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Odd Generalized Exponential Weibull Exponential Distribution
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Abstract: We introduce anew five-parameters continuous distribution called the Odd Generalized Exponential
Weibull Exponential (OGE-W-E) distribution for modeling life time data. We derive an explicit expressions
for the moments, quantile and median, the moment generating functions, Renyi entropy and order statistics. The
five parameters of the suggested model are estimated by the maximum likelihood method. We illustrate its

usefulness by means of an application to a real data set.
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INTRODUCTION

Ina statistical analysis, lifetime distributions such as
the exponential distribution, the Weibull distribution, the
normal distribution and the gamma distribution play an
important role in many fields of the real life such as
reliability, survival analysis, ecology, medicine and social
sciences. There are continuous motivations to develop
these lifetime distributions to become more flexible or
more fitting for specific real data sets. So, in recent years
many different families of distributions have been
developed by generalizing the common families of
continuous distributions such as Weibull distribution and
exponential distribution by adding one or more one
additional parameter(s) to baseline model Among of
these, exponentiated Weibull family (Mudholkar and
Srivastava, 1993), Generalized Exponential (GE)
distribution (Gupta and Kundu, 2007), modified Weibull
distribution (Sarhan and Zaindin, 2009; Lai et al., 2003),
beta-Weibull distribution (Famoye et al., 2005) a flexible
Weibull extension (Bebbington et al, 2007), beta
modified Weibull distribution (Silva et af, 2010,
Nadarajah et al., 2011), beta generalized Weibull
distribution (Singla et al., 2012) and a new modified
Weibull distribution (Almalki and Yuan, 2013) among
others. Gupta and Kundu (2007) proposed an important
generalization of the exponential distribution called

Generalized Exponential (GE). The cumulative
distribution function (cdf) of GE 1s given by:
Fx; o,d)= [l-e'lx :Im , x>0, a0, A0 {1

Recently, a new family of continuous distributions
called the Odd Generalized Exponential (OGE) family has
been introduced by El-Damcese et af. (2015), Tahir et al.

{2015). This family 1s flexible because of hazard rate
shapes could be decreasing, increasing, bathtub and
upside down bathtub. Many special OGE distributions
have been introduced such as the Odd Generalized
Exponential Weibull (OGE-W) distribution, Odd
Generalized Exponential Normal (OGE-N) distribution by
Tahir et al (2015), Odd Generalized Exponential
Generalized Linear Exponential (OGE-GLE) distribution
by Luguterah and Nasiru (2017) and Odd Generalized
Exponential Flexible Weibull Extension (OGE-FEW)
distribution by Mustafa et al. (2018). The pdf and cdf of
the Odd Generalized Exponential {(OGE) family are
defined as follows.

If G(x), x>0 is cumulative distribution function (cdf)
of arandom variable X then the corresponding probability
density function (pdf) is g (x) and the survival function is

G (%) = 1-G (x) then we define the cdf of the OGE family

by replacing inEq. 1 by o leading to:

Niles

F(X; OL,?L) = {l-e- 5 I x>0, 00, A>0 (2)

The pdf corresponding to Eq. 2 1s given by:

o1
e )
- a,h):ahg(x)e 56 |:1-e G(x)} x0,020250 (3)

In this study we present and study a new continuous
distribution called the Odd Generalized Exponential
Weibull Exponential (OGE-W-E) distribution. We use
Eq. 2 to define the cdf of this distribution by taking G (x)
equals to the ¢df of Weibull distribution and G (x) equals
to the survival function of the exponential distribution.
After we define the cdf of this distribution, we get the
corresponding pdf of this new distribution.
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THE ODD GENERALIZED EXPONENTIAL
WEIBULL EXPONENTIAL DISTRIBUTION

In this section, we studied the five parameters
Odd  Generalized Weibull Exponential (OGE-W-E)
distribution. By using Eq. 2, we define the cdf of the
OGE-W-E by taking G (x) equals to the cdf of Weibull
distribution and G () equals to the survival function of
the exponential distribution where the cdf of the Weibull
distribution 1s given by:

G(x ab)= 12", x>0, a>0,b>0 {4

And the survival function of the exponential
distribution is given by:

G(xk)=1-(1-e™ )= e™, x>0,k>0 (5)

Then by substituting {from Hq. 4 and 5 into Eq. 2, we
obtain the cumulative distribution function (edf) of the
OGE-W-E distribution as follows:

F(x o habk)= {l-el[e - ]} 0,0, hab k=0 (6)

The pdf corresponding to Eq. 6 is given by:

&

o kx—m«h]
>

flxohabk)= ah[kek" -(k-abx"' )ek‘"“"hJerl(e

_1[3”.31“"“‘”) :|n1 (7)
[l-e , x>0, o, A, a, b, k>0

Where:
aandb : Shape parameters
a,kand A : Scale parameters

The survival function F (x), hazard rate function
h (x), reversed hazard function r (xX) and cumulative

hazard rate function H (x) of X~ OGE-W-E (a, A, a, b, k)
are given by:

T(x0.ha,bk)= 1-[1-5[* ]} x0,0habk>0 (8)

a?»[ke‘“‘ -(k-abx‘“1 )ek“'“b Je'l[e“rek uh] }

1{1-31[3 A ]} ©

O .
.1[e 4 ]
[l-e } L x>0, oL A, a, b, k>0

hix; o, & a, b, k)=
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Fig. 1: The cdf of the OGE-W-E for different values of
parameters, a=0.6, A=0.4
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Fig. 2: The pdf of the OGE-W-E; a=02, A=09

r(xo, i abk)=
al«xrekx—xxhj

U,?L[kek" -(k-abxb'1 )ek"'“"b Jerl(

H{x o habk)= -]n{l-[l-e-l(e}m'gm ]J }po (1)

o habkso (10

Respectively, in Fig. 1-5, we display some plots of
the cdf, pdf, survival function F (x), hazard rate function
h (x) and cumulative hazard rate function H (x) of the
OGE-W-E (g, A a, b, k) distribution for some different
values of parameters.

SOME STATISTICAL PROPERTIES

In this section, we investigate some statistical
properties of the OGE-W-E distribution including quantile
function and simulation median, the moments, the mean,
moments about the mean, skewness and kurtosis.

Quantile and median: The quantile x_ of the OGE-W-E
distribution 1s given by:
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Survival function
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Fig. 3: The survival function of the OGE-W-E for
different values of parameters; a = 0.5, L = 0.2
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Fig. 4: The hazard rate function of the OGE-W-E for
different values of parameters,a=03, A =18
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Fig. 5: The cumulative hazard function of the OGE-W-E
for different values of parameters; a=0.3, L=1.8

F(Xq):P(xng):q, 0<g<1 (12)

From Eq. 6, we obtain:
_l[ek@_ek,@%j *
le =q (13)

We can obtain x, by solving the following equation
numerically:

In(e"s )+1n(1-e'“ﬂ" )%ln[l-q}:} =0 (14

And we can obtain the median of OGE-W-E by
setting ¢ = 0.5 in Hq. 14 and solve this equation
numerically.

The moments: The th moment for the OGE-W-E
distribution is given by the following theorem.

Theorem 1: The rth moment for a random variable
X~OGE-W-E (u, A, a, b, k) 1s give by:

I O B ey
M=g 22222 ey
i=0j=0m=0n=0p=0g=0 j!q!(a(mﬂl)) b

(1) () () KR b

(15)
Proof: The rth moment of X is obtained by:
W= E(Xr ) = I:X'f(x; o, 2.a,b,k) (16)
Substituting from Eq. 7 into Eq. 16, we get:
af ok
W= cc).J.U x [kek" -(k-ab)«lb'1 )ek"'“"b Je 1[ Jx
rl[ak"rek"'”‘bj et (17)
[l-e } dx

Using the binomial series expansion of {l_ex[e g ]}
yields:

{I(J} =St ay)

i=0

Substituting from HEq. 18 into Eq. 17, we obtain:

< afion)f e s
= o 3 (A ()] [ke“"-(k-abxh'l)e“"'“ﬂer i i
kx_Jxad (19)
Using series expansion of e'”‘“)(* et yields:
(i) e Y AL (Y (e - e
o) o (REHY [T

o
i=0

j!

Using the binomial series expansion of (ek" e )J
yields:

b
(ekx s ) —

(1) (L) @D

“uMg
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Substituting from Eq. 21 into Eq. 20, we obtain:

O

i (22)

%3
j=0m=0
Substituting from Eq. 22 into Eq. 19, we obtain:

o o2 T ) (D))
W =oth -

222 7 23)
j: x" [kekx -(k-abx"'l )e"" = }el‘j"'mbdx

Using the binomial
[kekx -(k-abxh'l)ekx = :| yields:

series  expansion of

> (LR ‘

n=10

(k abxb“‘) gl

[kek" -(k-abxb'1 )ek"'“" :|

(24)
Using the binomial series expansion of (k-abx"')
yields:

(k-abx* )" = juw

p=0

F aFhP xFr (25)
Substituting from Eq. 25 into Eq. 24, we obtain:

|:kekx _(k_abxb-l)ekx-ax } z Z( )( ) n+p KPP x PP anz®
n-0p=-0
(26)
Substituting from Eq. 26 into Eq. 23, we obtain:
W, = oth

ZZ Z Z Z( )(”)(1 )(n)(_l)‘ﬂﬂnmﬂa (i+1) k’kl'papbpx

i=0j=0m=0p=0q=0 !

j: Xfﬁah,pek(jﬂ)x e-a(mm)xb dx

27
Using series expansion of €97 yields:
e _ o KX(GH)
e ()2 _ ZD c(l! ) (28)
Substituting from Eq. 28 into Eq. 27, we obtain:
(GGG’
@ @ owon 1 e ()R Gy il e ppe
iy S —
i 1 m » q
Imxwa-p-*qe—a(mh’)) dx
(29)

To find:
.L”X,Wb.p-v-qe,a[mm)x" dx

Letu—a(m+n)x when x = 0 = u = 0 and
when x = o = M gy = o = x = ™2™ (m+n)™"
= dx = /b u et (m+n) " du then:

- N w1 t+ph-ptot+l
I rtbpragralmiak’ g I Zu e

0 0

.[_LP_?_"" bopt "'IJ 7[r+ph—p+q+l (30)
a . (m+n) o

J e™du
Using the definition of gamma function (I' () = ["t"'e"dt
we get:
" rpbpred g
J. edu v du= F[MJ
0 b
S0, we get:

rhpbprrotl
j: Xﬁpb,ﬁqe-a(mm)x"dx _ %a'

. ] (ern)_[r+p‘nr§+q+1]r[r+phr:+q+lj

3D
Finally by substituting from Eq. 31 into Eq. 29 we get
the rth moment of OGE-W-E distribution in the form:

()7 )P
==

j!q!(a(mﬂl))[ °
(_l)ﬁj+m+mp (j+1)ﬂi (i"!‘l)] Ajkl-pﬂapbp

5335359353

i=0j=0m=0n=0p=0g=0

(32)
The mean: The mean for the OGE-W-E distribution 1s
given by the following corollary.

Corollary 1: The mean (u) for a random variable
X~OGE-W-E (o, A, a, b, k) is given by:

B EHEEE
Z=3

j !q!(a(ern))[ b
(-1 () (1) K e

SELELEE
(33

Proof: The mean () of X~OGE-W-E (a, A a, b, k) is
obtained by puttingr = 1 in Eq. 32.

The moment about the mean: The rth moment about the
mean of OGE-W-E distribution is given by the following
theorem.

Theorem 2: The rthmoment about the mean for a random
variable X~OGE-W-E (a, A, a, b, k) is give by:

wwmlnw,mwmmmwﬂ%ﬂﬂ

j !q!(a(m—&-n))( E
(1) ) (i) A b

=0j=0m=0n=0p=0q=0s=0

(34)
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Proof: The rth moment about the mean (p,) of the random
variable X with pdf f (x) is given by:

L, =E[(X-p)'}=Lm(x-p)’f(x;ot,2.,a,b,k)dx (35)

where p 1s the mean of OGE-W-E distribution and {
(x; o, A, a, b, k) is the pdf by using the binomial series
expansion of (x-p) yields:

o) = S () (36)
Substituting from Eq. 36 into Eq. 35 yields:

. =E[(xf = D))

- - 37
J.o Xsf(X;ot,}\.,a,b,k) = FZ](Z)(-I)H e

Here p, represents the sth moment of OGE-W-E by
substituting from Eq. 32 (by replacing r by s) into Eq. 37
we get the rth moment about the mean of OGE-W-E
distribution as follows:

. A
b, ~E[Xu] ===

N S B B B2y
PIDIDIDIDINIP'S

i=0j=0m=0n=0p=0g=0s=0

s“'pb-p+q+1]

j!q!(a(ern))[ B
(-1 G (Y AR e

(38)

The skewness and kurtosis: In this subsection we drive

the skewness and kurtosis of OGE-W-E distribution based

on the moment about the mean as in the following
theorem.

Theorem 3: The skewness and kurtosis for a random
variable X~OGE-W-E (o, A, a, b, k) are given in 1
and 2 as follows. The Coefficient of Skewness (CS) of
OGE-W-E distribution 1s given by:

A
cs== (39)

S S B Dy
PIPIPIDIPIPIPY

0j=0m=0n=0p=0g=0s=10

j!q!(a(ern))[m'-:h#IJ

(-1 () () AR T b

And:

B
b

GG ey

j!q!(a(m+n))( B

DMRRRIA

B 5=0
» . 3
(-1) 7 ) (1) AR s b P

The Coefficient of kurtosis (Ck) of OGE-W-E
distribution 1s given by:

CK = (40)

S S B R
PDIPIIII X

i=0j=0m=0n=0p=0q=0s=10

j !q!(a(m+n))[ﬁ1m§+q+l}

(1)) (141) AR SRR b

(LI et
wb_mﬂj

j !q!(a(ern))[ E
(-1) TG () R bt

v

$EEeEd

0j=0m=0n=0p=0q=0s=0

Proof 1: We start with the following equation of the
coefficient of skewness by Oja (1981):

s ELOG]
: 41
(e[ T v
Let A=E[(X41) [ (42)
And
LetB= [E[(X-H)T T (43)

We can find CS by finding A and B as follows: we
can obtain A by setting r =3 in Eq. 34 and we can obtain
B by substituting from Eq. 34 (by setting r = 2)
into Eq. 43.

Proof 2: We start with the following equation of the
coefficient of kurtosis by Oya (1981):
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- FLE]
B “
Let C=E[(X4) | (45)
And:
Let D= [E[(X-H)TT (46)

We can find CK by finding C and D as follows: we
can obtain C by setting r = 4 in Eq. 34 and we can obtain
D by substituting from Eg. 34 (by setting r = 2)
into Eq. 46.

The moment generating function: The moment
generating function of OGE-W-E distribution 1s given by
the following theorem.

Theorem 4: The moment generating function M, (t) of
OGE-W-E distribution is given by:

M, (1) =2
N (B B ey
$ESESES —

pent j!q!r!(a(m—&-n))( b ]
(-1 () (L) MR
(47)
Proof: The moment generating function M, (1) of the
random variable X is given by:

M, (1) =E(e") = ["e"F(x 0 habk)dx (48)
Using series expansion of e, yields:
e ;i (49)
Substituting from Hq. 49 into Eq. 48, yields:

Lo 50

z.t"
—_ f{ Aabkidx =
;rjx Ko, h,a,b,k) —H

°M8

Finally by substituting from Eq. 32 into Eq. 50, we get:

My (1)~ 2

B 18 £ (3 51 Bl
IPIPIPIPS [(mliﬂ] b
=A P00 igint(a(mn))C v

(-1)7E (1) (1) MK et

Order statistics: In this section, the PDF of the jth order
statistic and the PDF of the smallest and largest order
statistics of OGE-W-E distribution are derived. Let
X, X, ..., X, be arandom sample from an OGE-W-E
dlstrlbutlon and X, _, X, ..., X, denote the order

statistics obtain- ned from this sample then the pdf of X,
is given by:

f.(xd)= B;[F(X

it oi
g (D)] I:I-F(X,CD)] f(xd) (52)
where, [(x; @) 1s the pdf of OGE-W-E distribution given
by Eq. 7, F (3 @) is the cdf of OGE-W-E distribution
givenby Eq. 6, ® = (&, A, 8, b, k) and B (., .} 1s the beta
function. Because of, 0<F (x; @) <1, we can use the
binomial series expansion of [1-F (x; ©)]*” as follows:

[F(x®) [ = 35, (7)1 [Flxd) (53)

Substituting from Eq. 53 into Eq. 52, we get:

L (-1)‘ n!
(50}~ 2 T gy

I:F(X;‘D)jm-l f(x®) (54)

Substituting from Eq. 6 and 7 into Eq. 54, we get the
pdf for the jth order statistic as follows:

() ()

kx_ kzaz?
ub]e-l[*“*“ )

. i e teeapt
oSt L
) (33)
[kekx -(k-abxb" )e‘“‘

From Eq. 55, we can {ind the pdf of the smallest
order statistics, say f,, (xx @) and the largest order
statistics, say [, (3¢ @) as follows:

ke U
ol ot
Toil(n-)!
(56)

[ ke - (icabx™ e }erx[aw,ek <)

-1

fnn(X;(I)) = n(xl{l_e'l[e“*.ekxmq )
(57

o kx—n«h]

&

ke '

Renyi entropy (Renyi, 1961): An entropy is a measure of
variation or uncertainty of a random variable X. The
Renyi entropy of a random variable X with probability
density function { {x) 1s defined by:
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I, (8)= élog (J.: 9 (x)dx) where 80 and 8= 1 (58)

Proposition 1: If X a random variable has a OGE-W-E
distribution then the Renyi entropy of X is given by:

O e

otph-p+1
b

ST 8k ) (48 Y Ak Parbe
(-1 j

Proof: Substituting from Eq. 7 into Eq. 58, we get:

| of A J.: [ke"" -(k-abx"" )e""'e‘"h T :345[3”41%‘x ]x
I, (8)=—log

1-5 [l_ex[ekxekx.mb]:r“ "

(60)
From Eq. 59, we get the Renyi entropy of X given in
Eq. 58 by applying the same steps for finding v, .

Parameters estimation of OGE-W-E distribution: In
this section, we use the maximum likelihood estimation
method to estimate the five parameters of OGE-W-E
distribution.

Maximum likelihood estimation: If x , x,, ..., x, denote

a random sample from the OGE-W distribution then the
likelihood function is given by:

L=1£[f(x‘;ot,§k,a,b,k) (61)

Substituting from Eq. 7 into Eq. 61, we obtain:

L= f[om[ke""'-(k-abxih'1 )ek"fa"lh ]erl[en"akx‘“‘ ]x

i=1

ot

The log-likelihood function 1s:

(62)

2= nln(a)Jrnln(?»)Jrzn: In [ke"’“-(k-ab)«zf'1 Jerom ]_
i=1

n n o[ i ghocian®
AZ(ekx‘-ek“l'“lb )+(U,-1)Zln[1-e i ]}
i=1 i=1

(63)

By take in the partial derivatives of ¢ with respect to

the parameters o, A, a, b and k setting the result to zero,
we get the following equations:

do. o [T

2o

of _n S by oy, g = _
a : E(e e )+(cc 1); { _l(em_equ 0
1-e
(65)
a0 _ i:[(k-abij'l)x‘h +bX1'°"]e1°‘:'ﬂ*f' _)_ix‘bekx .
a5 [kek"‘-(k-abxj"" )e"""“"‘ :| b
oot e_l(ek,,_ekxi..xib] ) (66)
A(Cc-l); |: 1[&:«1#%@]} =0
l-e
& [axf']n(xx)(k-abxib")Jrabxib'lhl(Xi)+axf-1]e1°‘rax)" X
ob =3 [ke‘““-(k-abxib'l)e“"“lb]
S ax, ]_n(Xi)ekx)_u)quak( 1) %" In(x, )e e : o
i-1 i1 { -1[&&.&*#%]}
1-e
(©7)
o (kekx‘X,+ekx‘)-[(k-abx‘h")X‘ek""“‘b +e“*"“"*h} N
ES [kek"'-(k-abxi"'l)ek""“f} )
Z 1n=1 (ekxlX‘ -ek"i'axibxj)+7\.(ot-1) (68)
z

We can obtain the MLEs of the parameters o, A, a, b
and k by solving the Eq. 64-68, numerically for o, 4 a, b
and k.

Application: In this section, we provide an application to
real data to demonstrate the importance of the OGE-W-E
distribution and we will compare OGE-W-E distribution
with the following distributions:

+  Modified Weibull Distribution (MWD) with cdf, F
o, B, 7) = 1-e=™ x>0

s  Flexible Weibull (FW) with cdf, F (x; o, 7, P,
8y = l-e* "% =0, q, v, B, 60

s Odd Generalized Exponential-Exponential (OGE-E)

with cdf, F (x; o, o, &) = [l-e'”a‘x"qm

In order to compare the OGE-W-E distribution
with the above distributions, we use the measures
of goodness-of-fit including the Akaike Information
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Table 1: Parameters estimates and their standard errors (in parentheses) for data set

Models Parameters estimates

OGE-W-E (¢, A, a,b, k)

%= 2362 (0.778)

4 = 0.056 (0.003) b-1.134 (0.091) & —0.14 (0.005)

MWD (&, B, ) & =0.008, (0.015) P =086(0.734) §=1.052 (1.514)

(OGE-E) (a, oL &) 4= 0.022 (0.001) 5 =0819(0.042) 4 -2816(0.154)

(FW) (o, v, B &) & = 0.61 (0.763) ¥ =0.66 (1.02) B = 0.138 (0.059) § = 0.007 (1.143)

Table 2: The values of the statistics ( 7 AIC, HQIC, CAIC and BIC for the data set)

Models £ AIC HQIC CAIC BIC
OGE-W-E (g, &, 2, b, k) -410.0163 830.0326 835.8266 830.5244 844.2928
MWD (q, B, v) -414.0939% 834.1877 837.6641 834.3813 842.7438
(OGE-E) (a, o, 4) -425.147¢6 856.2951 859.7715 856.4887 864.8512
(FW) (o, v. B. ®) -554.6617 1117.3000 1122.0000 1117.6000 1128.7000
Criterion (AIC), Hannan-Quinn Information Criterion REFERENCES

(HQIC), Consistent Akaike Information Criterion (CAIC)
and Bayesian Information Criterion (BIC). In general, the
distribution which gives the smallest values from the
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