
Journal of Engineering and Applied Sciences 14 (Special Issue 7): 10186-10194, 2019
ISSN: 1816-949X
© Medwell Journals, 2019

High-Assurance Security in Swift Component

1Hala A. Albaroodi, 2Aseel Ismael and 3Mohammed Abomaali
1, 2Ministry of Education, Baghdad, Iraq

3Deptartment of Computer Techniques Engineering, Alsafwa University College, Karbala, Iraq

Abstract: Cloud platform includes several storage services that can be used to manage the needs of users in
both private and public environments. Swift, an object storage component of the OpenStack cloud computing
platform is used to store, manage and retrieve data. The CIA Model is key considerations for cloud computing
services such as the Swift storage. Due to the simplistic nature of Swift storage, its trust model has a negative
implication and this amplifies the potential impairment from compromised node, leaving the cloud platform
vulnerable to various attacks. The existing model requires fundamental modification with improvement in
security and trust level. The authors discuss in details the steps of the proposed model and how improving the
security of cloud computing can be achieved. The results of this research indicate that the proposed model, i.e.,
CloudSecure have significantly improved and effective the security. Conclude, the cognitive effectiveness of
the existing OpenStack Swift has been improved.

Key words: Security, authentication, authorization, access control, analysis, MD5 hash function, RSA,
man-in-the-middle attack

INTRODUCTION

As data needs to be immediately available and stored
indefinitely on a variety of devices, the demand on storage
is rapidly changing (Pearson and Benameur, 2010). This
demand requires the construction of storage silos that
utilize standard protocols which are restricted to specific
applications. Online video, social media and gaming are
applications that demand the driving of this change.

Public cloud storage services have strived to satisfy
these new storage needs, however, most organisations are
not capable of building their own scalable storage
solution. Thus, using cloud storage is inevitable
(Ren et al., 2012). However, to provide these changing
needs, a storage model must be able to handle web-scale
workloads with many simultaneous readers and writers to
a data store.

The possibility of utilising Cloud Computing (CC)
based on the Open Source Software (OSS)
technology such as OpenStack is promising due to their
cost-effectiveness and its fast development cycle
(Albaroodi et al., 2013). Swift as one of the basic
components of the OpenStack project is employed to
satisfy and on demands. Swift’s usage includes small
deployments for storing VM images, mission-critical
storage clusters for high-volume websites, custom
file-sharing applications, mobile application development
and data analytics.

However, security is one of the hindrances in
proliferation of CC (Kaufman, 2010; Slipetskyy, 2011).

Intention is targeted in a way that Swift needs to be secure
whereas other components like nova, cinder, dashboard
and others are remained untouched. For the sake of
criticizing it, OpenStack does not support password
complexity requirements and passwords are stored in
plaintext format. Thus, the access to the sensitive data
files is not secured and can be hacked. Furthermore,
information transformed within the OpenStack is not
protected using any encryption and decryption techniques
(Albaroodi et al., 2013). Therefore, OpenStack has not
delivered a promising security level similar to its level of
performance as a CC platform.

OpenStack Swift: OpenStack Swift version 1.10.0 is an
IaaS delivery model that can be distributed in any
deployment model. When OpenStack Swift is deployed in
a cloud delivery model, a cloud vendor maintains security
control. All security services are available through web
services at the application levels. Figure 1 depicted the
existing OpenStack Swift.

This study was conducted to identify the problem in
the current OpenStack Swift which uses keystone as a
principal component for secure user authentication
(Khan et al., 2011). The authentication process is based
on usernames and passwords which are transmitted as
cleartext. A successful authentication on Swift must
invoke the Keystone server which generates a valid token
for using by the end-user. The use of HTTP protocol in all
communications is considered to be less secure than the
use of HTTPS (Ryan et al., 2015) as HTTP increases the

Corresponding Author: Hala A. Albaroodi, Ministry of Education, Baghdad, Iraq
10186

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

Fig. 1: Gaps in the existing OpenStack Swift (Carrez,
2013)

potential for particular security problems. Existing
OpenStack Swift model uses a centralized entity known
as proxy server that act as a middleware between the
keystone server and the database repository. One of the
most critical problems to note here is the centralized
entity itself (keystone) that can affect the keystone by the
network congestion or fault tolerance. The network
congestion takes place when many users are accessing the
proxy at the same time. On the other side, the fault
tolerance happens, if the proxy goes down then the whole
model goes down as well. Moreover, in the data
repository the data transfer between the client and storage
server take place in the insecure communication; these
insecure communication makes it vulnerable for possible
attacks (Ristov et al., 2014). Security of the OpenStack
Swift finds in: identity, access control, password storage
and strength password, data protection and lastly
authentication and authorisation.

MATERIALS AND METHODS

Proposed model; CloudSecure: In order to address the
shortcomings of the existing security model of OpenStack
Swift, we proposed CloudSecure model. The important
components of the CloudSecure model are client-side,
server-side and database repository centre. The
client-side component is cross platform and design to run
on laptop, mobile smart phone and tablets. Figure 2
depicted the CloudSecure.

It provides a window-based Graphical User
Interface (GUI) by which a new user can create a cloud
service account or facilitate existing user to use
CloudSecure services. For existing users, the
username, password and CAPTCHA information will
be displayed. Upon the opening of the application, the
user credential module will connect with online cloud
server to get the new CAPTCHA text and will be
displayed on the user screen. The motivation to use

Fig. 2: Flow diagram of the CloudSecure model

CAPTCHA is to differentiate between a normal user
and the robot to avoid keystone server exhaustion
(Saxena et al., 2012).

By the users storing their data in the CC platform,
users lose physical control of their data which requires
each user to encrypt her/his data prior to uploading data to
the cloud servers as mentioned earlier (Ristov et al.,
2014). The use of cryptographic and hash function
algorithms for data security will enable secure and
efficient access control to user data. The CloudSecure
model incorporates cryptographic algorithms at the
different level such as (authentication/authorisation) and
MD5 hash function along with CAPTCHA is used to
introduce a more secure access method for user credential
module. The motivation to use MD5 hash function is
mainly to know whether the user credential information
has been tampered by intruder or not (Grobauer et al.,
2011). Moreover, users must be identified by keystone
before they are allowed to use any of the OpenStack Swift
services; this step guarantees a unique point of entry.
Keystone server verifies the hash code along with
CAPTCHA and later decrypts usernames and passwords
and provides each user with a unique user credential that
enables access to the services for which they are
authorised.

The challenge in the Blowfish symmetric
cryptography algorithm is that they key used to encrypt
and decrypt should be same on client and server side, a

10187

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

study conducted by Mohamed et al. (2012) shows that the
time consumption metrics of the Blowfish symmetric
algorithm needs less time to perform which could
indicates its preference in comparison with other
encryption algorithms. Practically, the generation is based
on big random number and will be taken place on the
keystone server side. One of the most problematic and
crucial process in the Blowfish symmetric cryptography
is the key exchange mechanism; key exchange using
Diffie-Hellman key exchange algorithm (Diffie and
Hellman, 1976). The motivation to use Diffie-Hellman as
the key exchange algorithm is due to its vast applicability
in many security protocols such as SSL, SSH, IPSec etc.
(Carts, 2001). The key exchange will take place in the
insecure channel between client and keystone server. The
method of key exchange has been presented as below.

The user credential module (username, password and
the CAPTCHA) has two authentication processes on
client side and server side. The client-side authentication
will check the length of the password text and validation
of CAPTCHA text locally, the validation of the
CAPTCHA will be done after the server side (keystone)
sends the generated CAPTCHA to the client side.
Once the client-side authentication process has been
completed then the username along with password will be
encrypted using Blowfish symmetric cryptographic
algorithm. After the username and password has been
encrypted using Blowfish symmetric cryptography
algorithm, MD5 hash function value will compute the
encrypted data (username and password) and the data will
be sent to the Keystone server in the cloud.

The security mechanism in CloudSecure model in the
user credential module in the server side involves
authentication as well as authorization of the user. In the
server-side authentication process, the hash code of the
MD5 hash function received from client side will be
matched with the hash code on the server side. If the hash
code of the MD5 hash function is different, then the user
authentication data (username, password, along with
CAPTCHA) will be discarded (Saxena et al., 2012). The
authentication process includes the decryption of
username and password then matching with the entry
from user authentication database. If the user credential
module (usernames, password along with CAPTCHA)
does not match then the server side will send NACK (Not
Acknowledgement) to the client side and added to the
blacklist; if the user failed three times consecutively, the
user will also be added to the blacklist database. This
specific user will be in the black list database for certain
time period (1 month) that is customizable (Mitchell and
Jones, 2005).

The authorisation process is executed once the
authentication process is successful. This process is used
to determine the type of user either a normal user or an

administrator user (admin). The difference between both
types of users is the number of features in terms of
functionality as well as security.

One of the most critical processes in the keystone
module is the keystone manager process which deals with
the selection of appropriate proxy server based on the
available hardware resources such as the availability of
CPU and memory resource and the number of active users
in its database. The current state of proxy server
information will be updated in the database periodically
to obtain the best available proxy server credential
information for the new user. The Keystone manager will
select the least busy proxy server and send its credential
information to the client to ensure that it will be redirected
to the specified proxy server for communication.

In order to ensure security when transferring data
(uploading and downloading) and to reduce the possibility
of the attack between the client and the data repository,
the user should use the asymmetric cryptography
algorithm. With the implementation of a RSA based PKI
mechanism, CloudSecure model gives secure data
transmission with strong authentication key appliance
which supports the services of PKI and provides
asymmetric key management libraries (Kalpana and
Singaraju, 2012).

The key change is one of the operations of
asymmetric encryption. The key change can be done by
the help of random asymmetric key generation and later
encrypting this with receiver of the public key. The RSA
relies on the integer factorization difficulty with RSA
encryption is done by the public key is substantially needs
less computation cycle whereas RSA decryption is done
by the private key. The RSA public key is known to
everyone and decrypted with the private key.

However, in the OpenStack Swift Model, the security
library does not feature secure key management at the
cloud platform. In addition, a separate server for key
storage is required to keep the key in a secure location
that is only be accessed by proxy server. These keys are
randomly generated and will be discarded after specific
time interval. After the time interval passed, the new keys
will be generated. Previously in the authentication process
between client and keystone server, Blowfish symmetric
cryptography along with Diffie-Hellman key exchange
mechanism were used. After the authentication and
authorisation the client will be redirected to proxy server
and secure communication between the proxy and client.
In this research, RSA asymmetric cryptography is used
for secure data transfer between client and proxy server.
Before the secure data transfer been initiated, the public
key will be transferred from proxy server to the client.
Once the public key is transferred to client through secure
channel, then the private key will be computed using the
receiver public key. Data will be retrieved from the

10188

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

Start

Input username and
password

Display CAPTCHA

Submit data (username,
password, CAPTCHA) to

keystone

Keystone
authentication

No

Yes

No

Yes

No

Yes

NoYes

Check user authentication

Check
authorization

Admin

Normal
use

Display user credentials

Check list of users

Monitoring the activities of the
End user and troubleshooting

End

Exit

Keystone manager check
which proxy has:
Less No. of active users
Less CPU
More RAM

Process the user credential
to proxy

Retrieve data from PKI
server

Cryptographic
key is existed

Generate cryptographic
key

User acquired the key

Data (cryptographic keys)
communication with DB

The process
can be

continued

Fig. 3: Sequence diagram of the CloudSecure model

database module and the process will finish if the user
wants to exit; the administrator user has the authority to
check the list of users, troubleshoot any problems in the
model and monitor the activities of the end user for the
security purposes (Cigoj and Klobucar, 2012), the
processes is depicted in Fig. 3.

RESULTS AND DISCUSSION

The experiments are conducted in real-time
environment and enable a comparison between the
CloudSecure model and the existing OpenStack Swift
Model. Clients are tested the interaction of each entities
(keystone, proxy and database repository) in each model.
In the current literature, the existing OpenStack Swift
Model does not provide a cryptanalysis to analyse and

validate the security. Rather than the CloudSecure model
have conducted the cryptanalysis to analyse and validate
the security; however, the inclusion of this cryptanalysis
in the existing OpenStack Swift cloud-based
environments would be innovative in the authentication
phase, specially, the Blowfish symmetric cryptography,
data transfer process on the RSA asymmetric
cryptography and data integrity on the MD5 hash
function. Using the cryptanalysis will give more
justification that CloudSecure security model is robust
against different type of attacks. In this research, Brute
force attack is conducted on the Blowfish symmetric
cryptography used in the authentication process of the
CloudSecure model, Birthday attack on the MD5 hash
function used for data integrity in the authentication
process as well as data transmission process of the

10189

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

Fig. 4: Brute force attack between client and Keystone

CloudSecure model and MITM attack on the RSA
asymmetric cryptography used for the secure data
transmission between client and cloud proxy module.

Brute force attack: The brute force attack is used to test
the strength of user credentials information of the
authentication process of any models. The Brute force
attack works on the keystone module and is focused only
on user credential information (username and password).
Then the attacker will split the connection between the
client and keystone into two connections. Once the
connection is intercepted, the attacker acted as a keystone
for the client and acted as the client for the keystonel as
illustrated in Fig. 4.

In the first scenario, there is no cryptography involve
in the authentication process; in addition, the limitation of
the password length is that it can be a maximum of twenty
characters. This limitation means that there is no
minimum threshold value for the password, if the value of
the password is less than seven characters, then it is
vulnerable to attack and can be easily obtained by any
type of attacks. Moreover, in the existing OpenStack
Swift Model token based authentication process has been
applied that has been used to prove identity of the person
electronically (Slipetskyy, 2011; Grobauer et al., 2011;
Cigoj and Klobucar, 2012) as shown in Fig. 5.

In second scenario, the minimum length of the
password is seven characters to make the password field
more secure as compared with the existing OpenStack
Swift Model (Cigoj and Klobucar, 2012; Albaroodi et al.,
2015) and the maximum length is based on the user. This
means that the longer the password is, the longer it will
take to retrieve the password. In the CloudSecure model,

Fig. 5: Brute force attack on the existing OpenStack Swift

Fig. 6: Brute force attack on the CloudSecure model A.
birthday attack

used a three-level security (CAPTCHA, Blowfish, MD5
hash function) in the encryption using the Blowfish
symmetric cryptography which will make it quite difficult
for the intruder to compromise them. Now, the security
layer and longer password length will make the
CloudSecure model resistant to Brute force attacks
whereas the single-layer security process with a short
password length of the existing OpenStack Swift Model
will be more vulnerable to security loopholes as indicated
in Fig. 6.

Brute attack: A Birthday attack is type of cryptanalysis
technique used to break the MD5 hash function by
searching for collision in the cryptographic hash. This
type of attack is usually used for SHA1 or MD5 hash
function. The main reason of using this type of attack is
exploiting both parties from doing communication.
Birthday attacks are considered class of brute force
attacks with advantage of having random input with return
of one of the K values. Where K is the maximum number
of attacks attempts to break the specific key value. The
operation consists of repeatedly evaluating different
inputs with same output expected. This leads us to
examine popular design principles such as the MD
(Merkle-Damg°ard) transform, from the point of view of
balance preservation and to mount experiments to
determine the balance of popular hash functions. In this
research, a birthday attack is used to test the vulnerability
of the MD5 hash function used in the user authentication
process between the client and the Keynote as illustrated
in Fig. 7. In the first scenario, the token-based security
authentication has been applied between client and
Keystone module. Moreover, for data integrity, no hash

10190

Intruder

Client

Brute-force attack

Proxy

Keystone

Data center

Encrypted
Key manager

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

Fig. 7: Birthday attack between client and keystone

Fig. 8: Before running the birthday attack on the existing
OpenStack Swift

function is applied on the client side and the keystone
server side. This makes the existing OpenStack Swift
Model weaker as it contains single level token
security but with no data integrity feature. So, when
the client send the user credential information to the
keystone server, it is not been encrypted making it
vulnerable to variety of attacks. Now if the attack has
been done with modification of the user credentials
information, then upon receiving in the keystone server
side, there is no way to verify the data integrity of the
received user credential information. Hence, the Birthday
attack is successful on the existing OpenStack Swift
model as there is no hash code applied on both sides; the
client side and the keystone server side as indicated in
Fig. 8 and 9.

The second scenario, encryption along with MD5
hash function is used for user authentication process to
provide security and robustness, rather than the first
scenario, no hash functionality is used in the user
authentication process.

Fig. 9: After running the birthday attack on the existing
OpenStack Swift

Fig. 10.: Birthday attack on the CloudSecure model A

Moreover, in the CloudSecure model the birthday
attack attempted a series of attacks but all of the attacks
failed. This outcome means that CloudSecure model
three-level authentication security is more secured and
robust compared with the existing OpenStack Swift
Model (Wadhwa and Dabas, 2014). When a user enters
their username, password and CAPTCHA, the
CloudSecure model encrypts the data using the Blowfish
symmetric cryptography algorithm and subsequently
applies an MD5 hash function to maintain the security and
integrity of the user data that are transmitted to the
keynote module. The birthday attack will be used on the
hash data generated by the user authentication information
by the MD5 hash function as illustrated in Fig. 10.

Man-in-The-Middle (MITM) attack: MITM is the most
important attack that performed on both models the
existing OpenStack Swift Model and the CloudSecure
model. The MITM attack will occur after user
authentication proses and authorisation proses. Although,
MITM can be applied in the authentication process but
can be applied on the data transfer process as well. But
the scope of this research is to use MITM during the data
transfer process as the continuous stream of data
communication will be processed for the uploading and
the downloading of any file between the client and the

10191

Intruder

Client

Birthday attack

Proxy

Keystone

Data center

Encrypted
Key manager

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

Fig. 11: MITM attack between client and proxy

proxy module in the cloud. The attacker will split the
connection between the client and proxy server. Once the
connection is intercepted, the attacker acted as a proxy
server with the client and the attacker acted as the client
with proxy server, reading, inserting and modifying the
data communication as illustrated in Fig. 11.

Let’s assume the value of p and q are very close to
each other and then it will be easy to factor n using
Fermat factorization method. According to the RSA,
n = pq and supposed that the value of p is greater than q
such that p>q. Then will get:

(1) 2 2
n p+q /2 - p+q /2

Since, the value of p and q are close to each other, so,
assume s is a variable to hold the least value for p and q.
Similarly, t is a variable to hold the most value for p and
q. Now by calculating s and t, find is s smaller than t:

(2) s p+q /2

(3) t p+q /2

Then can make perfect square equation like sn and
t2-n = s2 such that the value of t will be calculated. Until
t2-n is a perfect square s2. Here, e RzX+ represents the least
integer n$z, p = t+s and q = t-s. MITM can use this
mathematical model to estimate the value of p and q in
order to break the key. Once the value of p and q has been
estimated, then it will be easier to calculate n.

In the first scenario, the data transfer between the
client and proxy server is without RSA asymmetric

Fig. 12: MITM attack on the existing OpenStack Swift

Fig. 13: MITM attack on the CloudSecure model

cryptography. As the communication between the
client and the proxy server is in the unsecure
communication channel, there is good chance that
MITM attack will take place and the un-encrypted
data will be tempered by intruder (Cigoj and Klobucar,
2012). MITM attack can capture packets from any entity
in the existing OpenStack Swift Model as indicated in
Fig. 12.

In the second scenario, the communication between
clients will directly occur with the proxy as the
keystone module using the already selected best
suitable proxy based on the available hardware and
software resources. In addition, RSA asymmetric
cryptography has been applied which has a maximum key
size of 4096 bits, notes this key size has yet to be
compromised. Moreover, in the CloudSecure model, the
public keys are randomly generated at regular interval of
time. Upon successful authentication process, the public
key will be send to the client on the secure
communication chancel to the proxy module. Once the
communication has ended, the generated public key will
be destroyed as well. The new public key will be

10192

Intruder

Client

MITM attack

Proxy

Keystone

Data center (storage server)

Encrypted
Key manager

MITM attack

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

generated for every new communication session as
mentioned earlier. Figure 13 indicated the MITM attack
on the CloudSecure model.

CONCLUSION

The findings of this research proves distinctly that
there are avenues to improve the security in CC
environment since data and content are hosted in a remote
location under the care of a third party, i.e., CSPs. This
research, addressed these concerns with the security
problems that exist in the OpenStack Swift Model of CC.
OpenStack and its storage component, Swift as
highlighted earlier in this research is the leading cloud
platform and continue to grow. The CloudSecure model
implemented robust symmetric and asymmetric
cryptography for the user authentication process and to
address the downloading and uploading of data during
data transmission between the client and a remote server.
The CloudSecure model also focuses on the data integrity
of the server which cannot be tampered by an anonymous
user. A research evaluation is performed to solidify the
justification of the CloudSecure model. A detailed
discussion is conducted to analyse the robustness and
reliability of the CloudSecure model in terms of security.
The attributes of the CloudSecure model are compared in
conjunction with the research evaluation. The future work
of this research needs additional studies on the security of
cloud-based services that consider other OpenStack
projects such as the OpenStack Compute and OpenStack
Image service. Theses sercices should also be investigated
for security related problems and potential improvement
of the model.

REFERENCES

Albaroodi, H., S. Manickam and M. Anbar, 2015. A
proposed framework for outsourcing and secure
encrypted data on OpenStack object storage (swift).
J. Comput. Sci., 11: 590-597.

Albaroodi, H., S. Manickam and P. Singh, 2013. Critical
review of OpenStock security: Issues and
weaknesses. J. Comput. Sci., 10: 23-33.

Albaroodi, H.A., S. Manickam and M.F. Aboalmaaly,
2013. The classification and arts of open source
cloud computing: A review. Adv. Inf. Sci. Serv. Sci.,
5: 16-25.

Carrez, T., 2013. OpenStack object storage (swift) 1.10.0
havana. Canonical Ltd, London, England, UK.
https://launchpad.net/swift/+milestone/1.10.0

Carts, D.A., 2001. A review of the Diffie-Hellman
Algorithm and its use in secure internet protocols. J.
SANS., 1: 1-7.

Cigoj, P. and T. Klobucar, 2012. Cloud security and
OpenStack. Proceedings of the 1st International
Conference on Cloud Assisted Services, October
22-25, 2012, University of Ljubljana, Bled, Slovenia,
pp: 1-25.

Diffie, W. and M.E. Hellman, 1976. New directions in
cryptography. IEEE Trans. Inform. Theory,
22: 644-654.

Grobauer, B., T. Walloschek and E. Stocker, 2011.
Understanding cloud computing vulnerabilities. IEEE
Secur. Privacy, 9: 50-57.

Kalpana, P. and S. Singaraju, 2012. Data security in cloud
computing using RSA algorithm. Int. J. Res. Comput.
Commun. Technol., 1: 143-146.

Kaufman, L.M., 2010. Can public-cloud security
meet its unique challenges?. IEEE. Secur. Privacy,
8: 55-57.

Khan, R.H., J. Ylitalo and A.S. Ahmed, 2011. OpenID
authentication as a service in OpenStack.
Proceedings of the 2011 7th International
Conference on Information Assurance and
Security (IAS), December 5-8, 2011, IEEE,
Melaka, Malaysia, ISBN:978-1-4577-2154-0,
pp: 372-377.

Mitchell, T.D and P.D. Jones, 2005. An improved method
of constructing a database of monthly climate
observations and associated high-resolution grids.
Int. J. Climatol., 25: 693-712.

Mohamed, E.M., S. El-Etriby and H.S. Abdul-Kader,
2012. Randomness testing of modern encryption
techniques in cloud environment. Proceedings of
the 2012 8th International Conference on
Informatics and Systems (INFOS), May 14-16,
2012, IEEE, Cairo, Egypt, ISBN:978-1-4673-0828-1,
pp: CC1-CC6.

Pearson, S. and A. Benameur, 2010. Privacy, security and
trust issues arising from cloud computing.
Proceedings of the 2010 IEEE 2nd International
Conference on Cloud Computing Technology and
Science, November 30-December 3, 2010, IEEE,
Indianapolis, Indiana, ISBN:978-1-4244-9405-7,
pp: 693-702.
Ren, K., C. Wang and Q. Wang, 2012. Security
challenges for the public cloud. IEEE Internet
Comput., 16: 69-73.

Ristov, S., M. Gusev and A. Donevski, 2014. Security
vulnerability assessment of OpenStack cloud.
Proceedings of the 2014 6th International Conference
on Computational Intelligence, Communication
Systems and Networks, May 27-29, 2014, IEEE,
Tetova, Macedonia, ISBN:978-1-4799-5076-8,
pp: 95-100.

10193

J. Eng. Applied Sci., 14 (Special Issue 7): 10186-10194, 2019

Ryan, P.Y.A., S. Schneider and V. Teague, 2015.
End-to-end verifiability in voting systems,
from theory to practice. IEEE. Secur. Privacy,
13: 59-62.

Saxena, A., N.S. Chauhan, S.K. Reddy, A.S. Vangal and
D.P. Rodrguez, 2012. A new scheme for mobile
based CAPTCHA service on cloud. Proceedings of
the 2012 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM),
October 11-12, 2012, IEEE, Bangalore, India,
ISBN:978-1-4673-4421-0, pp: 1-6.

Slipetskyy, R., 2011. Security issues in OpenStack.
Master’s Thesis, Department of Telematics,
Norwegian University of Science and Technology,
Trondheim, Norway.

Wadhwa, D. and P. Dabas, 2014. A coherent dynamic
remote integrity check on cloud data utilizing
homomorphic cryptosystem. Proceedings of the 2014
5th International Conference on Confluence the Next
Generation Information Technology Summit
(Confluence), September 25-26, 2014, IEEE, Noida,
India, ISBN:978-1-4799-4236-7, pp: 91-96.

10194

