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Abstract: Let, v be a unitary R-module over R be a commutative ring with identity and let X be a fuzzy
module of an R-module M. In this study, we present two concepts: the frist conceptis a weakly T-ABSO fuzzy

submodule where a proper fuzzy submodule A of fuzzy module X of an R-module w1 1s called a weakly
T-ABSO fuzzy submodule of X if whenever fuzzy singletons a_, b, of R, x, =3, s, |, velL and 0, #a bx c A then
eithera be(A:X) ora, x,cA or bx,cA. And the second concept 1s an almost T-ABSO fuzzy submodule where
let R be an integral domain, X be fuzzy module of an R-module m and A a proper fuzzy submodule of X. A
is called an almost T-ABSO fuzzy submodule of X if for fuzzy singletons a, b, of R and x <X with
a.bx cA-(AX)A, then either abc(A X)) or axcA or bxzA We study some basic properties and
characterizations of weakly T-ABSO fuzzy submodules and almost T-ABSO fuzzy submodules. We present
almost T-ABSO fuzzy submodules of X as a new generalization of T-ABSO fuzzy and weakly T-ABSO fuzzy
submodules and relationships between them concepts are given.

Key words: T-ABSO fuzzy submodules, weakly T-ABSO fuzzy 1deals, weakly T-ABSO fuzzy submodules,
almost T-ABSO fuzzy ideal, almost T-ABSO fuzzy submodule, characterizations

INTRODUCTION

A prime submodule which play an important turn in
the module theory over a commutative ring. This concept
was generalized to prime fuzzy submodule by Rabi
(2001). Sonmez et al. (2017) presented the concept
of 2-absorbing fuzzy ideal which is a generalization of
prime fuzzy ideal. Darani and Soheilnia (2012) presented
the concept of 2-absorbing submodule where “a proper
submodule N of w1 1s called 2-absorbing submodule of
if whenever a, beR, me M and ab meN, then a meN or
b meN or abe(N:m ). Hatam (2001) expand this
concept where “let X be fuzzy module of an R-module M.

A proper fuzzy submodule A of X is called T-ABSO
fuzzy submodule if whenever a_, b, be F. Singletons of R
and x.cX, ¥s, 1, vel. such that abxcA then either
abe(ApX)orax cAorbxcA (Hatam, 2001). Presented
the concept of a weakly prime fuzzy ideal while
Badawi and Darani (2013) were studied the concept of a
weakly 2-absorbing ideal where A proper ideal 1 of a
commutative ring R is called a weakly 2-absorbing ideal
of R if whenever a, b, ceR and 0#abcel, then either abel
or acel or beel (Badawi and Darani, 2013). A weakly
prime submodule were presented by Atam and
Farzalipour (2007) where “A proper submodule N of an
R-module »1 is called aweakly prime if for acR and
meM with OzameNN, then either meN or as(N: n )™

“Darani and Scheilma (2012) were generalized of weakly
prime submodule to weakly 2-absorbing submodule
where” A proper submodule N of an R-module m 1s
called a weakly 2-absorbing of M if whenever a, beR,
men and O=ab melN, then either abe (IN: ; M ) or ameN
or bmeN” (Darani and Soheilnia, 2012). “A proper ideal
I of R 1is said to be almost prime provided that a beR
with abel-I? imply that acl or bel” (Bhatwadekar and
Sharma, 2005) while A proper ideal I of R is said to be
almost 2-absorbing 1deal if whenever a, b, ceR
with abcel-I?, then either abel or acel or beel
{Mohammad and Abu-Dawwas, 2016). Almost prime
submodule studied by Khashan (2012) where “A proper
submodule N ofan R-module M is called an almost prime
submodule of w1 if whenever reR and me m such that
meN-(N:wy ) N, then either meN or reN:n )"
Mohammad and Abu-Dawwas (2016)were generalization
this notionto the almost 2-absorbing submodules where
“let R be an integral domain, M be an R-module and
N a proper submodule of M. N is called an almost
2-absorbing submodule of 1 if a, beR and me n1 with
a bmeN-(IN: M ) N then either abe(N: M ) or ameN or
bmeN” (Mohammad and Abu-Dawwas, 2016).

In our study, we present the concepts of weakly
prime fuzzy submodule, T-ABSO fuzzy submodule,
weaky T-ABSO fuzzy ideal, weakly T-ABSO fuzzy
submodule, almost T-ABSO fuzzyideal and almost
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T-ABSO fuzzy submodule and present a new basic
properties, characterizations of these concepts and
relationships between these concepts.

This study be composed of two sections: in section 1,
we presentand study the concept of weakly T-ABSO
fuzzyideal, weakly T-ABSO fuzzy submodule and we
give many properties, characterizations and relationships
between prime fuzzy submodule, weakly prime fuzzy
submodule, T-ABSO fuzzy submodule and weakly
T-ABSO fuzzy submodule.

In section 2, we present the concepts of almost prime
fuzzy ideal, almost T-ABSO fuzzy i1deal, almost prime
fuzzy submodule and almost T-ABSO fuzzy submodule,
$0, many properties, characterizations and relationships
between almost 2-absorbing submodule, T-ABSO fuzzy
submodule and weakly T-ABSO fuzzy submodule are
given. Note that, we denote to Fuzzy: F., Module: M.,
submodule: subm ., [0,1]: L and otheroiwse: o.w.

WEAKLY T-ABSO F. SUBM

In this section, we shall expand the concepts of
weakly prime subm., weakly 2-absorbing ideal and
weakly 2-absorbing subm. to weakly prime F. subm.,
weakly T-ABSOF. ideal, T-ABSOT. subm. and weakly
T-ABSO F. subm and search some properties,
characterizations and relations of weakly T-ABSO F.
subm. with other concepts of F. subm. First, we shall
fuzzify those concepts as {ollows:

Definition 2.1: A proper I'. subm. A of FM X of an
R-M m is called weakly prime F. subm. if for F.
singleton 1, of R and x =X with 0,#1,x,c A, then either
r,c(AX) or x cA where:

ly=1
0 =
(¥) { Oy =1
The proposition specificates weakly prime F. subm.
in terms of its level subm is given:

Proposition2.2: Let AbeF. subm. of FMX ofanR-M M.

Then A is a weakly F. subm. of X iff the level A, is a
weakly prime subm. of X, ¥ L.

Proof: (=) let O#axeV, for each acR, xeX, Wvel,
then A(ax)>v, hence (ax)cA, so that, axcA
where v=min{s, k}. But A is a weakly prime F. subm_,
then either a c(AX) or x,.cA, implies ac(A, X)) or
xeA, where (A X)), = (A, xX,) (Hatam, 2001). Thus A,
1s a weakly prime subm. of X .

(=) let 0,2ax,c Afor F. singleton a, of R and x =X,
s, kell, then 0,#(ax),cA where v = min{s, k}, hence,

Alax)zv, sothat, axe A, But A, is a weakly prime subm.,
then either ac(A ;X)) or xeA, hence, a (A X) or x,c A,
thus, A 1s weakly prime F. subm. of X.

Definition 2.3: A proper F. ideal I of acommutative Ring
R is called weakly T-ABSOF. ideal if for F. singletons,
a, b, r, of R, ¥s, |, kel. such that 0,#a bx <1, then either
abel or arcl or br,el. The proposition specificates
T-ABSOT. subm. in terms of its level subm. is given:

Proposition 2.5: Let A be T-ABSOF. subm. of F. M. X
of an R-M. M., 1f fthe level subm. A, 18 T-ABSO subm.
of X, wvel. (Khalaf and Hannon, 2018).

Definition 2.6: A proper F. subm. A of FM.X ofan
R-M. M is called a weakly T-ABSO F. subm. of X if
whenever F. singletons a, b of R, x, 2X, ws, |, vel. and
0,#a,bx A, then eithera be(A: X)oraxcAorbxcA.
The proposition specificates weakly T-ABSOF. subm. in
terms of its level subm is given:

Proposition 2.7: Let Abe F. subm. of F. M. X of an R-M.
M. Then A is a weakly T-ABSO F. subm. of X if f the
level A is a weakly T-ABSO subm. of X, ¥ L.

Proof: By a similar on way to proof of proposition (2.5).
Remarks and examples 2.8:

+ Prime F. subm.— weakly prime F. subm.»T-ABSO
F. subm.

s Weakly prime F. subm.— weakly T-ABSOF. subm.

+ T-ABSOF. subm.—weakly T-ABSO F. subm.

However, the converse incorrect, for example:
Let X:Z, —L such that:

1if ye Z
X(y)= { ’
0 0.W.

It is obvious that X be F. M. of Z-M.7Z,,. Let, A:7, —L
such that:
v if ye(0

0 0.W.

A(y):{ Yvel

It is obvious that A is F. subm. of X. Now, A, = (0)
and X, = Z, as Z-M. where A, =(0) is not T-ABSO
subm. since, 2.2.(2)=(0) but 2.(2)=(0) and 2.2¢(A, X))
=8, while A, 1s a weakly T-ABSO subm., so that,
A isnot T-ABSO F. subm. and it is weakly T-ABSOF.
subm. (4) AF. subm. A is weakly prime F. subm. if

f A isT-ABSOF. subm. and (A X)is a prime F. ideal.
However, if A is T-ABSOF. subm. and (A:;X) is not a
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prime F. ideal then A is not necessary weakly prime F.
lifyeZ
0 0.W.

It is obvious that X be FM of Z-M Z. Let A:Z-L such
that:

subm. for example: Let X:Z~1. such that X(y) = {

vif yedZ

A(y):{0 w Wvel

It is obvious that A 1s F. subm. of X . Now, A =47
and X, = 7 as Z-M. where A, = 47 is T-ABSO subm.
since, 2.21€A, = 47 and 2.2 A, but A, 1s not weakly
prime subm. since, 0+2.2€A, but 2¢A, . Sothat, A is
T-ABSOF. subm. but it is not weakly prime F. subm.

Theorem 2.9: Let R be a commutative ring and let X be
FM. of anR-M. M. Then the intersection of each pair of
distinct weak prime F. subm. of X is weakly T-ABSO F.
subm.

Proof: Let A and B be two distinct weak prime F. subm.
of X. Suppose that F. singletons a, b of R and x =X such
that 0,#a bx = AnB but 0,2a x £ AnB and 0,#bx £ ArB.
Then 0,2ax gA, 0,#bx ¢A, 0,#ax ¢B and 0,#bx ¢B
these are impossible, since, A and B are weak prime F.
subm. So, supoose that 0,#a,x A and 0,=bx ¢B. Since,
0,2abxcA and O,#abxcB, then bc(AX) and
a.c(B:;X). So that, abc(AX)N(B:X) = (AnB;X).
Thus, AnB 1s a weakly T-ABSO F. subm. of X.

Theorem 2.10: Let R be a commutative ring, X be F.M
ofanR-M. M andA be a weakly T-ABSO F. subm. of X.
If Aisnot T-ABSC F. subm. then (A;X)* A=0,.

Proof; Suppose that (A, X)* A=0,. We will show that A
is T-ABSOF. subm. Let abxcA for F. singletons a_, b,
of R and x=X. If abx,,#0, then either a bc(A:;X)
oraxcAorbx,cA since, Aisaweakly T-ABSOF. So,
suppose that abx,, = 0,. Let a,bA=#0,, say a by, 20, for
some F.singletony,cA. Hence, 0,#a by, =a b (x v, )cA.
Since, A is weakly T-ABSO F. subm., we have
abo(AxX) o a(xty)cA or bx tv)cA. Then
abz(AX) or axcA or bx,cA Thus, we may assume
that abA = 0, If ax(AX)#0, then there exists
r,c(AX) such that arx =0, Hence, O#a 1, x, =
a(btrx cA. Since, A is weakly T-ABSOF. subm., we
get aibtr)=(ALX) or axcA or (btr)xcA. Thus,
abo(AX)orax cAorbx oA So, we can assume that
a.x (A X) = 0,. By a similar on way, we can assume that
bx,(AX) = 0,. Since, (A;X)A+0,, there exist c,,
d =(AX) and 7,cA with ¢ d z #0,. If ad_z =0, then
0,#ad,z, =a(b+d,) (x+2)cA hence, a,(btd, )=(AX)
ora(x+tz)cA or (btd) (x,+tz,)cA. Sothat, abc(ALX)
or axcA or bxecA Then, we can assume that
ad z =0, Byina similar way, we can assume that c,d_

x, =0, and ¢ bz, = 0,. Hence, from 0,#cd_ z = (atc,)
(btd ) (xtz)cA, we have (a+c,) (b+d (A X) or
(atc)(xtz)cAor (btd ) (x+z) <A Thus, abe(AX)
oraxcA or bx cA. Therefore, A 1s T-ABSO F. subm.

Recall that “A subm. N of an R-M wm is called a
nilpotent subm. if (N:; M)N = 0 for some keZ+" (Ali,
2008). We shall fuzzify this concept as follows:

Definition 2.11: AF. subm. Aof FM X of anR-M n1 18
called a mlpotent F. subm. if (A ;XA = 0, for some
neZ’,

Corollary2.12: Let R be a commutative ring and X be I,
M. of an R-M. M. Suppose that A be a weakly T-ABSO
F. subm. of X that is not T-ABSO F. subm., then:

+ Aisanilpotent . subm.
»  IfXis amultiplication FM then A’ =0,

The definitions of multiplication F. M. (Hatam, 2001),
faithful FM. (Badawi and Daram, 2013), finitely
generated and cancellation FM {(Hadi and Hamil, 2011).

Lemma 2.13: Let Abe F. subm. of a finitely generated
faithful multiplication (and so cancellation) F M.X of an
R-M m. Then, we have (TAX) = I[{A:X) for every F.
ideal I of R.

Proof: Since, X is a multiplication FM then I{A:; X)X
=TA = TA;X)X. So that, TAX) = I{A;X), since, X is
cancellation FM.

Proposition 2.14: Let, X be a faithful multiplication FM
ofan R-M w1 and let A be a weakly T-ABSO F. subm. of
X IfAisnot T-ABSO F. subm. then AcX-R(0,).

Proof: Assume that A is not T-ABSO F. subm. By
theorem (2.10), (A5X)PA = 0, By lemma (2.13),
then (A XYc((AXFAX) = (0,5X) = 0, since,
X is faithful, hence (A;X)Y = 0. If rc=(ALX),
then °.c0, and so, 1, =0, Hence (Ay X)c4f0,. Thus,
A=(A; X)X ;JEX: R(0,). The definition of a cyclic
F.M. (Hatam, 2001).

Proposition 2.15: Let, R be a commutative ring, X
be a faithful cyclic FMofan R-M n1 andA be a weakly
T-ABSO F. subm. of X then A is a weakly T-ABSO F.
subm. of Xaf f (A:;X) 1s a weakly T-ABSOF. ideal of R.

Proof: (=) Let, 0,zabr,c(A:;X) for F. singletons a, by,
1, of R. Suppose that a b (A X)) and b, ¢ (A X). Hence,
0,#abrxcA for F. singleton x =X If a br.x, = 0,, then
a b, =(0,:X) =0, this is impossible. Since, A is a weakly
T-ABSO F. subm and a bye(A:X) and by, (A X)), then
anc(A LX) Thus, (ApX) is a weakly T-ABSOF. ideal
of R.
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(=) suppose that (A:; X) is aweakly T-ABSOTF . ideal
of R and let 0, #a bx c A for F. singletons a_, b, of R and
xcX. Since, X is a cyclic F. M., then there exists F.
singletonr, of R withx, =r1,v, for each F. singleton v, <X
Hence, 0,#abr,y,cA, then 0,2a brc(ALy,) = (ApX)
Since, (AX)1sa weakly T-ABSO F. ideal, then either
a.bo(ARX) or ar=(AX) or bre(A:X). Therefore,
abco(AX) or axcA or bxcA Thus, A is weakly
T-ABSOF. subm. New, we give two lemmas which are
needed in the next theorem.

Lemma 2.16: Let, A be a weakly T-ABSO F. subm. of
FMXofanR-M. M andF. singletons a, b, of R. If for
some F. subm. B of X abBcA and 0,#2 a, bB, then
ab=(A:X) or a BcA or bBc.

Proof: Put (A:;X) = K and assume thata b ¢K. Then itis
sufficent to prove that Bo(A:a)u(Axb). Let r, be an
arbitrary F. singleton of B. If 0,=a by, and ab¢K, then
either ar,c A or br,c A, since, A isa weakly T-ABSO F.
subm. So that, r,=(A: a )u(ALb) . Now, let 0, = abr,.
Since, 0,#22a.bB | then, 0,#2a bx, for some F. singleton
x,cB and hence 0,#abxcA. Since, A is a weakly
T-ABSO F. subm. and ab¢K, then either ax=A or
bx,cA. Put y, = x+r,. Hence, 0,#aby,cA and since,
a bz K, then either ay,cA or byy,=A. Now, we meditation
three cases:

Case (1): ax,cA and bx cA. Note that,
and so, either ar,c A or br,cA.

ay,cAorby,cA

Case (2): axcAand bx,zA Onthe contrary letarzA.
Hence, ay,¢A and so, by,cA. Thus, a(y,+x)¢A and
by, tx)eA. Since, A 1s a weakly T-ABSO F. subm. and

a bk, then 0, = a b(y,+tx,) = 2a,bx, this is impossible.
Thus, ar,cA.
Case (3): axgA and bxcA. Then, proof in a similar

way case (2).

Lemma 2.17: Let I be F. ideal of R and A , B two F.
subm. of I M. X of an R-M such that a IBc A where a_be
F. singleton of R. If A is a weakly T-ABSOF. subm. and
0,24 aIB, then aIc(AX) or a Bea or [B.

Proof: Let ale(A;X) = K. Then ab¢K for some F.
singleton bcl. We claim that there exists r,cl such that
0,24 ar,B and a1, K. Since, 0,#4 alB, then 0,24 a,c,B
for some F. singleton ¢ =1. If a,c, #K or 0,#4 ar, B, then
by putting r, = ¢, or r, = b, we get the outcome.
Therefore, let ascngK and 4 abB = 0, Then, 0,24
a(c,+b)BcAanda (¢ tb)cK. Sothat r,cl suchthat 0,#4
ar,B and ar,¢K. Then, 0,#2 a,B and by lemma (2.16),
we get Be(Ar aJu(Ax 1) If a B2 A there 1s nothing to
prove. Therefore, suppose that a B¢ A and hence, r,Bc A

Now, we show that Ic(K; a )u(AB). Let F. singleton
u.cl If 0,#2au B, then by lemma (2.16), au cK or
a Bc A oru, Bc A But, we assumed a Bc A, thenu (K
a u(ALB).

Now, suppose that 2au B = 0,. Hence,
0,#2a(r,tu )BcA and by lemma (2.16), then either
a(r+u =K or a BeA or (r,+u )BzA. Since, a Be A, so
that, (r,tu )Xy au(AB). If (r,+u,)c(AB), then
u, (A Bybecause r,c (A B). Therefore, let{r,+u )= (K
a (ALB).

Meditation  2a(r,tu, 1B 4ar1,B#0, and
2a (r,tu +1,)B=A. Since, ar,¢K and a(r,+tu_ =K, then
a,(r,u_+1,)¢K. Then by lemma (2.16), Bo(A:y a Ju(Ax
r,tu, tr). But, since, r,+u, (A B) and r,c (A B), then
(r,tu, tr)e(A L B), hence, Bo(A:y a.) this is impossible.
Thus, r,+u (A Byand since r,c (A B), thenu, (A B).
Then T=(K:; a JulA: B) So that, [Bc A, since, a I¢K. The
following theorem gives a characterization of weakly
T-ABSO F. subm.

Theorem 2.18: Let I, I, be F. ideals of R and A,
B be F. subm. of F. M. X of an R-M. M. If A is
aweakly T-ABSO F. subm., 0,#1,1, BcA and
O, #8(1 LHILALA X)) (BHA), then either I Le(A . X) or
[BcA orLBcA

Proof: Note that 0,#8(1,1+(I+L) (A X)) (BtA) =
8,1, B+8IL AL (A X)BHS LA X)BH8I, (A X)A+SL,
(A X)A Therefore one of the following various types is
satisfied, 0,#81,[.B.

Henee, for some F. singleton acl,, we have
0,#8a1B. Thus, 0,#4a],B and by lemma (2.17), then
either al,c(A:;X) = K or a,BcA or [[BeA. If [, B=A,
then, we get the outcome. Therefore, we assume that
[[BzA and so, a (K Iu{A:B). Now, we prove that
Le(K I u(AB). Let, bl If 0,#4b I, B, then by lemma
(2.17) and since, [,BzA, we have bc(Kil)u(AzB).
Now, let 4b1,B = 0,, then 0,#4(a+h)[,BcA. By lemma
(2.17)and since, I, Be A then (a,+b)c(K: 1 Ju(A:B). We
meditation the the following four cases:

Case 1: (a+b)(K 1) and a o (K1), Thenbo(K 1))

Case 2: (atb)c(AB) and ac(A:;B). Then, b=(AB).

Case 3: a (K 1)Y(AB) and (a,tb)c(A By L)
Then {a+b+a)e(K: 1) and (a+b+a)e(AB). So that,
{atbta)a(K I u{ALB). We meditation 4(a+b+a ),
B = 8al,B#0,. By lemma (2.17) and since, [,BgA, then
{atbta)o(K I u{ALB) this is impossible. Since,
a, (Kl u(ApB) and (a +b)c (K I u(AB), one of the
following holds:

+ ac(A;B) and
be(ARB)
o ac(KiI(ABYand(a +b)c(K 1) Thenb (K1)

(a,tb)c(ABY(KI). Then
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Case d: (a +b)c (K I )/(AB)and a c (A BY(K:; 1) By
1n a similar way of case (3), we have bz (K I Ju(A:;B).
Thus, L(K I u(ALB).

If 0,281, LA and 81,LLB = 0,, then 0,#8 L(B+A)c A
and hence by part (1), I,1,e(A3X) or [,(B+A)za or
L(B+A)CA. So that, [ Lc(A:X) or LB A or LBCA.

Let, 0,#8L{A:;X) B and 8I,I, B = 0,. Hence,
8L, +H(ALXNB =8L(A; X)B#0,. By part (1), then either
L AHAXDN=(ARX) or LBeA or (1 +HAX)BcA,
hence, I,1,e(A:xX) or [,BcA or I,BcA. By in a similar
way if, 0,#8[,(A;X) B, we get the outcome. Let
0,#8L(AX)A and 8II.B = SILLA = BL{A X)B =
SL{ALXOB =10,

Hence, 8L(1, H A X)N(B+A)Y=8L{A ; X)A 0, and by
part (1), then L{I,+HAX)N<(AX) or L(B+A)A or
(T HALZONBHACA. So that, I,I.c(AX) or [,BcA or
L.B=A. Obvious if 0,#81,{ Az X), we get the outcome.

ALMOST T-ABSO F. SUBM.

In this section, we shall expand the concepts of
almost prime subm, almost 2-absorbing ideal and
almost 2-absorbing subm. to almost prime F. subm.
almost T-ABSOF . ideal and almostT-ABSOF. subm. We
present analmost T-ABSOF. subm. as ageneralization of
T-ABSO F. subm. and weakly T-ABSO F. subm. and
study some basic properties, characterizations and
relationships of almost T-ABSO F. subm., T-ABSO F.
subm. and weakly T-ABSO F. subm. We shall fuzzaify
these concepts as follows:

Definition 3.1: A proper F. ideal I of R is said to be
almost prime F. if whenever . singletons a_, b, of R such
that a,b,cI-I% then either a I or bel.

Definition 3.2: A proper F. subm. Aof F.M. X ofan
R-Mis called an almost prime F. subm. of X if whenever
F. singletons a, of R and x =X such that a x = A-(A:; X)A
then either a c(A:;X) or x 2A.

Definition 3.3: A proper F. ideal 1 of R is said to be
almost T-ABSO F. ideal if whenever F. singletons a,, b,
r, of R such that a br <I-I?, then either abcl or ar.clor
brcL

Definition 3.4: LetR be an integral domain, X be F.M. of
an R-Mw and A a proper F. subm. of X. A is called an
almost T-ABSOF. subm. of X if for I'. singletons a_, by of
R and xcX with abxcA-(AX)A, then either
abo(AX) or axcA or bxzA. The proposition
specificates an almost T-ABSO F. subm. in terms of its
level subm. is given:

Proposition 3.5: Let A be almost T-ABSO F. subm.
of FM. X ofan R-M. v , iff the level subm. A 1s almost
T-ABSO subm. of X, wve L.

Proof: (=) let abxeA -(A ;X )A, for each a, beR and
xeX,, hence, abxe(A-(A;X)A), then (A-(A3OA)
{abx)zv, so, (abx) cA-(A;X)A implies that where v =
min {s, 1. k}. Since, A be almost T-ABSO F. subm., then
either abc(A LX) or axcA or bxecA  Hence,
{ab),c(AxX) or (ax)c A or (bx),c A, so that, abe{A X))
or axe A or bxe A, where (A X), = (A [z X,) by Hatam,
{2001). Thus, A, 1s T-ABSO subm. of X

(=) Let abx, c A-(A:;X)A for F. singletons a, b, of
R and x =X, s, |, kel hence, (abx) c A-(A:;3X)A where
v=min {s, 1, k}, so that, (A-(A:;X)A)abx)=v, implies
abxe A (A, ;X A, but A is almost T-ABSO subm., then
either abe(A, ;X)) or axe A or bxe A, since, (A, ;X)) =
(A X)), hence, abe(A:; X)), Hence, either (ab) =(AX) or
{(ax),c A or (bx),, implies either a b=(AX) or ax,cA or
bx,cA. Thus, A be almost T-ABSO F. subm. of X.

Remark 3.6: Every T-ABSO F. subm. is weakly T-
ABSO F. subm. and every weakly T-ABSO F. subm. 1s
almost T-ABSO F. subm. However the converse
incorrect, for example:

1 if yeZ,,

0 oW,

Let X:7Z,,~L such that X{y) ={

It is obvious that X be F. M. of Z-M.Z,,.

v if ye(ﬁ)

Let A:Z,,—L such thatA(y)—{O vveL

oW,

It 1s obvious that A is F. subm. of X. Now, A, = (1__2) and
X, = 7, as Z-M,, then (A, X)A, = 122(12)=(12) . So
that, A, 15 an almost T-ABSO F. subm. but A, isnot
T-ABSO T. subm. since, 2.2.,(3)A, 2.{3)¢A, and 2.2
#(A,;X,) and hence, 4, is not weakly T-ABSOF. subm.
Thus, A is almost T-ABSOF. subm. but it is not T-ABSO
F. subm. and it is not weakly T-ABSO F. subm.

Proposition 3.7: Let X be FM of an R-M. m and A be F.
subm. of X. Then the following expressions are
equipollent:

+  Aisanalmost T-ABSO F. subm. of X.

s For F. singletons a, b of R with abcR-(A:;X),
{Adab ) =(Ala oA LD U((ARXA(ALab )

+ For F. singletons a, b of R with abcR-(A:;X),
(Alab)) = (Axday) or (Axab)) = (Ab)) or
(Alaby = (AXDA b))

Proof: {1)=(2) If a b,cR-(A:;X) and x = (A {a b)), then
abx,cA Butifabx (A XA thenabx cA-(AX) A
Hence, ax.cA or bxcA Thus, xc(Agfa)) or
x,2(A (b)), (2)=(3) straight forward since, if F. subm.
equals to the union of two F. subm. then it is one of them.
(3)=(1) Letabx cA-(AX)AforF. singletons a,, b, of R
andx ¢X. Suppose thata bz (A:;X), we provethata x = A
or b cA. By (3) (Afaby) = (Ada) or (A flab)) =
(Ab)) or (Adab) = (AzX)Ax {ab)). Since,
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abpre(ALX)A, then xe((AXDAlaby). Thus,
X e(Afa ) or x,e(AL{h)). Hence, axcA or bxcA
Recall “If N is a subm. of R-M m and reR then a
subm. N, of M is defined by N, = (N:r) = {me:rmelN}”.
(Ashour et al., 2016). We shall fuzzfy this concept as
follows:

Definition 3.8: Let A be F. subm. of FM. X ofan
R-M. M and F. singleton a, of R, then . subm. A, of X is

defined by A, = (Aa) = {xcXaacAl

Theorem 3.9: Let X be FM. of an R-M. vt and A be a
proper F. subm. of X. The following expressions are
equipollent:

«  Aldsanalmost T-ABSOF. subm
* Tor F. singletons ab, of R such that abc(A X)),
A=A UA, U{(Ay X)A)ab

Proof: (1)=(2)Let A be analmost T-ABSOF. subm. and
suppose that a bc(A:X), let F. singleton x cab,, then
abx cA If abx #(AX)A, hence, ax A or bxcA,
sothat x, cA, orx,cA,  IfabxcA-(AX)A, hence,

x, c{(Ay X)A)ashl Sothat, A, A, UA, U((A5 X)A)

a by

Since, A, Ua, U((Ay X)A)ng% . Then, a,, =

AUA U((ARX)A)
(2)=(1) Let F. singletons ab, of R and xcX

such that a bx, cA-(A;X)A. Suppose that a be(A X)),
thenx,ca,, =AU A U{{(AxX)A]  but abx¢

(A:X)A, so that,x, ca, orx,cA, . Then ax.cA or

bx,cA. Thus, A be an almost T-ABSO F. subm. of X.

Proposition 3.10: Let X be FM of an R-M w1 and A be
a proper F. subm. of X, then A is an almost T-ABSO
F.subm. in X if ffor any F. singletons a_, b, of R and
F.subm. B of X suchthat a bB-{0,}cA-(A;X)A, implies
that abc(AX) or a BcA or hBc A

Proof: (=) Suppose that abz(A;X)A, hence,
BoA,, =A, UA U((Ay X)A) | but abBa(AX)A, so
that, Bca, orBc A, . ThenaBoA or bBcAl

(=) Assume that a bx, £ A-(A:; X)) forF. singletons a,,
b, of R and x, cX. Hence, a b(x)-{0,} cA-(A XA, then
abo(ApX) ora(x)cAor b(x A Sothat, a be(AX)
or ax,cA or bx.cA, thus, A is an almost T-ABSO F.
subm. of X.

Theorem 3.11: Let X be a fimtely generated faithful
multiplication of an R-M. M and A be a proper subm. of
X. The following expressions are equipollent:

« Aisalmost T-ABSOF. subm. in X
o (ApX)is almost T-ABSOF. ideal in R
o A =TIX for some almost T-ABSOF. ideal I of R

Proof: (1)=(2) Suppose A is almost T-ABSO F. subm.
and let abx cA-{A X)-(A X)) for F. singletons a,,
b, 1, of R Hence, abrX-{0}cA-(AX)A If
abr,Xc(AX)A, then by lemma (2.13),
abr, (A XA X = (A, X)* this is impossible. Since, A
is almost T-ABSO F. subm., then either a bc(A:;X) or
arXcAor br, Xc A sothat, abe{A X)) orarc(AX)
or br,e(A::X). Thus, (A:;X) 1s almost T-ABSO F. ideal
inR.

{2)=(1) Assume that (A:;X) is almost T-ABSO F.
ideal in R and let abx cA-(A:;X)A for F. singletons
a, b of R and xcX. Hence, ab((x):X)c((abx):
Xo(ARX), Also ab((x):X)z(AX)* because if
{(a,b)) X2 (A X (A X)ALX), hence, ab(x) =
ab((x); X)X this is impossible. Since, (A;X) is
almost T-ABSO F. ideal, then either abc(A:;X) or
8,((x,) 5 X)=(AX) or b((x)X)e(ARX). If a,((x,)5X)
(ApX), then (ax Jca (x,) =a (X ) X)X (A X)X = A,
hence, axcA. By in a similar way researchers get
bx.cA. So that, A is almost T-ABSO F. subm. in X
(2)=(3) if we choose I = (A:; X), we get the outcome. The
definition of maximal F. subm (Saifur, 2016).

Recall “A nonzero R-M.M is calld local if it has a
largest proper subm (namely Rad (M) that is its unique
subm has a to be the radical (where Rad (M) is an
intersection of all maximal subm of M) (Clark et al,
2006). Now, we shall expand this concepttolocal F.M. as
follows:

Defination 3.12: A FM. X+0, of an R-M. M is called
local F M. if has alargest proper F.subm (namely F-R (X))
that is its unique maximal F.subm has to be the radical

{where F-R (X)) is an intersection of all maximal F.subm
of X).

Propostion 3.13: Let X be a local multiplication F.M.
subm of an R-M. M with a unique maximal F.subm. K
and (K:;X) K = 0, then any proper F. subm of X 1s almost
T-ABSOT. subm iff it is weekly T-ABSO F. subm.

Proof: (=) for any proper F. subm. A of X, AcK(A;X)
A =0, since, (K:;X) K = 0,. Suppose that a, b, x cA-
(A X), A for F. Singletons a, b, of R and x, =X, then
0,#abx cA. Since, A is almost T-ABSO F. subm, then
either a b=(A:;X) or ax.cA or bx.cA. So that, it 1s
weakly T-ABSO F. subm. of X.

{=)1tispetty, since, every weakly T-ABSOF. Subm.
Is almost T-ABSO F. subm. Now, we give two lemmas
which are needed in the next theorem.
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Lemma 3.14: Let X be F. M. of an R-M M A be an almost
T-ABSOF. subm. of X and F. singletons a, b, of R. If B
is I subm. of X such thata_ b, Bc(A:; X) Aand2ab,
Ba(ApX), then either ab c(A:; X) or a BcA or bBc
A

Proof: By in a similar way to proof of lemma (2.16) but
we replace 0,#a.br, by ab, r, e(A::X)A where r,cB.

Lemma 3.15: Let, X be FM. of an R-M. M A be an
almost T-ABSO F.subm. Of X and F singletons a_,b, of R.
If T 1s F. 1deal of R and B 1s F. subm. of X such that
a Bz A and 4a IB=(A:; X) A then either a I=(A:;X) or a,
BcA or 1 BCA.

Proof: By in a similar way to proof of lemmaa (21.7) but
we replace 0,=4 a, IB by 4a, IBz(A::X) A. The following
theorem gives a chareacterization of almost T-ABSO
F. subm.

Theorem 3.16: Let [, I, be F. ideals of R and A, B F.
subm. of FM. X of an R-M. M . If A is an almost
T-ABSO F. subm. of X such that I,[,BecA-{ A X)A and
SLLAT LA LN B+A)2 (A X) or [[ B2 A or LB A,

Proof: By in s similar way to proof of theoeum (2.18) but
we replace 0,28(1,L)+HT+L)(AXNEBETA) by 8 (1,1,
(ALX) (BHA) (A XA,

The product AB =1IX where I, Jare F. ideal of R and
A, B are F. subm. of a multiplication FM of an R-M.
M such that A = IX and B = JX (Atani and Farzalipour,
2007). By using this defination of products of ".subm, we
give the following characterization of almost T-ABSO
F. subm. under classes a fimitely generated faithful
multiplication FM.

Theorem 3.17: Let X be a fimtely generated faithful
multiplication F.M. of and R-M. M and A be a proper
F.subm of X, then A 1s almost T-ABSO S.subm. mn X iff
whenever B, K and H are F.subm. of X such that
BKH-{0,1cA-(A:;X)A, then either BKcA or BHcor
KHcA.

Proof: (=) Assume that A is almost T-ABSO F.subm. in
X. by theorem (3.11), then (A:;X) isa almost T-ABSOF.
ideal in R We have B=(B X)X, K =(K; X)X and
H=(H:; X)X Hence, BKH =(B:; X) (K:; X) (H:; X)X
Assume that BKH-{0,}cA-(A; X) Abut BK¢A, BHeA
and KHg A

So that, (BpX) (KXe(AX), (BX)
(H:p XA X0 and (K XD (H: . X)e(A X)), Since, (A X)
1s almost T-ABSO F. ideal in R, then (B:;X) (K:;X)
(H: X)e(AX) or (B X) (K X) (H Xz (AX)

I (B X0 (K X0 (H:, X)ae (A X), then BKH = (B:; X)
(KipX) HipX) XgBKH = (BpX) (KXo (H:ipX)

K(ApX) then BKH = (B30 (K 30(H: . X)X (A X7
X = (A3 X) A this is impossible. Now, if (B:,3) (K X)
(H:X)=(A X)), then thus, BKcA or BHc A or KHc A

(=) Toshow that A is almost T-ABSOF. subm. in X,
by theorem (3.11), it 1s sufficoent to show that (A:;X) 1s
almost T-ABSO F. ideal in R. Let a br, c(AX)-(AX)?
for F. singletons a,b_r, of R. Hence, abr,X-{0,}cA-
(AX)A PutaX =B, bX =Kandr, X =H, we have
BKH-{0,}cA-(A;; X) A By assumption, BKcA or
BHczA or KHzA, so that, ab X = KeA or ar, XcA or
br,XcA. Thenabo(A X orarc(A;X)orbrc(A, X).
Thus, (A:; X) is almost T-ABSO F. ideal in R, so that, A
is almost T-ABSO F. subm. in X

Corollary 3.18: Let A be a proper F. subm. of a
finitely generated faithful multiplication FM. X of an

R-M. M, then A is almost T-ABSO F. subm. in X iff

whenever F. singletons x,, v,. z, such that xy,
7, cA-(ARX) A, then either x, yv,cA or x,, Z cA or
YiZuA.

Theorem 3.19: Let X be F. M. of an R-M. n1 and a be an
almost T-ABSOF. subm. of X. AssumethatF. singletons
a, b, of R and x,cX such that abx c(AX) A, ab,
2(ARX), ax,2A, bx,¢ A. Then, abAc(A XA

Proof: Assume that ab Ag(A:, X) A Hence, there exists
y,cA such that aby, ¢(A; X) A so that, a b (x, Ty, )= A-
{AX) A Since, A 1s an almost T-ABSO F. subm ., then
abAc(AX) or a(xty,) or bty )cA, hence, a
be(AX) or a, x,.cA or bx,cA this is a discrepancy.
Thus, abAc(A: LX) A.

Proposition 3.20: Let X be F M. of an R-MM, Y be an

any FM. of anR-M. M’ and A be F. subm. of X. Then, A
1s an almost T-ABSOF. subm. of X iff A@Y is an almost
T-ABSOF. subm. of XaY.

Proof: {=) Assume that A 1s an almost T-ABSO F. subm.
of X. Let F. singletons ab,_of R and (x,, y,)eXaY such
that ab, (x,, ypc(AaY)-(AaY XaY) (AaY), hence,
abx cA-(A; X)A by (AaeY (XaY) = (A X). Since, A
is an almost T-ABSO F. subm. of X, then a b (A X) or
ax.cA or bxcA, so that, abc(AeY XaY)or a, (x,
yocAaY or b (%, v)c(AaY). Thus, AaY is an almost
T-ABSOF. subm. of XaY.

{+=) Assume that AeY 1sanalmost T-ABSO F. subm.
of XaY. Let f. singletons ab, of R and x,cX such
that abx cA-(AXJA. Hence, ab, (x, 0)c{AsY)-
{AaYXaY) (AaY). Since, AaY is an almost T-ABSO
F. subm. of XaY that abz(AaY XaY) or a(x,
OpcAaY or b(x,, 0)cAaeY that 1s abe(AX) or
ax.cAorbxcA Thus, Aisanalmost T-ABSOF. subm.
of X.
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CONCLUSION

Through our research, we concluded to the concept
F. prime subm. lead to the concept weakly F. prime subm.
and through this we reached the concept weakly T-ABSO
F. subm. One of the most important conclusions 1s the
theorem (2.18). The other conclusion reached 1s almost T-
ABSO F. subm. which was reached if A 1s a proper F.
subm. of F. M. X then A is almost T-ABSO F. subm. in
X iff 15 almost T-ABSO F. ideal and A = IX for some
almost T-ABSO F. ideal I of R.
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