Journal of Engineering and Applied Sciences 14 (4): 1062-1069, 2019

ISSN: 1816-949X

© Medwell Journals, 2019

A Closed U-BG-Filter and Completely Closed U-BG-Filter of a U-BG-BH-Algebra

Husein Hadi Abbass and Alaa Abdulla Hamza Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq

Abstract: In this study, we introduce the notion of closed U-BG-filter and completely closed U-BG-filter in U-BG-BH-algebra and observed that every closed and completely closed filter of a U-BG-BH-algebra is a closed and completely closed U-BG-filter. A necessary and sufficient condition is derived for every closed and completely closed U-BG-filter of U-BG-BH-algebra to become a closed or completely closed filter. Some properties of closed and completely closed U-BG-filter are studied with respect to homomorphism, Cartesian products and quotient U-BG-BH-algebra.

Key words: BH-algebra, U-BG-BH-algebra, filter, U-BG-filter, closed filter, completely closed filter, homomorphism, Cartesian products and quotient U-BG-BH-algebra

INTRODUCTION

Deeba (1980) introduced the notion of filters and in the setting of bounded implicative BCK-algebra constructed quotient algebra via. a filter. Also, Deeba and Thaheem (1990) studied a filters in BCK-algebra in 1990. Hoo (1991) was presented the filters in BCI-algebra. Meng (1996) introduced the notion of BCK-filter in BCK-algebra. Abbass and Dahham (2016) discussed the concept of completely closed filter of a BH-algebra and completely closed filter with respect to an element of BHalgebra. The notion of U-BG-BH-algebra was introduced and extensivelys studied by Abbass and Mahdi (2014). This class of U-BG-BH-algebra was introduced as a combination of the classes of BH-algebra and BG-algebra. Abbass and Hamza (2017) introduced the notion of U-BGfilter of U-BG-BH-algebra. In this study, the notion of closed U-BG-filter and completely closed U-BG-filter of U-BG-BH-algebra are introduced. Some researchers have studied the filters in a practical way different from what we study in our research, for example, by Hameed and Purushothaman. Also, by Jeyachitra and Manickam, researchers proposed and developed a simple and new reconfigurable millimeter-wave photonic transversal filter featuring high quality windowing property.

MATERIALS AND METHODS

In this study, some basic concepts about a BG-algebra, BH-algebra, associative BH-algebra, BH-ideal, regular subset of X, U-BG-BH-algebra, filter, U-BG-filter, subalgebra, normal subset and quotient U-BG-BH-algebra are given.

Definition 1; Kim and Kim (2008): A BG-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- x*x = 0, for all $x \in X$
- x*0 = x, for all $x \in X$
- (x*y)*(0*y) = x, for all x, y $\in X$

Lemma 1; Kim and Kim (2008): Let (X, *, 0) be a BG-algebra. Then:

- The right cancellation law holds in X, i.e., x*y = z*y
 implies x = z,
- 0*(0*x) = x, for all $x \in X$
- If $x^*y = 0$, then x = y, for all $x, y \in X$
- If 0*x = 0*y, then x = y for all $x, y \in X$
- $(x^*(0^*x))^*x = x$ for all $x \in X$

Definition 2; Jun *et al.* **(1998):** A BH-algebra is a nonempty set X with a constant 0 and a binary operation "*" satisfying the following conditions:

- x*x = 0, for all $x \in X$
- $x^*y = 0$ and $y^*x = 0$ imply x = y, for all $x, y \in X$
- x*0 = x, for all $x \in X$

Definition 3; Abbass and Mhadi (2014): A U-BG-BH-algebra is defined to be a BH-algebra X in which there exists a proper subset U of X such that:

- $0 \in U$, |U| = 2
- U is a BG-algebra

Corresponding Author: Husein Hadi Abbass, Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq

Definition 4; Baik and Park (2010): A nonempty subset S of a BH-algebra X is called a BH-subalgebra or subalgebra of X if $x^*y \in S$ for all $x, y \in S$.

Definition 5; Abbass and Dahham (2012c): Let, X be a BH-algebra, a non-empty subset N of X is said to be normal of X if $(x*a)*(y*b)\in N$ for any x*y and $a*b\in N$, for all $x, y, a, b\in X$.

Theorem 1; Abbass and Dahham (2012c): Every normal subset N of a BH-algebra X is a subalgebra of X.

Definition 6; Abbass and Dahham (2012a): A BH-algebra X is called an associative BH-algebra if (x*y)*z = x*(y*z), For all x, y, $z \in X$.

Theorem 2; Abbass and Dahham (2014): Let, X be an associative BH-algebra. Then the following proposition are hold:

- 0*x = x, for all $x \in X$
- x*y = y*x, for all $x, y \in X$
- $x^*(x^*y) = y$, for all $x, y \in X$
- $(z^*x)^*(z^*y) = x^*y$, for all x, y, $z \in X$
- $x*y = 0 \Rightarrow x = y$, for all $x, y \in X$
- $(x^*(x^*y))^*y = 0$, for all $x, y \in X$
- $(x^*y)^*z = (x^*z)^*y$, for all x, y, $z \in X$
- (x*z)*(y*t) = (x*y)*(z*t), for all x, y, z, t $\in X$

Definition 7; Abbass and Mohammed (2013): A subset R of a BH-algebra X is said to be regular if it satisfies: $(\forall x \in R)(\forall Y \in X)(x^*y \in R \Rightarrow y \in R)$.

Definition 8; Jun *et al.* (1998): Let, X be a BH-algebra and $I(\neq \emptyset) \subseteq X$. Then, I is called an ideal of X if it satisfies:

- 0**∈**I
- If x*y∈I and y∈I⇒x∈I, for all x∈X

Definition 9; Saeid *et al.* **(2009):** An ideal I of a BCH-algebra X is called a closed ideal of X if for every $x \in I$, we have $0*x \in I$. We generalize the concept of an ideal to a BH-algebra.

Definition 10: An ideal I of a BH-algebra X is called a closed ideal of X if: $0*x \in I$, for all $x \in I$.

Definition 11; Abass and Dahham (2012a): An ideal I of a BH-algebra X is called a completely closed ideal of X if: $x^*y \in I$, for all x, $y \in I$.

Definition 12; Abbass and Mahdi (2016): Let, X be a BH-agebra and I be a subset of X. Then, I is called a BH-ideal of X if it satisfies the following conditions:

- 0∈I
- $x^*y \in I$ and $y \in I$ imply $x \in I$
- $x \in I$ and $y \in X$ imply $x * y \in I$, $I * X \subseteq I$

Definition 13; Abbass and Mhadi (2014): A nonempty subset I of a U-BG-BH-algebra X is called a U-BG-ideal of X related to U if it satisfies:

- 0**∈**I
- $x^*y \in I \rightarrow x \in I$, for all $x \in U$, $y \in I$

Definition 14; Abbass and Dahham (2012b): A filter of a BH-algebra X is a non-empty F of X such that:

- F_1 : if $x \in F$ and $y \in F$, then $y^*(y^*x) \in F$ and $x^*(x^*y) \in F$
- F₂: if x∈F and x*y = 0 then y∈F. Further F is a closed filter if 0*x∈F, for all x∈F. In sequel we shall denote y*(y*x) by x^y

Definition 15; Abbass and Dahham (2012b): Let, X be a BH-algebra and F is a filter. Then, F is completely closed filter if $x^*y \in F$, for all $x, y \in F$.

Definition 16; Abbass and Hamza (2017): A nonempty subset F of a U-BG-BH-algebra X is called a U-BG- filter of X, if it satisfies (F_1) and:

F₃: if x∈F and x*y = 0 then y∈F. for all y∈U

Theorem 3; Abbass and Hamza (2017): Let, X be a U-BG-BH-algebra and F be a U-BG-filter of X such that $x^*y \neq 0$, for all $y \notin F$ and $x \in F$. Then F is a filter of X.

Proposition 1; Abbass and Hamza (2017): Let, X be a U-BG-BH-algebra. Then, every filter of X is a U-BG-filter of X.

Proposition 2; Abbass and Hamza (2017): Let, X be a U-BG-BH-algebra and let $\{F_i, i \in \lambda\}$ be a family of U-BG-filters of X. Then, $\bigcap_{i \in \lambda} F_i$ is a U-BG-filter of X.

Proposition 3; Abbass and Hamza (2017): Let, X be a U-BG-BH-algebra and let $\{F_i, i \in \lambda\}$ be a chain of U-BG-filters of X. Then, $\bigcup_{i \in \lambda} F_i$ is a U-BG-filter of X.

Remark 1: Let $(X, *_x, O_x)$ and $(Y, *_y, O_y)$ be BH-algebra. A mapping $f: X \rightarrow Y$ is called a homomorphism if $f(x *_x y) = f(x) *_y f(y)$ for any $x, y \in X$. A homomorphism f is called a monomorphism (resp., epimorphism) if it injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebra X and Y are said to be isomorphic, written $X \cong Y$, if there exists an isomorphism f:

 $X \rightarrow Y$. For any homomorphism $f: X \rightarrow Y$, the set $\{x \in X: f(x) = 0_Y\}$ is called the kernel of f, denoted by ker (f), the set $\{f(x):x \in X\}$ is called image of f, denoted by Im (f). Notice that $f(0_X) = 0_Y$. By Jun *et al.* (1998) and the set $\{x \in X: f(x) = y, \text{ for some } y \in Y\}$ is preimage of f, denoted by $f^1(Y)$ by Abbass and Mhadi (2014).

Theorem 4; Abbass and Hamza (2017): Let, f: $(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH- monomorphism and let F be a U-BG-filter of X. Then, f(F) is f(U)-BG-filter of Y.

Theorem 5; Abbass and Hamza (2017): Let, $f:(X,*,0) \rightarrow (Y,*',0')$ be a U-BG-BH-isomorphism. If F is a U-BG-filter of Y. Then, $f^1(F)$ is $f^1(U)$ -BG-filter of X.

Proposition 4; Abbass and Hamza (2017): Let, X and Y be two U-BG-BH-algebras and $f:(X,*,0)\rightarrow(Y,*',0')$ be a BH-homomorphism. Then, $\ker(f)$ is a U-B G-filter of X.

Remark 2; Kim and Kim (2008): Let (X, *, 0) be a BG-algebra and let, N be a normal subalgebra of X. Define a relation \sim_N on X by $x \sim_N y$ if and only if $x*y \in N$ where x, $y \in X$. Then, it is easy to show \sim_N is an equivealence relation on X. Denote the equivalence class containing x by $[x]_N$, i.e., $[x]_N = \{y \in X: x \sim_N y\}$ and let $X/N = \{[x]_N: x \in X\}$. If * denoted on X/N by $[x]_N [Y]_N = [xy]_N$. Then $(X/N, *, [0]_N)$ is a BG-algebra and it is called quotient BG-algebra of X by N, the researchers by Abbass and Dahham (2016), generalized this concept to BH-algebra to obtain $(X/N, *, [0]_N)$ quotient BH-algebra of X by N.

Theorem 6; Abbass and Hamza (2017): Let (X, *, 0) be a U-BG-BH-algebra and N be a normal subalgebra, if F is a U-BG-filter in X, then, F/N N is U/N-BG-filter of $(X/N, *', [0]_N)$.

Proposition 5; Abbass and Mhadi (2016): Let, X be a U-BG-BH-algebra. Then, every BH-ideal is a completely closed U-BG-ideal of X.

Theorem 7; Abbass and Dahham (2012): Let, N be a normal subalgebra of a BH-algebra X. Then, X/N is a BH-algebra.

Remark 3; Abbass and Hamza (2017): Let $\{(X_i, *, 0_i) : i \in \lambda\}$ be a family of U_i -BG-BH-algebra. Define the Cartesian product of all X_i , $i \in \lambda$ to be the structure $\prod_{i \in \lambda} X_i = (\prod_{i \in \lambda} X_i, \circledast, (0_i))$ where, $\prod_{i \in \lambda} X_i$ is the set of tuples $\{(x_i) : \text{ for all } i \in \lambda \text{ and } x_i \in X\}$ and whose binary operation \circledast is given by $(x_i) \circledast (y_i) = (x_i *_i y_i)$, for all $i \in \lambda$ and x_i , $i y_i \in X_i$, Note that the binary operation \circledast is componentwise.

Theorem 8; Abbass and Hamza (2017): Let $(\prod_{i \in \lambda} X_i, \otimes, (O_i))$ be a $\prod_{i \in \lambda} U_i$ -BG-BH-algebra. If $\{(F_i, *_i, O_i): i \in \lambda\}$ be a family of U-BG-filter of X_i . Then $\prod_{i \in \lambda} F_i$ is a $\prod_{i \in \lambda} U_i$ -BG-filter of the product algebra $\prod_{i \in \lambda} X_i$.

Definition 17; Zhang *et al.* **(2001):** A BH-algebra X is said to be normal BH-algebra if it satisfies the following conditions:

- 0*(x*y) = (0*x)*(0*y) for all x, $y \in X$
- (x*y)*x = 0*y, for all $x, y \in X$
- $(x^*(x^*y))^*y = 0$ for all $x, y \in X$

RESULTS AND DISCUSSION

In this study, the notion of closed and completely closed U-BG-filter of U-BG-BH-algebra are introduced for our discussion, we shall link these notions with the notions which mentioned in preliminaries.

Definition 18: A U-BG-filter F of a U-BG-BH-algebra X is called a closed U-BG-filter of X if: $0*x \in F$ for all $x \in F$.

Example 1: Consider the U-BG-BH-algebra $X = \{0, 1, 2, 3, 4\}$ with binary operation "*" defined as follows Table 1: where, $U = \{0, 1, 2\}$, the U-BG-filter $F = \{1, 3\}$ is a closed U-BG-filter of X. But the U-BG-filter $F = \{1, 4\}$ is not a closed U-BG-filter, since, $4 \in F$ and $0*4 = 3 \notin F$.

Definition 19: A U-BG-filter F of a U-BG-BH-algebra X is called a completely closed U-BG-filter of X if: $x*y \in F$ for all $x, y \in F$.

Example 2: Consider the U-BG-BH-algebra X in example 1, the U-BG-filter $F = \{0, 1, 3\}$ is a completely closed U-BG-filter of X but the U-BG-filter $F = \{0, 1, 4\}$ is not a completely closed U-BG-filter of X, since, 1, $4 \in F$ but $1*4 = 2 \in F$.

Remark 4: Let, X be a U-BG-BH-algebra. The filters $F = \{0\}$ and F = X are completely closed U-BG-filters of X which are called a trivial completely closed U-BG-filters of X.

Proposition 6: Let, X be a U-BG-BH-algebra. Then, every closed filter of X is a closed U-BG-filter of X.

Proof: Directly by Proposition 1 and Definition 10.

Remark 5: The converse of Proposition 7 is not correct in general as in the following example.

Table 1: Closed U-BG-filter							
*	0	1	2	3	4		
0	0	1	2	3	3		
1	1	0	1	3	2		
2	2	2	0	1	2		
3	3	3	1	0	0		
4	4	3	1	4	Λ		

Example 3: Consider the U-BG-BH-algebra X in Example (1), the U-BG-filter $F = \{0, 1, 3\}$ of X is a closed U-BG-filter of X but it is not a closed filter of X because F is not a filter of X, since, $3 \in F$, 3*4 = 0 but $4 \notin F$.

Proposition 7: Let X be a U-BG-BH-algebra. Then every completely closed filter of X is a completely closed U-BG-filter of X.

Proof: Its directly by Definition (19) and Proposition (1).

Remark 6: The converse of Proposition (7) is not correct in general as in the following example.

Example 4: Consider the U-BG-BH-algebra X in example 1, the U-BG-filter $F = \{0, 1, 3\}$ of X is a completely closed U-BG-filter of X but it is not a completely closed filter of X because F is not a filter, since, $1 \in F$, 1*4 = 0 but $4 \notin F$.

Proposition 8: Let, X be a U-BG-BH-algebra and F be a completely closed U-BG-filter of X. Then, $0 \in F$.

Proof : Let, F be a completely closed U-BG-filter of X and let $x \in F$. then $x^*x \in F$ (since, F is a completely closed U-BG-filter of X). So, by using Definition (2) (I), $0 \in F$ (since, $x^*x = 0$).

Proposition 9: Let, X be a U-BG-BH-algebra. Then, every completely closed U-BG-filter of X is a closed U-BG-filter of X.

Proof: Its directly from Proposition (8) and by applying Definition (19), we get $0*x \in I$, so, I is a closed U-BG-filter of X.

Remark 7: The converse of Proposition (9) is not correct in general as in the following example.

Example 5: Consider a U-BG-BH-algebra, $X = \{0, 1, 2, 3, 4\}$ with binary operation "*" defined as follows Table 2: where, $U = \{0, 1, 2\}$. The U-BG-filter $F = \{0, 3, 4\}$ a closed U-BG-filter of X but it is not a completely closed U-BG-filter, since, $3, 4 \in F$ and $3*4 = 2 \notin F$.

Proposition 10: Let, X be a U-BG-BH-algebra and F be a completely closed U-BG-filter of X. Then, F is BH-algebra with the same binary operation on X and the constant 0.

Table 2: Closed U-BG-filter is not a completely closed U-BG-filter								
*	0	1	2	3	4			
0	0	1	2	0	0			
1	1	0	2	2	1			
2	2	1	0	1	2			
3	3	2	3	0	2			

2

0

Proof: straightforward.

Theorem 9: Let, X be a U-BG-BH-algebra and let F be a U-BG-filter of X. Then, F is a completely closed U-BG-filter of X if and only if F is a subalgebra of X contain in U.

Proof: Let, F be a completely closed U-BG-filter of X and let x, y \in F, then, x*y \in F (since, F is a completely closed U-BG-filter of X.), so, F is a subalgebra of X. Conversely, let F is a subalgebra. Let x, y \in F, so we have x*(x*y) \in F and y*(y*x) \in F [by Definition (4)],

Let $x \in F$, $x^*y = 0$, $y \in U$, we get $x \in U$ (Since $F \subseteq U$) and applying Lemma (1) (iii), we get x = y, hence, $y \in F$, therefore, F is a U-BG-filter of X. Now, let x, $y \in F$, so, $x^*y \in F$ for all x, $y \in F$ (since, F is a subalgebra). Then F is completely closed U-BG-filter of X.

Lemma 2: Let, X be a U-BG-BH-algebra and let, N be a normal subset of X contain in U. Then, N is a completely closed U-BG-filter of X.

Proof: Directly from Theorem 1 and 9.

Proposition 11: Let, X be a U-BG-BH-algebra and F be a completely closed U-BG-filter of X. Then, F is a completely closed U-BG-ideal of X.

Proof: Let, F be a completely closed U-BG-filter of X.

- 0∈F (by Proposition 8)
- Let, x*y∈F, y∈F, x∈U. Since, F is a completely closed U-BG-filter of X. Then (x*y)*y∈F. Since, F is a U-BG-filter of X, so, we have y∈U. Now, take y = 0

Since, U is a BG-algebra, then $(x*0)*0\epsilon F$, so, $x\epsilon F[by$ Definition (1) (ii).

 Let x, y∈F, so, x*y∈F (Since, F is a completely closed U-BG-filter of X), therefore, F is a completely closed U-BG-ideal of X

Proposition 12: Let, X be U-BG-BH-algebra and F be a closed U-BG-filter such that $x^*y \neq 0$, for all $y \notin F$ and $x \in F$. Then, F is a closed filter of X.

Proof: Let, F be a closed U-BG-filter of X. Then, F is a U-BG-filter of X by applying Theorem 3, we get F is a filter of X. Now, let, $x \in F$. Then, $0*x \in F$ (since, F is a closed U-BG-filter). Therefore, F is a closed filter of X.

Proposition 13: Let, X be U-BG-BH algebra and F be a completely closed U-BG-filter of X such that $x^*y \neq 0$, for all $y \notin F$ and $x \in F$. Then, F is a completely closed filter of X.

Proof: Let, F be a completely closed U-BG-filter of X. Then, F is a U-BG-filter of X. By applying Theorem 3, we get, F be a filter of X. Now, let $x, y \in F$, so, $x^*y \in F$ (since, F is a completely closed U-BG-filter). Therefore, F is a completely closed filter of X.

Theorem 10: Let, X be a normal U-BG-BH algebra and let, R be regular subset of X such that $R\subseteq U$. If R is a U-BG-ideal, then, R is a U-BG-filter of X.

Proof: Let, R be a U-BG-ideal of X.

- Let, x, y∈R, since, R is a U-BG-ideal. Then 0∈R. Now, (x*(x*y))*y∈R (By Definition (17) (iii)], so, x*(x*y)∈R [by Definition (13) (ii)]. Similarly, y*(y*x)∈R
- Let x∈R, x*y = 0, y∈U, then, x*y∈R and x∈R. By Definition 7, we get, y∈R, therefore, R is a U-BG-filter of X

Corollary 1: Let, X be a normal U-BG-BH algebra and let, R be regular subset of X which is contain in U. If R is a completely closed U-BG-ideal of X, then, R is a completely closed U-B-filter of X.

Proof: Let, R be a completely closed U-BG-ideal. Then, R is a U-BG-ideal of X by using theorem 10, we get R is a U-BG-filter of X. Now, let $x, y \in R$, hence, $x^*y \in R$ (since, R is a completely closed U-BG-ideal). Therefore, R is a completely closed U-B-filter of X.

Theorem 11: Let, X be an associative U-BG-BH-algebra and F be a U-BG-filter contain in U. Then, F is a completely closed U-BG-filter if and only if F is a completely closed U-BG-ideal of X.

Proof: Let, F be a completely closed U-BG- filter: $0 \in F$ (by Proposition 8). Let, $x^*y \in F$, $y \in F$, $x \in U$, then $(x^*y)^*y \in F$ (since, F is a completely closed U-BG-filter). So, x^* (y^*y) $\in F$ (by Definition (6) by applying Definition (2) (i), we get, $x^*0 \in F$, hence, $x \in F$ (By using Definition (2)(iii)). Therefore, F is a U-BG- ideal of X.

Let, $x, y \in F$. Then, $x^*y \in F$ (since, F is a completely closed U-BG-filter), so, F is a completely closed U-BG-ideal. Conversely, let F be a completely closed U-BG-ideal of X.

Table 3: Closed U-BG-ideal is not a closed U-BG-filter

*	0	1	2	3	4
0	0	1	2	0	4
1	1	0	0	1	4
2	2	2	0	0	4
3	3	3	3	0	4
4	4	4	4	4	0

Let, $x, y \in F$, then $x^*y \in F$, $y^*x \in F$ (since, F is a completely closed U-BG- ideal), then, we have, $x^*(x^*y) \in F$ and $y^*(y^*x) \in F$. Let, $x \in F$, $x^*y = 0$, $y \in U$, since, $F \subseteq U$, we have $x \subseteq U$, so, x = y (since, U is a BG-algebra), then, $y \subseteq F$, hence, F is a U-BG-filter of X. Let, $x, y \in F$, then, $x^*y \in F$ (since, F is a completely closed U-BG-ideal), so, F is a completely closed U-BG-filter of X.

Theorem 12: Let, X be an associative U-BG- BH-algebra. Then, every closed U-BG-ideal of X is a closed U-BG-filter of X.

Proof: Let, X be an associative BH-algebra and let I be a closed U-BG-ideal of X.

- Let, x, y \in I, since, X is an associative, we obtain, y*(y*x) = (y*y)*x=0*x \in I (Since I is a closed U-BG-ideal) and x*(x*y) = (x*x)*y = 0*y \in I
- Let, x∈I and y∈U such that x*y = 0. Thus, x = y (by Theorem (2) (v)), so, y∈I, then we get, I is a U-BGfilter of X
- Let, x∈I. By Definition (8) (i), we obtain 0∈I, so, 0*x∈I (since, I is a closed U-BG- ideal), therefore, I is a closed U-BG- filter of X.

Remark 8: If X is not associative U-BG-BH-algebra then the Theorem 12 is not correct in general as in the following example:

Example 6: Let, X be a U-BG-BH-algebra, $X = \{0, 1, 2, 3, 4\}$ with binary operation "*" defined as follows Table 3 and $U = \{0, 2\}$ the closed U-BG-ideal $I = \{0, 1\}$ is not a closed U-BG-filter, since, I is not a filter. Since, $1 \in I$, 1*2 = 0, $2 \in U$ but $2 \notin I$.

Proposition 14: Let, X be a U-BG-BH-algebra and the right cancellation low holds in X. Then, every BH-ideal of X is a completely closed U-BH-filter of X.

Proof: Let, I be a BH-ideal of X. By Proposition 5, we get I is a completely closed U-BG-ideal of X:

- Let, $x, y \in I$, so, we have $x^*(x^*y) \in F$, $y^*(y^*x) \in F$ (since, I is a completely closed U-BG-ideal of X
- Let, x∈I, x*y = 0, y∈U, then, x*y = y*y, so, by Lemma

 (1) (i), we obtain x = y, imply that y∈F. Therefore, I is a U-BG-filter of X

Let, x, y∈I. By Definition (12) (iii), we get x*y∈I. Then,
 I is a completely closed U-BG-filter of X

Remark 9: The converse of Proposition 14 is not correct in general as in the following example:

Example 7: Consider U-BG-BH-algebra X in Example 1, $F = \{0, 3\}$ is a completely closed U-BG-filter of X but it is not a BH-ideal of X, since, $3 \in F$, $2 \in X$ but $3*2 = 1 \notin F$.

Proposition 15: Let $\{F_i, I \in \lambda\}$ be a family of closed U-BG-filters of a U-BG-BH-algebra X. Then, $\bigcap_{i \in \lambda} F_i$ is a closed U-BG-filters of X.

Proof: Since, F_i is a closed U-BG-filters, $\forall i \in \lambda$. then, F_i is a U-BG-filter, $\forall i \in \lambda$ (by Definition 18), so, $\bigcap_{i \neq \lambda} F_i$ is a U-BG-filter (by Proposition 2).

Now, let $x \in \bigcap_{i \in \lambda} F_i$, hence, $x\lambda \ Fi_i \forall i \in \lambda$, so, $0*x \in F_i \forall i \in \lambda$ (Since, F is a closed U-BG-filter of X. By Definition 18), then $0*x \in \bigcap_{i \in \lambda} F_i$. So, we get, $\bigcap_{i \in \lambda} F_i$ is a closed U-BG-filter of X.

Proposition 16: Let $\{F_i, i \in \lambda\}$ be a family of completely closed U-BG-filters of a U-BG-BH-algebra X. Then, $\bigcap_{i \in \lambda} F_i$ is a completely closed U-BG-filter of X.

Proof: Since, F_i is a completely closed U-BG-filter of $X, \forall_i \in \lambda$, then, F_i is a U-BG-filter of X, $\forall_i \in \lambda$ (by Definition 19). By proposition 2, we obtain $\bigcap_{i \in \lambda} F_i$ is a U-BG-filter of X. Now, let $x, y \in \bigcap_{i \in \lambda} F_i$, so, $x, y \in F_i \ \forall_i \in \lambda$, then, $x^*y \forall_i \in \lambda F_i$, $\forall_i \in \lambda$ (since, F is a completely closed U-BG-filter), hence, $x^*y \in \bigcap_{i \in \lambda} F_i$. Therefore, $\in \bigcap_{i \in \lambda} F_i$ is a completely closed U-BG-filter of X.

Proposition 17: Let $\{F_i, i \in \lambda\}$ be a chain of closed U-BG-filters of a U-BG-BH-algebra X. Then, $\bigcup_{i \in \lambda} F_i$ is a closed U-BG-filter of X.

Proof: Since, F_i is a closed U-BG-filter of X, $\forall_i \in \lambda$, then, F_i is a U-BG-filter of X, $\forall_i \in \lambda$ (by Definition 18), so, $x \in \bigcup_{i \in \lambda} F_i$ is a U-BG-filter of X (by Proposition 3). Now, let $x \in \bigcup_{i \in \lambda} F_i$, Then, there exist F_i , $F_k \in \{F_i\}$ is λ such that $x \in F_i$, $y \in F_k$ and either $F_i \subseteq F_k$ or $F_k \subseteq F_i$ (since, $\{F_i\}$, $i \in \lambda$ is a chain]. If $F_i \subseteq F_k$, then, $x \in F_k$ hence, $0*x \in F_k$ (since, F_k is a closed U-BG-filter)

Similarly, if $F_k \subseteq F_i \Rightarrow 0 * y \in \bigcup_{i \in \lambda} F_i$, therefore, $\bigcup_{i \in \lambda} F_i$ is a closed

U-BG-filter of X.

Proposition 18: Let, $\{F_i, i \in \lambda\}$ be a chain of completely closed U-BG-filters of a U-BG-BH-algebra X. Then, $\bigcup_{i \in \lambda} F_i$ is a completely closed U-BG-filter of X.

Proof: Since, F_i is a completely closed U-BG-filter of X, $\forall_i \in \lambda$, we get F_i is a U-BG-filter of X, $\forall_i \in \lambda$. By definition (19), Therefore, $\bigcup_{i \in \lambda} F_i$ is a U-BG-filter of X (by Proposition 3). Now, let $x, y \in \bigcup_{i \in \lambda} F_i$, so, there exist F_i , $F_k \in \{F_i\} i \in \lambda$ such

that $x \in F_i$, $y \in F_k$, then, either $F_i \subseteq F_k$ or $F_k \subseteq F_i$ (since, $\{F_i\}$, $i \in \lambda$ is a chain). If $F_i \subseteq F_k$, hence, $x, y \in F_k$, so, $x^*y \in F_k$ (since, F_k is a completely closed U-BG filter]. Similarly, if $F_k \subseteq F_i \rightarrow x^*y \in \bigcup_{i \in \lambda} F_i$. Therefore, $\bigcup_{i \in \lambda} F_i$ is a completely closed U-BG-filter of X.

Proposition 19: Let, $f:(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH-monomorphism and let F be a closed U-BG-filter of X. Then, f(F) is a closed f(U)-BG-filter of Y.

Proof: Let, F be a closed U-BG-filter of X, then, F is a U-BG-filter of X (by Definition (18)), so, by Theorem (4), we obtain f(F) is a f(U)-BG-filter of Y. Now, let $y \in f(F)$. Then, there exist $a \in F$ such that y = f(a), hence, $0^{l*'}y = 0^{l}$ * $f(a) = f(0)^{*'}f(a) = f(0)^{*'}f(a)$.

Since, $0*a \in F$ (by Definition 18), we get $f(0*a) \in f(F)$, so, $0'*'y \in f(F)$. Therefore, f(F) is a closed f(U)-BG-filter of Y.

Proposition 20: Let, $f:(X,*,0) \rightarrow (Y,*',0')$ be a U-BG-BH-monomorphism and let F be a completely closed U-BG-filter of X. Then, f(F) is a completely closed f(U)-BG-filter of Y.

Proof: Let, F be a completely closed U-BG-filter of X, so, F is a U-BG-filter of X (by Definition 19), then, f(F) is a f U-BG-filter of Y (Theorem 4).

Now, let, x, yef (F), so, there exist a, beF such that x = f(a), y = f(b), then $x^*/y = f(a)^*/f(b) = f(a^*b)$. Since, F is a completely closed U-BG-filter of X, then, we obtain a^*beF , so, $f(a^*b)ef(F)$, hence, $x^*/yef(F)$. Therefore, f(F) is a completely closed f(U)-BG-filter of X.

Theorem 13: Let, $f:(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH-isomorphism. If F is a closed U-BG-filter of Y. Then, $f^1(F)$ is a closed $f^1(U)$ -BG-filter of X.

Proof: Let, F be a closed U-BG-filter of Y. Then, F be a U-BG-filter of Y (by Definition 18), so, $f^1(F)$ is a $f^1(U)$ -BG-filter of X (by Theorem 5). Now, let, $y \in f^1(F)$, hence, we have, $f(y) \in F$ and $f(y) \in F$ (since, F is a closed U-BG-filter of Y), then, $f(0*y) \in F$, so, we get, $f(y) \in F$ 0. Therefore, $f(y) \in F$ 1 is a closed $f(y) \in F$ 2.

Theorem 14: Let, $f:(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH-isomorphism. If F is a completely closed U-BG-filter of Y. Then, $f^1(F)$ is a completely closed $f^1(U)$ -BG-filter of X.

Proof: Let, F be completely a closed U-BG-filter of Y. So, F be a U-BG-filter of Y (by Definition 19), then, $f^1(F)$ is a $f^1(U)$ -BG-filter of X (by Theorem 5). Now, let, x, $y \in f^1(F)$, hence, $f(x) \in F$, $f(y) \in F$. Since, F is a completely closed U-BG-filter of Y, we obtain $f(x)^{*'}f(y) \in F$, then, $f(x^*y) \in F$, so, we get $x^*y \in f^{-1}(F)$, therefore, $f^1(F)$ is a completely closed $f^1(U)$ -BG-filter of X.

Proposition 21: Let, $f:(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH-homomorphism. Then ker (f) is a completely closed filter of X.

Proof: Let, $f:(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH-homomorphism. Then $\ker(f)$ is a U-BG-filter (by Proposition 4). Now, let, x, $y \in \ker(f)$, we have f(x) = f(y) = 0' and then, f(x*y) = f(x)*'f(y) = 0' by Remark (1), we get $x*y \in \ker(f)$, therefore, $\ker(f)$ is a completely closed U-BG-filter of X.

Proposition 22: Let, $f:(X, *, 0) \rightarrow (Y, *', 0')$ be a U-BG-BH-homomorphism. Then, ker(f) is a closed filter of X.

Proof: Directly by Proposition 9 and 21.

Proposition 23: Let, X be a U-BG-BH-algebra, N be a normal subalgebra of X and F be a closed U-BG-filter of X. Then, F/N is a closed U/N-BG-filter of X/N.

Proof: Let, F be a closed U-BG-filter of X, so, F is a U-BG-filter of X, (by Definition 18), then, F/N is a U/N-BG-filter of X/N (by Theorem 6). Now, let $(0)_N$, $(y)_N \in F/N$, since, $0*y\in F$ (by F is closed U-BG-filter], so $[0]_{N^*}$ [y]_{N=} $[0*y]_N \in F/N$, therefore, F/N is a closed U/N-BG-filter in X/N.

Proposition 24: Let, X be a U-BG-BH-algebra, N be a normal subalgebra of X and F is a completely closed U-BG-filter of X. Then, F/N is a completely closed U/N-BG-filter of X/N.

Proof: Let, F be a completely closed U-BG-filter of X by Definition (19), we obtain F is a U-BG-filter of X, then, F/N is a U/N-BG-filter of X/N [by Theorem (6).

Now, let $[x]_N$, $[y]_N \in F/N$, so, $[x]_{N^*}$ $[y]_{N^*}$ $[x^*y]_N \in F/N$ [since $x^*y \in F$ by F is completely closed U-BG-filter], then, we get F/N is a completely closed U/N-BG-filter in X/N.

Corollary 2: Let, X be a U-BG-BH-algebra, N be a normal subalgebra of X and F is a completely closed U-BG-filter in X. Then, F/N is a closed U/N-BG-filter of X/N.

Proof: Let, F be a completely closed U-BG- filter of X. By Proposition (9), we get F is a closed U-BG- filter of X, then, F/N is a closed U/N-BG-filter in X/N. By Proposition (24).

Theorem 15: Let $(\prod_{i \in \lambda} X_i, \otimes, (0_i))$ be a $\prod_{i \in \lambda} U_i$ -BG-BH-algebra. If $\{F_i: i \in \lambda\}$ be a family of a closed U_i -BG-filter of X_i . Then $\prod_{i \in \lambda} F_i$ is a closed $\prod_{i \in \lambda} U_i$ -BG-filter of the product algebra $\prod_{i \in \lambda} X_i$.

Proof: Let $\{F_i: i\in \lambda\}$ be a family of a closed U_i -BG-filter of X_i . By Definition (18), we obtain $\{F_i: i\in \lambda\}$ be a family of a U_i -BG-filter of X_i , then, $\prod_{i\in \lambda}F_i$ is a $\prod_{i\in \lambda}U_i$ -BG-filter of $\prod_{i\in \lambda}X_i$ (by Theorem 8). Now, let $y=(yi)\in \prod_{i\in \lambda}F_i$ for all $y_i\in F_i$ and $i\in \lambda$, so, $(0_i)\otimes (y_i)=(0_i*_iy_i)$, since, F_i is a closed U_i -BG-filter of X_i , then $0*y_i\in F_i$ (By definition 18), hence, $(0)\otimes i(y_i)\in \prod_{i\in \lambda}F_i$, then, $\prod_{i\in \lambda}F_i$ is a closed $\prod_{i\in \lambda}U_i$ -BG-filter of $\prod_{i\in \lambda}X_i$.

Theorem 16: Let $(\prod_{i \in \lambda} X_i, \otimes, (O_i))$ be a $\prod_{i \in \lambda} U_i$ -BG-BH-algebra. If $\{(F_i, *_b, O_i): i \in \lambda\}$ be a family of a completely closed U_i -BG-filter of X_i . Then, $\prod_{i \in F} i$ is a completely closed $\prod_{i \in \lambda} U_i$ -BG-filter of the product algebra $\prod_{i \in \lambda} X_i$.

Proof: Let $\{F_i: i\in \lambda\}$ be a family of a completely closed U_i -BG-filter of X_i . Then $\{F_i: i\in \lambda\}$ be a family of a U_i -BG-filter of X_i (by Definition 19), so, $\prod_{i\in \lambda}F_i$ is a $\prod_{i\in \lambda}U_i$ -BG-filter of $\prod_{i\in \lambda}X_i$ (by Theorem 8). Now, let $x=(x_i), y=(y_i)\in \prod_{i\in \lambda}F_i$ for all $x_i, y_i\in F_i, x_i, y_i\in F_i$ and $i\in \lambda$, then $x\otimes y=(x_i)\otimes (y_i)=(x_i*_iy_i)\in \prod_{i\in \lambda}F_i$, since, F_i is a completely closed U_i -BG-filter of X_i , then $x_i*_iy_i\in F_i$, hence, $(x_i)\otimes (y_i)\in \prod_{i\in \lambda}F_i$. Therefore, $\prod_{i\in \lambda}F_i$ is a completely closed $\prod_{i\in \lambda}U_i$ -BG-filter of $\prod_{i\in \lambda}X_i$.

Proposition 25; (Extension property for closed U-BG-filter in U-BG-BH-algebra): Let X be a normal U-BG-BH-algebra F is a completely closed U-BG-filter of X, G is a closed ideal of X such that $G \subseteq U$. Then G is a completely closed U-BG-filter of X.

Proof: Let $x, y \in G$, since, F be a completely closed U-BG-filter of X, then, $0 \in F$ (by Proposition 8), so, $0 \in G$ (since, $F \subseteq G$) by Definition (17), we get $(x^*(x^*y))^*y \in G$. So, by Definition (8), we obtain $x^*(x^*y) \in G$. Similarly, $y^*(y^*x) \in G$.

Let, $x \in G$, $x^*y = 0$, $y \in U$, so, $x \in U$ (since, $G \subseteq U$). Then, $x^*y = y^*y$, imply that x = y (By Lemma (1)), so, we obtain $y \in G$. Therefore, G is U-BG-filter of X. Now, since, G is a closed ideal of X, thus, $0^*y \in G$ (by Definition 10). By Definition (17), we obtain $(x^*y)^*x \in G$. So, we have $(x^*y)^*x \in G$, $x \in G$, then $x^*y \in G$ (Since, G is an ideal of X), therefore, G is a completely closed U-BG-filter of X.

CONCLUSION

In this study, the notions of closed and completely closed U-BG-filter of U-BG-BH-algebra are introduced. Furthermore, the results are examined in terms of the relationship between closed and completely closed U-BG-filters. In addition, the relationship between the closed and completely closed U-BG-filters with the other filters as well as some special ideals are also presented the important characteristics of closed and completely closed U-BG-filters are analyzed.

REFERENCES

- Abass, H.H. and H.A. Dahham, 2012c. On completely closed ideal with respect to an element of a BH-algebra. J. Kerbala Univ., 10: 302-312.
- Abbass, H.H. and A.A. Hamza, 2017. On U-BG-filter of a U-BG-BH-algebra. Appl. Math. Sci., 11: 1297-1305.
- Abbass, H.H. and H.A. Dahham, 2012b. On completely closed filter of a BH-algebra. Proceedings of the 1st Scientific Conference on College of Computer Science and Mathematics Vol. 1, December 11-12, 2012, University of Tikrit, Tikrit, Iraq, pp. 1-3.
- Abbass, H.H. and H.A. Dahham, 2012a. Some types of fuzzy ideals with respect to an element of a BG-algebra. MSc Thesis, University of Kufa, Kufa, Iraq.

- Abbass, H.H. and L.S. Mahdi, 2014. A new class of BH-algebra. J. Kerbala Univ., 12: 1-10.
- Abbass, H.H. and L.S. Mhadi, 2016. U-BG-BH-Algebra. 1st Edn., Scholar's Press, Germany, ISBN:9783659840166, Pages: 208.
- Abbass, H.H. and S.J. Mohammed, 2013. On a Q-samarandach fuzzy completely closed ideal with respect to an element of a BH-algebra. J. Kerbala Univ., 11: 147-157.
- Baik, H.G. and C.H. Park, 2010. Redefined fuzzy BH-subalgebra of BH-algebras. Intl. Math. Forum, 5: 1685-1690.
- Deeba, E.Y. and A.B. Thaheem, 1990. On filters in BCK-algebra. Math. Japon., 35: 409-415.
- Deeba, E.Y., 1980. Filter theory of BCK-algebra. Math. Japon, 25: 631-639.
- Hoo, C.S., 1991. Filters and ideals in BCI-algebra. Math. Japon., 36: 987-997.
- Jun, Y.B., E.H. Roh and H.S. Kim, 1998. On BH-algebras. Sci. Math., 1: 347-534.
- Kim, C.B. and H.S. Kim, 2008. On BG-algebras. Demonstration Math., 41: 497-505.
- Meng, J., 1996. BCK-filters. Math. Japonicae, 44: 119-129.Saeid, A.B., A. Namdar and R.A. Borzooei, 2009. Ideal theory of BCH-algebras. World Applied Sci. J., 7: 1446-1455.
- Zhang, Q., Y.B. Jun and E.H. Roh, 2001. On the branch of BH-algebras. Sci. Math. Japonicae, 54: 917-921.