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Grobner Basis for Bivariate Normal with Missing Data Model Estimation Problem
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Abstract: The goal of this study is to study maximum likelihood estimates for a bivariate distribution with
missing data using an algebraic geometry tool, namely, Grobner basis techniques. In maximum likelihood
estimation, the parameters of the model are estimated by maximizing the likelihood function which maps the
parameters to the likelihood of observing the given data. By transforming this optimization problem into a
polynomial optimization problem, it can be shown that the solutions of the likelihood equations can be
computed using Grobner basis technique.

Key words: Bivariate normal distribution, Buchberger’s algorithm, Grobner bases, algebraic geometry,
maximum likelihood estimation, s-polynomial

INTRODUCTION

Originally, the method of Grobner bases was
introduced by Buchberger (1965, 1970) for the
algorithmic solution of some of the fundamental problems
in commutative algebra (polynomial ideal theory,
algebraic geometry). A Grobner basis technique was first
introduced by Bruno Buchberger in his PhD dissertation
research (1965) (Buchberger, 1970). They are named after
Buchberger’s advisor, Wolfgang Groebner. Grobner basis
technique is applied to solve systems of polynomial
equations in several variables. In this study, we will use
this technique to obtain the maximum likelihood
estimation of the parameters in a bivariate normal
distribution.

MATERIALS AND METHODS

Some definitions and theorems: We will assume that the
reader is familiar with the definitions of the following:
ring and field.

Definition  2.1 (Cox  et al., 1991):  Let  N  denote  the
non-negative integers. Let α (α1, ..., αn) be a power vector
in Nn and let x1, ..., xn be any n variables. Then a
monomial  xα  in  x1,  ...,  xn  is  defined  as  the  product
-xα = x1 

α1... xn 
αn. Moreover, the total degree of the

monomial Xα is defined as |α| = α1 + ...+αn.

Definition 2.2 (Cox et al., 1991):  Let k be any field and
let f = 3α aα x

α be a polynomial in k [x1, ..., xn]:

C We call aα the coefficient of the monomial xα

C If  aα … 0, then we call aα x
α term of f

The total degree of f denoted deg (f) is the maximum 
|α| such that the coefficient is aα nonzero.

Definition 2.3 (Cox et al., 1991): Given a field k and a
positive integer  n, we define the n-dimensional affine
space over k to be the set kn = {(a1, ..., an): a1, ..., an k}.

Definition 2.4 (Pistone et al., 2000): Let be a subset of ks.
The set of polynomials defined by:

 
 

 
1 s 1 s

1 s

f k[x ,...,x ]: f a ,...,a
Ideal S

0forall a ,...,a S

     
  

Is an ideal called ideal of S. The variety generated by
a polynomial ideal I f k [x1, ..., xs] is:

 
 
 

s
1 s

1 s

a , ...,a K :
Variety I =

f a , ...,a =0for allf I

  
 

  

A subset of Ks which is a variety of a polynomial
ideal in k [x1, ..., xs] is called a variety.

Definition 2.5 (Cox et al., 1991): A subset I0k [x1, ..., xn]
is an ideal if it satisfies:

C 00I
C If f, g 0I then f+g 0I
C If f 0I and h 0k[x1 ,..., xn] then h f 0I

Definition 2.6 (Cox et al., 2005): Let f1, ..., fs be
polynomials in k [x1 ,..., xn]. We let <f1, ..., fs> denote the
collection < f1, ..., fs> =  is an  s

i i 1 s 1 ni 1
h f :h , ...,h k x , ..., x




ideal.
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Definition 2.7 (Adams and Loustaunau, 1994): A
greatest common divisor of polynomials f, g0k [x] is a
polynomial h such that:

C  h divides f and g 
C If p 0k [x] divides f and g then p divides h
C LC (h) = 1 (that is h is monic)

Definition 2.8 (Cox et al., 1991): Let α and β in Nn.

C Lexicographic  order:  α>lex  β  if  and  only  if   the
left-most nonzero entry in α-β is positive

C Graded lex order: α>grlex β if and only if |α|>|β| or (|α|
= |β| and α >lex β)

C Graded reverse lex order (tdeg): α>grevlex β if and only
if |α|>|β| or (|α| = |β| and the right-most nonzero entry
in α-β is negative)

Definition 2.9 (Cox et al., 1991): Assume an arbitrary
admissible ordering >is fixed. Given a nonzero
polynomial f 0k [x1, ..., xn], we define:

C The multidegree of f as: multideg (f) = max (α Nn:
αa … 0)

C The leading monomial of f as: LM (f) = xmultideg (f)

C The leading coefficient of f as: LC = (f) = αmultideg (f)

C The leading term of f as: LT (f) = LCL (f). LM (f)

Theorem2.10:( Division Algorithm) (Cox et al., 1991):
Fix a monomial order >on  and let F = (f1, ..., fs) be ann

0
ordered s-tuple of polynomials in k [x1, ..., xn]. Then every
f 0k (x1, ..., xn) can he written as  where1 1 s sf a f +...+a f +r
ai, r k [x1, ..., xs] and either r = 0 or r is a linear
combination with coefficients in k of monomials, none of
which is divisible by any LT (f1), ..., LT (fs). We will call
r a remainder of f on division by F.

Definition 2.11 (Pistone et al., 2000): Let I d k [x1, ..., xn]
be an ideal other than{0}:

C We denote by LT (I) the set of leading terms of
elements of  I . Thus, LT (I) = {cxα: there exists f 0 I
with LT (f) = cxα}

C We denote by +LT(I), the ideal generated by the
elements LT (I)

Proposition 2.12 (Pistone et al., 2000): Let I d k [x1, ...,
xn] be an ideal:

C +LT (I), is a monomial ideal
C There  are  g1, ..., gs  0I  such  that  +LT  (I),  =  +LT

(g1), ... , LT (gs),

Theorem 2.13: (Hilbert basis theorem) (Cox et al.,
1991):  Every  ideal  I  d  k  [x1,  ...,  xn]  has  a  finite
generating   set.   That   is   i   =   +g1,   ...,   gs,   for   some 
g1, ..., gs 0I.

Grobner basis: In this study we define the fundamental
object of this study, namely, Grobner basis.

Definition 3.1 (Cox et al., 1991): Fix a monomial order.
A finite subset G = {g1, ..., gs} of an ideal I is said to be a
Groebner  basis  (or  standard  basis)  if  +LT  (g1),  ..., +LT
(gs), = +LT (I),. Equivalently, a set {g1, ... ,gs} d I is a
Groebner basis of I if and only if the leading term of any
element of I is divisible by one of the LT (gi).

Corollary  3.2  (Adams  and  Loustaunau,  1994): 
Every non-zero ideal I 0 k [x1, ..., xn] has a Groebner
basis.

Theorem 3.3 (Pistone et al., 2000): Let I be a non-zero
ideal   of   k   [x1,   ...,   xn].   The   following   statements
are   equivalent   for   a   set   of   non-zero   polynomials
G = {g1, ..., gs} d I:

C G = {g1, ..., gs} is a Groebner basis for I
C f 0I if and only if  where  means theG

f 0  G
f


remainder on division of f by the ordered s-tuple G

C f 0I if and only if  with LT (f) = max (LT
s

i ii 1
f h g




(hi), LT (gi))
C LT (G) = LT (I)

S-polynomials and Buchberger’s algorithm: Before
describing the Buchberger algorithm we define S-
polynomials  (S).  In  particular  S-polynomials  are used
to  test  whether  a  set  of  polynomials  is  a  Groebner
basis.

Definition 4.1 (Cox et al., 1991): Let f and g be two
polynomials in R. The S-polynomial of f and g is the
following combination:

     
L L

S f ,g .f - .g
LT f LT g



where, L is the least common multiple.
.    L LCM LT f ,LT g

Theorem 4.2 (Cox et al., 1991): Let I be a polynomial
ideal. Then  a basis G = {g1, ..., gs} is a Groebner basis for
I if and only if  for all pairs i … j the remainder on 
division of S (gi, gj) by G is zero.

Theorem 4.3: (Buchberger’s algorithm) (Cox et al.,
1991): Let I = +f1, ..., fs … {0} be a polynomial ideal. Then
a Groebner basis  for I can be constructed in a finite
number of  steps by the  following algorithm.

Input: F = (f1, ..., fs)
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Output: A Groebner basis G = (g1, ..., gt) for I with F d
G G: = F

Repeat:
G’: = G

FOR each pair {p, q}, p … q in G’ DO

 
G '

S: S p,q

If S … 0 then G:= G U {S}

Until G = G’

Definition4.4 (Adams and Loustaunau 1994): A
Groebner basis G = {g1, ..., gs} is called minimal if for all
i, LC (gi) = 1and for all, i … j, LP (gi) does not divide LP
(gi).

Definition 4.5 (Adams and Loustaunau 1994): A
Groebner basis G = {g1, ..., gs} is called a reduced
Groebner basis if for all I, LC (gi) = 1 and gi is reduced
with respect to G - {gi}. That is for all, no non-zero term
in gi is divisible by any LP (gj) for any i … j.

Definition 4.6 (Cox et al., 1991): A minimal Groebner
basis for a polynomial ideal I is a Groebner basis G for I
such that:

C LC (p) = 1 for all p 0G
C For all p0 G LT (p) ó +LT (G-{p}), 

RESULTS AND DISCUSSION

Computation: maximum likelihood estimation and
Grobner basis
Maximum likelihood estimates for a bivariate
distribution with missing data: The Maximum
Likelihood Estimators (MLE) are obtained for the
parameters of a bivariate normal distribution with equal
variances when some of the observations are missing on
one of the variables.

Maximum likelihood estimates: Let us consider the
incomplete bivariate sample:

1 n n+1 N

1 n

x , ..., x ,x , ..., x

y , ..., y

From a bivariate normal distribution with mean
vector (μ1, μ2) and a covariance matrix with common
variance σ2 and correlation coefficient ρ. It may be noted
that (xi, yi), i = 1, ..., n are paired observations. The
likelihood function can be written  as:

(1)

       
 

 
  

- N+n /2 -n/22 2
1 2

N 2

i 1i 1
2 2 2

2N

i 2 i 1i 1

L , , , 2 1-

x - 1
- -

2 2 1-×exp

y - - x -





      

 
 
   
 
    





The log-likelihood function is:

(2)
     

    

N 2

i 12 i 1
2

2n

i 2 i 12 2 i 1

x -n
log L - N+n log - log 1- - -

2 2
1

y - - x -
2 1-






  



  
 





Take the partial derivatives of log L with respect to 
μ1, μ2, σ2 and ρ equate them to zero and rearrange the
equations, we get:

(3)

N N n2 2
i 1 i 1 ii 1 i 1 i 1

n2 2
2 i 1i 1

x -N - x +N - y +

n + x -n 0

  



    

     

  


(4)
n n

i 2 i 1i 1 i 1
y -n - x +n 0

 
     

(5)

   

i

N N2 2 2 2
i 1 ii 1 i 1

N N n2 2 2 2 2 2 2
1 i 1 i 1 ii 1 i 1 i 1

n n n2
2 i 2 i i 2 ii 1 i 1 i 1

n n n2 2 2
1 i 1 2 i 1i 1 i 1 i 1

2 2
1

- N+n + N+n + x -2 x +

N - x +2 x -N + y -

2 y +n -2 x y +2 x +

2 y -2n + x -2 x +

n 0

 

  

  

  

   

     

    

      

  

 
  

  
  

(6)

n n2 2 3
i i 1 i 2i 1 i 1

n n n2
i 1 2 i 2 ii 1 i 1 i 1

n n n2 2 2
2 i i 1 i 2 2 ii 1 i 1 i 1

n n2 2 2
1 2 i 1 i 1i 1 i 1

n -n + x y - y -

x +n - y +2 y -

n + x y - y - x +

n - x +2 x -n 0

 

  

  

 

    

    

      

        

 
  

  
 

Using the data that are given in Table 1:

N n n

i i ii 1 i 1 i 1

N n n n2 2 2
i i i i ii 1 i 1 i 1 i 1

N 5,n 3, x 15, x 6, y 9,

x 55, x 14, y 29 and x y 19

  

   

    

   

  
   

Table 1: Data
i xi yi

2
ix 2

iy i ix y
1 3 3 9 4 9
2 1 2 1 16 2
3 2 4 4 9 8
4 5 - 25 - -
5 4 - 16 - -
Sum 15 9 55 29 19
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The Eq. 2-5 become:

(7)2 2
1 1 215-5 -9 +2 -9 +3 0       

(8)2 13- -2 + 0    

(9)
2 2 2 2 2 2 2 2

1 1 1 1

2
2 2 2 1 1 2

-8 +8 +84-30 +5 -41 +18 -2 -

18 +3 -38 +112 +18 -6 0

         

         

(10)
2 2 3 2

1 2 1 2 2 2

2 2 2 2 2
1 2 1 2 1 1

3 -3 +19-9 -6 +3 -43 +18 -3 +

19 -9 -6 +3 +12 -3 0

           

            

Now we will apply Grobner basis method to solve
this system of polynomials, let:

(11)2 2
1 1 1 2f 15-5 -9 +2 -9 +3       

(12)2 2 1f 3- -2 +    

(13)
2 2 2 2 2 2

3 1 1 1

2 2 2
1 2 2 2 1 1 2

f -8 +8 +84-30 +5 -41 +18 -

2 18 +3 -38 +12 +18 -6

        

          

(14)
2 2 3

4 1 2 1 2 2

2 2 2 2 2 2
2 1 2 1 2 1 1

f 3 -3 +19-9 -6 +3 -43 +18

-3 +19 -9 -6 +3 +12 -3

         

              

To  solve  these  equations  we  consider  the  ideal 
F = +f1, f2, f3, f4, and choose the lexicographic order where
μ1>lex μ2>lexσ>lex ρ. We will finding S-polynomial of f1 and
f2. Since:

   2
1 1 2 1LT f 2 and LT f     

Then:

    
 

1 2

2 2
1 1 1

L LCM LT f ,LT f

LCM 2 , 2

 

      

     1 2 1 2
1 2

L L
S f ,f .f - .f

LT f LT f


 

 

2 22 2
1 11 1

1 2 2
1 12

2
2 1 1 2

15-15 -9 +2 -2 2
S f ,f -

2 9 +3

3- -2 + 15-5 -5 -15 +5

       
         

         

And:

 
F

2
1 2 1 2S f ,f 15-15 -5 -15 +5 0      

Therefore, we must add:

(15)2
5 1 1 2f 15-15 -5 -5 -15 +5      

To the generating set. The ideal becomes:

1 2 3 4 5F = f ,f ,f ,f ,f

And:

 
F

1 2S f ,f 0

Similarly:

  2 2 2
1 3 1 2 1

2 2 2
1 2 2 2 1

S f ,f 3 +8 -8 -84+15 +

41 -9 +18 -3 +38 -12 -9

       

         

 
F

2 2 2 2
1 3S f ,f =-12-8 +2 +8 +8 0     

Therefore, we must add:

(16)2 2 2 2
6f -12-8 +2 +8 +8     

To the generating set. The ideal becomes:

 
F

1 2 3 4 5 6 1 2F f ,f ,f ,f ,f ,f andS f ,f 0 

Similarly:

  2 2 3 2 2 2
1 4 1 2

2 2 2 2 2
1 1 2 1 2 1 1

3 2 2 2 2
1 1 2 1 1 2 1 2

2 2 2
1 2 1

S f ,f -45 +27 +9 -9 +

27 -38 +12 -6 +86 -24 +

6 -36 +18 +6 +12 -

6 -38

         

          

            

    

And:

 
F

2
1 4 2 1 2

2 3 3 2
1 2 1 2 1 2

S f ,f -237+353 -184 -135 +

60 +45 -15 +15 -15 0

   

       

Therefore, we must add:

(17)
2

7 2 1 2

2 3 3 2
1 2 1 2 1 2

f -237+353 -184 -135 +

60 +45 -15 +15 -15

   

      

To the generating set. The idealo becomes:

 
F

1 2 3 4 5 6 7 1 4F f ,f , f , f ,f ,f ,f and S f ,f 0 

Similarly: 

 

  

2 2 2
1 5 2 2 2 1 2 2

F
3 2 2

2 1 1 1 1 1 5

S f ,f 75 -45 -45 -25 +15 -

45 -30 +10 +10 +30 S f ,f 0

         

          

And similarly:

  2 2 2 2 2
1 6 1 2

2 3
1 1 1

S f ,f -60 +36 +12 -12 +

36 +12 -12 -8

       

      

And:
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F

1 6 1 2S f ,f -6+2 +4 +2 0    

Therefore, we must add:

(18)8 1 2f -6+2 +4 +2   

To the generating set. The ideal becomes:

   
F

1 2 3 4 5 6 7 8 1 6F f ,f ,f ,f ,f ,f ,f ,f and S f ,f 0 

Similarly:

  2 2
1 7 1 2 1 2 1 2

2 2 3 2
2 1 1 2 2

2 2 2 2 2 5 3 2
1 2 1 2

S f -f -225 +15 +75 -

45 +135 +474 -14 -706 +

368 +270 -90 +30 -30

       

         

        

And:

 
F

1 7 2S f ,f -54-18 +18 0   

Therefore, we must add:

(19)9 2f -54-18 +18  

To the generating set. The ideal becomes: 

 
F

1 2 3 4 5 6 7 8 9 1F f ,f ,f ,f ,f ,f ,f ,f ,f and S f ,f 7 0 

Similarly:

  2 2 2 2 2 3
3 4 2 1 1 2 1

4 2 2 4 3 2 2 3
1 2 1

2 2 2 3 4 3 2 2
2 1 1 2 1 1

2 2 2 2 3 2 2 2
1 1 1 2 1

3 2 2 2 2 2 2 3
1 2 1 2 1 1

S f ,f -36 +90 -12 +24 +

24 +18 -24 +114 -18 -

9 -86 +6 -6 -18 -252 +

38 +38 +123 +36 -54 +

6 -6 -9 -54 +54

          

          

          

          

           2
2 

And:

 
F

2 2 2
3 4

65
S f ,f 11- -10 +18 +20 0

2
      

Therefore, we must add:

(20)2 2 2
10

65
f 11- -10 +18 +20

2
     

To the generating set. The ideal becomes:

 
F

1 2 3 4 5 6 7 8 9 10 3 4F f , f , f , f , f , f , f , f , f , f and S f ,f 0 

Similarly:

  2 2 2 2 2
3 5 2 2 2 2 1 2

2 2 3
1 2 1 2 2 2 2 1 2

2 2 2 2 3 3 2 2
2 1 2 1 1 1 1

f , f 40 +420 +40 -205 +90 -

150 +25 -90 +15 190 +90 +

60 -30 +30 -10 -10 -30

           

          

           

And:

 
F

3 2
3 5

40 20 10
S f ,f - -40 + 0

3 3 3
    

Therefore, we must add:

(21)3 2
11

40 20 10
f - -40 +

3 3 4
   

To the generating set. The ideal becomes:

 
F

1 2 3 4 5 6 7 8 9 10 11 3 5F f ,f ,f ,f ,f ,f ,f ,f ,f ,f ,f andS f ,f 0 

Similarly:

  4 2 2 2 2 2 2 2
3 10 1

2 2 2 2 2 2 2 2
1 1 2 2 1

2 2 2 2 2 2 2 2 2 3
2 1 1 1 1 1

f ,f -80 +840 +80 -410 +180 -

300 +50 -180 +30 -380 +180 +

65
120 -60 +11 - -10 +6

2

        

            

               

And:

 
F

2 3
3 10

405 27
S f ,f - + +135 -81 0

2 4
    

Therefore, we must add:

(22)2 3
12

405 27
f - + 135 -81

2 4
   

To the generating set. The ideal becomes:

 
F1 2 3 4 5 6 7 8

3 10
9 10 11 12

f ,f ,f ,f ,f ,f ,f ,f ,
F andS f ,f 0

f ,f ,f ,f
 

Similarly, since, the reminders of the S-polynomials
for all pairs polynomials f8, f9, f11 and f12 are zero,
therefore, the Groebner basis of F is:

8 9 11 12 1 2

3 2 2 3
2

G f ,f ,f ,f <-6+2 +4 +2 ,-54-18 +

40 20 10 405 27
18 , - -40 + ,- + +135 -81

3 3 3 2 4

     

       

So that, the reduced (minimum) Groebner basis of
ideal F is:

2 2 3 2
2 1G -3- , -3,20 -30-12 + ,12 -4- -2 >         

The variety of the reduced Groebner basis G is:
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   V G 3,3.849,1.3596,0.8049

The maximum likelihood estmator of μ1, μ2, σ2 and ρ are:

2
1 2

ˆˆ ˆ ˆ3, 3.849, 1.8485 and 0.8049       

Using maple, we get the following results:

> with (Grobner)

[Basis, FGLM, Hilbert Dimension, HilbertPolynomial, 
HilbertSeries, Homogenize, InitialForm, IneterReduce,
Is Proper, Is Zero Dimensional, LeadingCoefficient,
Leading Monomial, LeadingTerm, MatrixOrder,
Maximall Independent Set, Monomial Order,
Multiplication Matrix, Multivariate cyclic Vector,
Normal Form, Normal Set,
Rational Univariate Representation, Reduce,
Remember Basis, Spolynomial, Solve,
Suggest Variable Order, Test Order, Toric Ideal Basis,
Trailing Term, Univariate Polynomial, Walk,
Weighted Degree]

2 2 2
1 1 2

2 2 2 2 2 2
1 1

2 2 2
1 1 1 2 2

2 2 3
1 2 1 2

2
1 2 1 2 1 1

2 2 2
2 1 2 2

2 2
1 2

15-9 -5 +2 +3 -9 ,3- -2 +

,-8 +84+8 -41 -2 +

18 -30 +5 -18 +3 -38 +

F: 18 +12 -6 ,3 -3 +

19-9 -6 +3 -43 +12 -3 +

18 -9 -3 -6 +

3 +19

         

       
      

           

        

       

   





 
 
 
 
 
 
 
 
 

>
2 2

1 1 2 2

2 2 2 2 2 2
1 1

2 2 2
1 1 1 2 2

2 2 3
1 2 1 2

2
1 2 1 2 1 1

2 2 2
2 1 2 2

2 2
1 2

15-9 -5 +2 +3 -9 ,3- -2 +

,-8 +84+8 -41 -2 +

18 -30 +5 -18 +3 -38 +

F: 18 +12 -6 ,3 -3 +

19-9 -6 +3 -43 +12 -3 +

18 -9 -3 -6 +

3 +19

         

       
      

           

        

       

   





 
 
 
 
 
 
 
 
 

G:= basis (F, tdeg (μ1, μ2, σ, ρ))

2 2
2 1

3 2

-3- , -3,20 -30-12 +
G :

,-4-2 +12 -

     
  

     

> V (G) := fsolve ((3))

1 2

0.8049038101, 1.359587031

3.000000000, 3.804903810

    
     

CONCLUSION 

In this study we have applied the Grobner basis
technique to study the maximum likelihood estimation for
bivariate normal model with missing data. For future
research, this research can be extended to further
application of this important technique in various
scientific fields.

REFERENCES

Adams, W.W. and P. Loustaunau, 1994. An Introduction
to Grobner Bases. American Mathematical Society,
USA., ISBN-13: 9780821872161, Pages: 289.

Buchberger, B., 1965. An algorithm for finding the bases
elements of the residue class ring modulo a zero
dimensional polynomial ideal. Ph.D Thesis,
University of Innsbruck, Innsbruck, Austria.

Buchberger, B., 1970. An algorithmical criteria for the
solvability of algebraic systems of equations.
Aequationes Math, 4: 374-383.
Cox, D., J. Little and J. O’Shea, 1991. Ideals,
Varieties and Algorithms: An Introduction to
Computational Algebraic Geometry and
Commutative.   Springer,   New   York,   USA.,
ISBN: 9780387978475.

Cox, D.A., J. Little and D. O’shea, 2005. Using Algebraic
Geometry. 2nd Edn., Springer, Berlin, Germany,
ISBN: 978-0-387-27105-7, Pages: 575.

Pistone, G., E. Riccomagno and H.P. Wynn, 2000.
Algebraic Statistics: Computational Commutative
Algebra in Statistics. CRC Press, Boca Raton,
Florida, USA., ISBN: 9781420035766..

Roussas, G., 2003. Introduction to Probability and
Statistical Inference. Elsevier, Amsterdam,
Netherlands, ISBN: 9780080495750, Pages: 523.

10142


