural
phenomena. The nonlinear systems are studied alongside
the linear system because of the possibility of converting
nonlinear problems into linear ones from many variables.
Consider the following nonlinear system of equations:

(1) F x 0

where, F is a continuous and monotone function from Rn

to Rn condition of monotony mean:

(2)      T nF x -F y x-y 0, x, y R  

The solution of nonlinear system equations is one of
the problem and difficulties in the mathematical and
engineering applications that analyzing it by analytical
methods is difficult. Therefore, we can only rely on
iterative methods that use the iterative procedure to obtain
approximate solutions. The Newton method may be one
of the best numerical methods that use the iterative
method to solve these systems and it is consider a smooth
method to find approximate values of equations.

In  recent  years,  many  modifications  have  been
made   to   the   Newton   method   these   suggested
methods  may  be  equivalent  to  (or  better  than)  the
Newton  method  to  solve  the  nonlinear  system  of
equations.  The  line  search  method  and  the  trust
region method are the most important two methods to
solve these systems.

The important idea of the line search method is
finding the step length in the specified direction but the
trust region method always cares to find a neighborhood
of the current step xk, so that, the new iterate falls within
the trust region determined by its radius (Amini et al.,
2016) also this technique is used to solve unconstrained
optimization (Shiker and Sahib, 2018).

Some  methods  proved  ineffective  for  solving
large-scale nonlinear system of equations as Newton
method   and   quasi-Newton   methods   (Hager   and
Zhang,  2005;  Li,  2017;  Hassan  and  Shiker,  2018)
because they need to solve the Jacobian matrix or an
approximation of it in each iterative.

This  research  focuses  on  solving  the  system  of
large-scale non-linear equations by a new projection
technique.  The  simple  idea  of  the   projection
technique  is  always  interested  in  separating  the
present  approximation  from  the  result  set  of  the
problem (Eq. 1)  by  appropriate  hyperplane  that  is  built 
in each  iterate  and  then  projecting  this  approximation 
on the same hyperplane to obtain the new approximation
(Koorapetse et al., 2019). Several researchers use
conjugate gradient approaches combining with projection
techniques for solving (Eq. 1) as well as optimization
issues (Dai, 2002).
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The first projection approach was suggested by
Solodov and Svaiter (1998) and it showed the totally
convergent of solving nonlinear problems. In this study,
the new algorithm is used to solve the nonlinear systems,
we proved its global convergence. Then we compare with
two famous methods, SBM method by Yan et al. (2010)
and DFPB1 by Ahookhosh et al. (2013), the new
algorithm will be more efficient.

The framework: The projection technique is one of the
ways that proved to be active in solving nonlinear
problems and it is a suitable and applicable way to solve
large-scale difficulties these methods use a series of
repetitions to arrive to the next iterate:

(3)k 1 k k kx = x + d 

Where:
αk = A step length
dk = The step direction

These processes are called an iterative procedures
(Ortega and Rheinboldt, 1970), so, the projection
techniques are called iterative methods. The projection
approaches are family of derivative free. To define these
effective methods, we use the projection operator ΦΩ[.].
Let  ΦΩ[.]  be  a  mapping  from  Rn  to  Ω  where  Ω  is
non-empty closed convex set (Wang et al., 2003):

(4)    nx arg min x-z , z , x R    

The projection operator has interesting features is
non-expansive property:

(5)    nx - y x-y , x, y R     

As a result produces:

(6) x -y x-y , x, y   

After a series of iterations, in every iteration, the
present approximation xk is isolated from the result set of
the problem by the hyperplane Hk that is construction by
using a line search technique:

(7)    Tn
k K kH = x R /F z x-z = 0

where:
(8)k k k kz = x +a d

By Solodov and Svaiter (1998) suggestion, the
following iterate xk+1 can be resolute by projection zk onto
Hk where:

(9)    Tn
K k k kC = x R /F z x -z 0 

The approximation that is best among all result of
system (Eq. 1) can be determined by projection xk onto CK

but xkóCk. Then the following approximation, xk+1 can be
determined by:

   k+1 C k k Kx = P x = arg min x-x | x C

So:

(10)
   

 
 

T

k k k
k+1 k k2

k

F Z X -Z
x = x - F z

F Z

The  suggested  method,  built  on  the  projection
free-derivatives method for the system of nonlinear
equations, determine a direction dk, a new direction has
foreword as:

(11)
 
 

k
k

k k

-F x if k = 0
d =

- F x + otherwise


  

Where:

   
T
k k

k k k+1 k k k 1 kT
k k

s s
= , s = x -x , y = F x -F x

y s 

With:

 
 

k 1 k
k 2

k

F x y
=

F x



Generally, used the direction dk which satisfies:

(12)
2T

k k kF d -C F

(13)   T

K k kF z x -z >0

where,  C  is  appositive  constant  (Ahookhosh  et  al.,
2013). By Shiker and Amini (2018), introduced a new line
search strategy for separating hyperplane in projection
technique, encourage us to take advantages of this line
search which needs αk = {βθi: i = 0, 1, 2, ....} satisfies the
condition:

(14)   T

k k k k k k k-F x + d d F z   

where, λk = λ/1+||dk||
2 and θ, λ are parameters. Our new

algorithm will be state as below.
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Algorithm 1 (NBM):
Input: An initial point x0εR

n and the parameters θ, λ, g0 (0.2) and βε
(0.1).

Start
Set k = 0
F0 = F (x0)

d0 = -F0

While ||FK||>g

Step 1: Compute ||FK||. If ||FK||#g stop
Set αk = β;

Find the minimum index ik0{1, 2, 3, ...}  such that
-F(xk+αk dk)

Tdk$θλkαk||F(zk)||
where λk = λ/1+||dk||

2

While αk = θikαk

Set zk7xk+αkdk

End while

Step 2: If ||F(zk)||#g, stop. Otherwise compute xk+1 by Eq. 10.

Step 3: Compute dk by Eq. 11:
FK+17F (xk+1);
If Fk

T dk>-g||Fk||
2

   dk = -Fk

End if
k7k+1

End while
End

Remark (R1): Shiker and Amini (2018) from stage 3 of
algorithm 1, it is easy to note that the introduced direction
satisfy the sufficient descent condition and for any k,
Fk

Tdk#-g||Fk||
2.

Convergence possessions: In this part, we need some
interesting lemmas and assumptions in showing the global
convergence of algorithm 1.

Assumption (B1): The result set of (Eq. 1) is nonempty.

Assumption (B2): The mapping F (x) is Lipschitz
continuous on Rn such that there exists a positive constant
M, i.e:

    n||F x -F y || M||x-y||, x, y R  

Assumption (B3): The mapping F (x) is monotone on Rn

such that:

      T nF x -F y x-y 0, x, y R  

Lemma (L1): Zarantonello (1971) let the set ΩfRn be
nonempty closed convex set and the projection operator
ΦΩ(x) be the projection of x onto closed convex set Ω. For
any x, y0Rn, the next statements hold:

C œi0Ω, +ΦΩ(x)-x, z-ΦΩ(x),$0
C +ΦΩ(x)-ΦΩ(y), x-y,$0 and the inquality is strict when

ΦΩ(x)…ΦΩ(y)
C ||ΦΩ(x)-ΦΩ(y)||#||x-y||

Lemma   (L2):   Solodov   and   Svaiter   (1998)   assume
the   assumption   B1,   B2   and   B3   hold   and   the
sequence  {xk}  is  generated  via.  algorithm1.  For  any
x* such that F (x*) = 0 then:

(15)* 2 * 2 2
k+1 k k+1 k||x -x || ||x -x || -||x -x ||

And the sequence {xk} is bounded. Moreover, either
the sequence {xk} is finite although, the last iterate is a
solution of (Eq. 1) or the sequence {xk} is infinite and:

(16)k k+1 klim ||x -x || = 0

Proof:  Let  x*0Rn  be  any  point  such  that  F  (x*)  =  0
by   monotonicity   of   F+F(y),   x*-y,#0.  The  hyperplane
H  =  {s0Rn/+F(y),  s-y,  =  0},  separates  xk  from  x*,  it
is   easy   to   satisfy   that   xk+1   is   the   projection   of
xk  onto  the  hyperplane  H.  Sine  x*  belongs  to  this
hyperplane  from  properties  of  the  projection  operator
(Zarantonello, 1971) we get:

 
 

* 2 2 * 2 *
k k k+1 k+1 k k+1 k+1

2

k * 2
k+1

||x -x || = ||x -x || +||x -x || +2 x -x ,x -x

F y ,x -y
+||x -x ||

||F y ||



 
  
 

Lemma   (L3):   Solodov   and   Svaiter   (1998)   assume
that   the    assumption   B1,   B2    and   B3   holds   and
the  sequences  {xk}  and  {zk}  are  generated  by
algorithm 1 then:

(17)  
c 2

k
k 2

k k

||F ||
min ,

M||d || + ||F z ||

     
  

Proof: By the line search rule (Eq. 14), if αk…β then k =
θ-1αk does not satisfy (Eq. 14) this mean that:

     T-1 -1
k k k k k k k k k-F x + d d < ||F z || ||F z ||      

where, γk = 1/1+||dk||
2. By the Lipchitz continuity of F and

(Eq. 12) we get:

      
        

T T2 T
k k k k k k k k

2
k k k k k k k k

C||F || -F d = F z -F x d -F z d

||F z -F x || ||d ||+ ||F z || = M||d || + ||F z ||

 

  

So:

  
2

k
k 2

k k

c||F ||

M||d || + ||F z ||


 



The proof is complete and (Eq. 17) is correct. The
results of Lemma L3 found that the line search of
algorithm 1 is well defined.
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Theorem (T1): Assume that B2 and B3 hold and the
sequence {xk} is generated by algorithm 1 then:

(18)k klim ||F || = 0

Proof: From Eq. 10 and Eq. 14 we get:

(19)

   
 

 
 

 
     

T T

k k k k k k2
k+1 k

k k

2 2
k k k

2 2
k k k

|F z x -z | - F z d
||x -x || =

||F z || ||F z ||

||F z ||
=

1+||d || ||F z || 1+||d ||


 

 

By lemma 3 from Ahookhosh et al. (2013), the
sequence of direction {dk} that generated by algorithm 1
are bounded there is a constant N>0 such that:

(20) k||F x || N

And result that for all k there exists a constant L>0 such
that:

(21)k||d || L

By the Lipschitz continuity of F, it can be concluded that:

(22)
       
 

k k k k

k k k k

||F z || ||F z -F x ||+||F x ||

M z -x +N = M ||d ||+N

 



From (Eq. 19) together with (Eq. 21) gives:

2
2 k

k+1 k 2
||x -x ||

1 L






So:

(23)
2

lim 2 lim k
k k+1 k k k k k2

||x -x || lim ||d ||0
1+L  

 
   

 

Now by using Cauchy Schwartz inequality along with
(Eq. 12), we get:

2 T
k k k k kC||F || -F d ||F || ||d || 

So:

(24)k k||d || C||F ||

For all k. Giving to this condition and (Eq. 23), it follows
that:

(25)k klim 0  

On the other hand, multiplying (Eq. 17) by ||dk||
2 result

that:

(26)  
2 2

2 2 k
k k k 2

k k

CL ||F ||
||d || min ||d || ,

ML + M ||d ||+N

     
   

From (24) and (26) we have:

(27)2 2
0 k k k||F || ||d ||  

Where:

  
2

2
0 2

k k

CL
= min c ,

ML + M ||d ||+N

    
   

The relation (23) and (27) conclude that limk64||Fk|| = 0.

Numerical experiment: In this study, we compare the
performance of the new algorithm (NBM) with tow
famous algorithms:

SBM: This technique is taken from Yan et al. (2010) and
it uses two modified HS approaches with the projection
technique by Solodov and Svaiter (1998).

DFPB1: This technique is taken from Ahookhosh et al.
(2013), it uses a three-term PRP-based conjugate gradient
direction.

The performances of these approaches are compared
with reference to the number of iterations Ni, the number
of function evaluations Nf and CPU time. In order to
compare these algorithms, some well-known test
problems by Ahookhosh et al. (2013) and Yan et al.
(2010) are used where the dimensions are confined
between 5000-50000 for the taken primary points.

The tests were run on a PC with CPU 2.70 GHz and
4 GB RAM. All of the codes were written in MATLAB
R2014 a programming environment. The running of the
codes checks if the provided data for problems in all
algorithms converges to the equal points. All of the
algorithms terminate whenever ||Fk||#10-8 or ||F(zk)||#10-4

or the whole number of iterates surpasses 500000. In all
of the algorithms, the parameters are stated as follows θ =
0.4, β = 0.9, λ = 0.1, 0 = 10-8. The numerical results of
consecutively  the  algorithms  are  registered  in  Table 1
and 2. Table 1 contains Ni and Nf while Table 2 contains
the  numerical  results  of  CPU time.

From Table 1, we can see that the new approach
NBM   is   better   than   the   other   two   methods   SBM
and  DFPB1  that  it  has  a  number  of  iterations  and
number   of   evaluation   functions   less   than   in   the
other  methods  in  most  of  the  problems  with  most  of
initial  points.  As  well  as  the  results  in  Table  2,  we
can  see  that  the  CPU  time  spent  by  the  new
technique  NBM  is  lower  than  in  the   other  two
methods  in  most  of  problem  that  indicated  the
efficiency and quality of our new method.
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Table 1: Numerical results (Ni and Nf)
NBM MHS DFPB
-------------------------- ------------------------------ -------------------------------

p-value/Dim SP Ni Nf Ni Nf Ni Nf
P1

50000 x1 11 91 1421 13288 1421 13288
50000 x2 19 200 1421 13288 1421 13288
50000 x3 13 110 142 880 142 880
50000 x4 16 162 142 880 142 880
50000 x5 18 281 5404 53012 9 21
50000 x6 9 96 17 65 17 65
50000 x7 25 188 4439 40363 88 504
50000 x8 25 198 2252 19238 88 504
P2

50000 x1 11 91 1421 13288 1421 13288
50000 x2 18 228 1371 12933 1421 13288
50000 x3 13 110 142 880 142 880
50000 x4 19 256 155 1086 142 880
50000 x5 80 1120 3859 36651 9 21
50000 x6 9 96 17 65 17 65
50000 x7 56 666 7274 72430 88 504
50000 x8 49 498 581 3673 88 504
P3

10000 x1 16975 213353 418081 3099340 178397 721899
10000 x2 67640 981540 415836 3005275 187559 759768
10000 x3 14647 189321 390297 2977500 162500 656715
10000 x4 55909 839601 402816 2960816 178197 720729
10000 x5 47471 729546 371496 2767595 165523 668916
10000 x6 54499 855259 368053 2766114 162292 655726
10000 x7 22901 321922 163175 1263922 68435 276645
10000 x8 22313 312113 153214 1138115 68436 276649
P4

10000 x1 24 255 20751 230201 469 4001
10000 x2 370 5289 7709 73104 1494 14896
10000 x3 18 183 2231 20120 155 1029
10000 x4 365 5294 12747 135225 244 1713
10000 x5 198 2896 27023 302729 85 395
10000 x6 144 2092 11484 121948 76 314
10000 x7 45 568 17308 191471 113 620
10000 x8 27 291 2215 18879 113 620
P5

5000 x1 494 5834 154735 2156312 75926 1027957
5000 x2 379 4285 147988 2085617 75401 1019862
5000 x3 278 3260 153015 2148172 75883 1027291
5000 x4 341 3944 149814 2109510 341 3944
5000 x5 346 3797 158114 2198306 75839 1026614
5000 x6 333 3718 156045 2174637 75843 1026679
5000 x7 384 4216 146366 2075659 75872 1027109
5000 x8 301 3459 152515 2142193 75850 1026796
P6

50000 x1 11 82 3353 28949 1009 8383
50000 x2 18 210 8993 88244 1914 17404
50000 x3 19 245 3932 35528 262 1813
50000 x4 23 300 142 880 554 4288
50000 x5 17 210 4450 40138 386 2805
50000 x6 15 179 17 65 376 2725
50000 x7 19 250 1615 12611 333 2381
50000 x8 21 284 2057 16704 333 2381
P7

50000 x1 5 12 18560 45738 1421 13288
50000 x2 22 280 1675 15191 1421 13288
50000 x3 13 110 17325 34836 142 880
50000 x4 19 256 158 1099 142 880
50000 x5 12 138 993 1988 9 21
50000 x6 4 16 16926 33854 17 65
50000 x7 151 1728 17089 34332 88 504
50000 x8 45 430 17089 34332 88 504
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Table 2: Numerical results (CPU time)
p-value/Dim SP NBM MHS FPB
P1

50000 x1 0.15625 21.21875 20.62500
50000 x2 0.26562 22.26562 20.90625
50000 x3 0.140625 1.15625 1.06250
50000 x4 0.15625 1.14062 1.00000
50000 x5 0.32812 55.01562 0.01562
50000 x6 0.14062 0.18750 0.10937
50000 x7 0.26562 43.78125 0.60937
50000 x8 0.25 20.68750 0.51562
P2

50000 x1 0.12500 21.50000 20.79687
50000 x2 0.28125 21.09375 20.93750
50000 x3 0.10937 1.12500 1.00000
50000 x4 0.31250 1.32812 1.04687
50000 x5 1.10937 39.98437 0.10937
50000 x6 0.14062 0.10937 0.12500
50000 x7 0.62500 80.98437 0.53125
50000 x8 0.54687 4.65625 0.68750
P3

10000 x1 0.42221 6.36439 1.47290
10000 x2 1.95898 6.28664 1.57473
10000 x3 0.37418 6.14095 1.33835
10000 x4 1.66826 6.05081 1.48701
10000 x5 1.47228 5.68717 1.36782
10000 x6 1.68854 5.71673 1.35753
10000 x7 0.63462 2.60884 0.57164
10000 x8 0.61637 2.35051 0.57096
p-value/Dim SP NBM MHS DFPB
P4

10000 x1 0.09375 70.75000 1.20312
10000 x2 1.34375 22.57812 4.18750
10000 x3 0.03125 6.34375 0.31250
10000 x4 1.375 41.62500 0.50000
10000 x5 0.8125 92.67187 0.12500
10000 x6 0.53125 37.10937 0.09375
10000 x7 0.125 58.79687 0.15625
10000 x8 0.0625 5.85937 0.18750
P5

5000 x1 0.98437 3.34671 1.55750
5000 x2 0.6875 3.17734 1.54468
5000 x3 0.51562 3.32609 1.56765
5000 x4 0.53125 3.32687 0.00593
5000 x5 0.59375 3.40265 1.56156
5000 x6 0.60937 3.35593 1.56953
5000 x7 0.71875 3.16562 1.56218
5000 x8 0.57812 3.2864 1.57656
P6

50000 x1 0.21875 0.58468 16.76562
50000 x2 0.4375 1.73859 32.28125
50000 x3 0.53125 0.71421 3.25000
50000 x4 0.60937 0.01062 8.23437
50000 x5 0.48437 0.79390 5.18750
50000 x6 0.35937 0.00109 5.43750
50000 x7 0.5625 0.25359 4.46875
50000 x8 0.67187 0.34156 4.34375
P7

50000 x1 0.01562 92.42187 20.92187
50000 x2 0.34375 22.23437 21.37500
50000 x3 0.09375 74.35937 0.92187
50000 x4 0.20312 1.15625 1.09375
50000 x5 0.09375 4.14062 0.03125
50000 x6 0.03125 73.79687 0.12500
50000 x7 1.65625 74.93750 0.59375
50000 x8 0.40625 73.34375 0.60937

CONCLUSION

The current research suggests a new projection
technique for solving a system of large-scale nonlinear
monotone equations. The projection-based algorithms
belongs to the class of derivative-free function-value
based approaches and it does not use any feature function
and derivatives. Likewise, this method allows a simple
globalization. The global convergence of the suggested
algorithm is proved under standard assumptions. The
numerical experiments indicated that the suggested
algorithm is very efficient.
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