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Abstract: Inthis study, a new family of continuous distributions based on [0, 1] truncated Frechet distribution
is introduced. Special cases of [0, 1] truncated Frechet Power distribution ([0, 1] TFP,_..) is argued. The
cumulative distribution function, the rth moment and central moment the mean, the variance, the skewness, the
kurtosis, the mode, the median, the characteristic function, the reliability function and the hazard rate function
are obtained for the distributions under consideration. It is well known that an item fails when a stress to which
it 1s subjected exceeds the corresponding strength. In this sense, strength can be viewed as “resistance to
failure”. Good design practice 1s such that the strength is almost greater than the predicted stress. The safety

factor can be defined in terms of strength and stress as strength/stress. Consequently, the [0, 1] TFP

OWEr

strength-stress will the Shannon entropy and Kullback-Leibler and Renyi entropy will be derived also.
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INTRODUCTION

Instatistical analysis, a lot of distributions are used to
represent set(sec) data. Recently new distributions are
derived to extend some of well-known families of
distributions such that the new distributions are more
flexible than the others to model real data. The research
work 1s proposed a distribution for wider applicability in
other fields. The generalization which is motivated by the
work of Eugene ef al (2002) will be the guide for this
study, Eugene et al In defined the beta G distribution
from a quite arbitrary cumulative distribution function

(cdf), G(x) by:
F(x)=(Up(a,b) [ 7w (1w dw (1)

where, a0 and b>0 are two additional parameters whose
role is to introduce skewness and to vary tail weight and

1
B(a,b)= [wl-w)"" dw is the beta function. The class of
o

distributions of Eq. 1 has increased the attention after the
work of Eugene et al (2002) and Jones (2004).
Application of X = G-! (V) to the random Variable V
following a beta distribution with parameters a and b,
V~B (a, b) say, vields X with c¢df. Eugene et al. (2002)
defined the Beta Normal (BN distribution by taking G(x)
to be the cdf of the normal distribution and derived some
of its firstmoments. General expressions for the moments
of the BN distribution were derived by Gupta and
Nadarajah (2003). An extensive review of scientific
literature on this subject is available in Abid and
Abdulrazak (2017), they write as:

)
F(x)= j ar—l:t'(w)e'“bdt
e
0
st @
_1! e“"b} 1w
e , e’
With pdf:
~afe ()"
P(x) = oF () =
ax X e
€
ab _ g

With G(x) being a baseline distribution, we define in
Eq. 2 and 3 above, a generalized class of distributions.
The researcherwill name it the [0,1] truncated Frechet -G
distribution.

MATERIALS AND METHODS

[0, 1] truncated Frechet-power distribution: Assum
that £ (x; p, 8) =0t*4/p", O=<x=p are pdf and F (x) = (t'p)’
cdf of power random variable, respectively, then
by applying Hq. 2 and 3 above, we getthe cdf
and pdf of [0,1] TFP,,., random variable as
follows:

F(x)= ! e'a[l—[ﬂa] , X>0 )
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Prove that f (x) is probability density function:

, , o P ,a[[if]rh 5[0+
Jr(x)ax= [t le H "
0 b © P
Let:
x Y = — o
e
P a abl\ a
Then

Properties [0, 1] truncated Frechet-power distribution
Reliability and hazard rate functions:

Let:

Then,

(N

,ebm -

J'yebe Tdy

T

o _pa® T
= r|1-—
E(X ) = {1 o a]

The rth raw central moment:

2 - w2201 ) ()"

o

Let:

Then:

ERU §
[Paeh] ()" evdy ®
1 & RIY = L
. . .
grep l [paeb] (1) J.y%e "dy

()" F{l-l, a}

&b

o]

The characterlstlc function:

Q (t):E(e‘“):E[ (Dj)}:i%E(x)

' 9)

= (itn) a®®
=g* [I-L, a}
= ob

Mean and variance of the of [0,1] TFp random
variable:

u:E(X)zar[l-L,aj (10)

o an

Mode M, and the Median M_: The mode can be
derived as:
2 ® o1 o (o+2)
bty ] [XJ [XJ
f'{x)=———(b+1)x""e - =
()= 22 () SR

+_a b282p8 91 a

Al
{i
J XZMD_P{B?J

(12)

abép® LA (62 a?

e

[ (be1)
I

)X
= 0(b+1)-(6-1) = abe{%
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The last equation has no closed form therefor using
numerical solution to slove equation to get the mode of x.
Then the median of x is:

1
e 2

Ji (13)
"+ In(2) [

CoefTicient of Skeweness of [0, )TFP___
E{x-p)

CS=

(14)

(15)

Ck=L -3

Quantile function x_ of [0, 1] TFP,,,.,

q=p(x ﬁxq):F(Xq)0<q<1,

qz%e{[zr}":qe_azea[&ﬂh3-{@71 "

In(qe”) x, =F(q)= p{l-wﬁ

a

>
XqO

So by using the inverse transform method, we can
generate [0, 1] TFP, .. random variable as follows:

G
5]
e L) (3]
a8 a0y

X= P{l-m(u)fh

b

L

a7

a
where, u 15 a random number distributed in the unit
interval [0,1].
RESULTS AND DISCUSSION
Shannon entropies: An entropy of a random variable X

is a measure of variation of the uncertainty. The Shannon

entropy of [0,1] TFP, . (a, b, 8, P)random variable X can
be found as follows:

S E abep

o) abep + (6+)n(x)+

P
b+1 Ln[ J
P
x))+ap™E| — L,
X*

(18)

Let:
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abep . (b)Y
b+1) |In(x
% (o) fin( )

1}

=(b+1)E({Ln(x)}=

o ()
g {EJ dx
p

Let:
1 1
y=x*=x=y® Sdi=—y® dy
Then
abg® w AN AV
I = . (b+1) .[b]n[ye’“ J[yeb
»
oY 2941
e ¥ &b — vyt d =
[y J oo’ -[h
. b+)ap™ | % v N
e Tdy = —( Bb)ap {J.].n e Ydy-j].n(y)e'“‘“ Ydy}
o
Since:

)= m L (s (s) In(m)}, (1) = L(1) =

szl g

where, ¥ = 0.5772 1s an Euler constant. Then:

= -ap™ 1 ab
J.u In(y)e™ “dy = a” {-}'-]n(ap )}
For:
b 5
I, =.|.U In(y)e™ ¥dy
Let:
1=p*y=y=pTu=dy=p®du
Then:
1 1
I, = J.]n(e'bu) e'““p'ebdz = p'eb ln(p'gb )J.e'““du+
1] a
b wqyy_ OB ]
p eb.u[].n(u) du=;p *In(p)e l +
.eb]']n(z) i (7au)m du
P 0 mon !
Since:
«_ow (-az) gbp .
e” = Zm=0 — I, = " ]n(p)[ -1]+
o — (_a)fM m
1 d;
P mzz;‘ — 5[ n{uju"dn
Since:

Ix’“ In(x)dx = x™" {]n(x) -;}

m+l (m+1y

Then:

ebpreh
L= a

[ - 1]+pebz

w0 m+1)
{bt1)

L= %{ﬂf-ﬂn(ap% )}-&-(%)ln(p)(e'a-l)-T

WAL T
g m!(mﬂ)2 : X e

Let:

A L 4,
(3] s e
P a abf\ a

Then:

( ) 1 —Bh+6-1 1
aEbeps h-l] o y Bih B y ;
I :TI p(;j e¥ [ﬂ ~(b+1)

-1

- E‘ 1
;})8{%} =—J.ye'ydy1 F(Z a)
Let:
[ | frafz n )
i}
El 4 =Y N
X b+1)aﬂb9p ¢ j‘Ln[EJ IR [[P”
P € b P
~(b+l)
X
P
«F L L L
y={ﬂ =y =;:>X=py9 DdX=%y9 dy
y CRY
b+ )jabbp™® | L b b Ly
(oH1)ebop” ILH(Y){PYG} e ()" By ay
e ] ]
b+1)abo! . o
%ILH( )y) e dy
1)
Let:
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1 1
U=y*=y=u® :>dy=-%u_g_1

Then:
(b+1)ab8j-L N AT ULy J-L g
_— nun u e — n

et 4 B Y Ther Y
Since

. Z::u (;‘i?m " (t::?ag (_;?m ]Ln(u)umdy
_(b)a 2, (-a)”
L= be* mz:.; mF(m-H)2

Then the Shannon entropy is:

SE:—]n[abS? ] o- 1{+y+]n( ap’ )}+(S+3)m(p)(e-a_1),
a(bH) & 1 Jbrhae (a)f (19)
Z —TI'{2.a) Z

m+1) e' m!(m+)

Kullback—Leibler divergence: The Kullback-ILeibler
divergence or the relative entropy is a measure of the
difference between two probability distributions F and
F* It is not symmetric in F and F* In applications,
normally represents the “true” distribution of data,
observations or a precisely calculated theoretical
distribution while F* normally represents a theory, model,
description or approximation of F. Precisely, the
Kullback—Leibler divergence of F* from denoted
Dy, (F|IF is a measure of the information gained when
one revises ones beliefs from the prior probability
distribution F” to the posterior probability distribution F.
More exactly, it 1s the quantity of information that 1s lost
when F" is used to approximate F, defined practically as
the expected extra number of bits needed to code samples
from F using a code optimized for F* rather than the code
optimized for F. Hence, the relative entropy Dy, (F F") for
a random variable [0,1] TFP__, (a, b, 6, P) can be found
as follows, Since:

ower

Then:

)

]n[ abOpPe™
al bl el pl

X
a2

g ] [b+) et
a'11)181 pl-a1 Bylerq[[g

}+(8-81)E(]n(x))—

e

& (b H =
} (20)

1
apeb E[X_ebj+

alple‘blE[Xellbl ] —(bH)E [Ln[%}a}r(bl +1)E[Ln {ﬁT }

Since:

L~ (6-6, )E {In(x)) (6, [1n(x)

1}

Then:
o abOP° T
=-ap —aj p
e a

= Lﬂjye'ydy =Lal"(2, a)l,
ety e

And:
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Let:

-1 -1

—éh - —1
y:a{i} :}sz[l]eb :}dx:i[lj% dy
P a abbl a

Then:

Bk Bb © By by _Bby-6
_ap 1p11 o _ p 1p it eb
[ =—— J.yebe Ty =S = F[ e‘b1+1 a]

e aeb a e'th

[ —
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%

—

&
e
Il
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U
e
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Il
I
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=]
o]
>
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|
=
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Then:

Then:

_a Y
(b, +1) 220D [REIRS
e P

L=
(b,+1) _|'L Hﬁ] ?1} e (y) " ay
1

Let:

L )

U=y'=y=u" :>c1yf—%ub

Then:

1 & 8
(b2 [L] e-wdy_(blﬂ);im[ﬁ} .
€7y P € I

1
je'a“dy
1)
=(b,41) ean[p‘ J

1
I, = (b,+) J'Ln{ueh} “dy = (b, +H) e E|.Ln(u)e'€“‘dy

= (-a)" a0
L "dy = (b, +1)—
z m! 3 n u = )Bbe'a

b+1

Bbe

= (a)

Z m+1)
_ 1 Ll ) i
I =(b+1),L { o J (B +1)ebe ;]m!(mﬂ)z

The Kullback-Leibler divergence is:

Dkl(F||F*)=In[M] el{yﬂn(ap )} (eej)

alblelpl le

aipe) 2T
pehlpalhl r[elbl " j l)a i (_a)’“ (21)

+
Ob s m’(erl)

+e'“F(2, a)-

e th

o

(bﬁl)ﬂ;n[%} (b,+1) 25 Zi

Bbe " 15 m!{m+l)’

Stress-Strength reliability: Inferences about R =
P[Y<X] where X and Y are two independent random
variables 1s very common in the reliability literatures.
For example, if X is the strength of a component
which 1s subject to a stress Y, then R is a measure of
system performance and arses in the context of
mechanical reliability of a system. The system fails if and
only 1if at any time the applied stress is more than its
strength. Let Y and X be the stress and the strength
random variables, independent of each other, follow,
respectively, [0,1] TFP (a, b, 8, Py and [0,1] TFP (a,, b,
8,, P, then:
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_ fahop® Xe,le’a[[ﬂﬂ]

(22)

Since
1[[_”1 . - apebl)
" 1Py —Bibym
oy e
Then:
1 & (_ 1P$lb1) i —a_[6+1) 73[[%]?
R*e-ae-wm% — l_!'abep x*e
PR
[{i} ] _elhlmdx
P
Let:

So:

( o )m 1 Bbym+e+1
abep ap't) % l B
S e Eo

m=0

= o & %1 —Bbm @ Oy
A S gt
a abo e

©® Sty —Bim  Bm e e\
J.[XJ e7dy R = P P z (-2 F[elb1m 11, a}

Blym
P L P 111 [5]0]

a P

a ee

Reniy entropy: Nonpara metric method, the researcher
worked on a formula called Reny1 entropy which 1s a
probability measure to reduce uncertainty in the results of
randomized trials or in the results of experiments from
different data sizes, so, the formula of the Reny1 entropy
function will be derived for the proposed distribution
according to the following formula:

1 g o abep Y
L ()= Legf [f(a .0 pﬂ‘de[T?J

]

(24)

Let:

Y (S F L p (3P
y_ag(p] :’X‘p[acj :d"‘cabe{caJ v

Then:

. R Lyl o,
_(abep® VY (v NIeAk I
_[ ]IH@J ] ) [[c” @abe{caJ &

£

abdp® ¥ % e sl abop* Y 1
o R
e " Qa e (a)wﬁ-g

= 0 1-i]
[ (y)é—bﬂi = ey = (ab6) p (v “aevdy
ber ol
a (a EPATIR
L
=@P_lr[ g +Q_L, a}
I R
c .
) pton gon—h (G e
e R U

CLog(ab8)+ (1-L)Log(p)—Log(6b)+ Ca—

0 (

I

= (5)= 1 [£+C é}Log(a)Jr Log[l“[iJr Q—L, aD

(25)

After obtaining Hq. 25 we will work to give the initial

values of the parameters (a, b, 0, p) and for different

groups of << 1. The research depends on the parameters

are estimated at that value () which achieves the smallest

value of R (C) probability measure to reduce uncertainty.

CONCLUSION

In statistical analysis, a lot of distributions are used to
represent Set {s) data. Recently new distributions are
derived to extend some of well-known families of
distributions such that the new distributions are more
flexible than the others to model real data. The composing
of some distributions with each other’s in some way has
been in the foreword of data modeling.

In this study we presented a new family of
continuous distributions based on [0, 1] truncated
Frechet distribution. [0, 1] truncated Frechet power
[0, 1] TFP, ., distributions is discussed as special cases.
Properties of [0, 1] TFP,,,, 1s derived. We provide forms
for characteristic function, rth raw moment and central
moment, mean, variance, skewness, kurtosis, mode,
median, rehability function, hazard rate function,
Shannonentropy function Reney entropy and function.
This study deals also with the determination of
stress-strength reliability R = P [ Y<X] when X (strength)
and Y (stress) are two independent [0,1] TTP
distributions with different parameters.

OWEr
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