A Pseudo B-Ideal, Pseudo H-Ideal and a Pseudo Essence of a Pseudo BH-Algebra

Husein Hadi Abbass and Adel Hashem Nouri
Department of Mathematics, Faculty of Computer Science and Mathematics, University of Kufa, Kufa, Iraq

Abstract

In this study, we define the notion of a pseudo B-ideal, a pseudo H-ideal and a pseudo essence of a pseudo BH-algebra. Also, we study some properties and relationship between them.

Key words: BH -algebra, ideal of BH -algebra, pseudo BH -algebra, pseudo ideal of a pseudo BH -algebra, pseudo B-ideal, pseudo H-ideal, pseudo essence, pseudo 0-commutative, pseudo G-part, pseudo BCA-part, pseudo closed ideal

INTRODUCTION

Jun et al. (1998) introduced the notion of BH-algebra which is a generalization of BCH -algebra and the notion of ideal of a BH-algebra. Kim and Ahn (2011) introduced the notion of essenceof BH-algebra. Abbass and Dahham (2012) introduced the notion of completely closed ideal of a BH-algebra. By Abbass and Mahdi (2014) introduced the notion of a closed ideal, p-ideal, q-ideal to a BH-algebra and BCA-part. Jun and Kim (2015) introduced the notion of a pseudo BHalgebra.

MATERIALS AND METHODS

In this sudy, some basic concepts about a BH -algebra, ideal of BH -algebra, essence BH -algebra, 0 -commutative BH -algebra, G-part of BH -algebra, BCA part of BH -algebra pseudo, BH -algebra, pseudo subalgebra of a pseudo BH -algebra and pseudo ideal of a pseudo BH -algebra are given.

Definition 1; Jun et al. (1998): A BH-algebra is a nonempty set \mathfrak{X} with constant 0 and a binary operation "*" satisfying the following conditions:

- $x^{*} \mathrm{x}=0, \forall \mathrm{x} \in \mathrm{X}$
- $x^{*} 0=x, \forall x \in X$
- $x^{*} y=0$ and $y^{*} x=0 \Rightarrow x=y, \forall x, y \in \mathfrak{X}$

Definition 2; Abbass and Dahham (2012): A nonempty subset S of a BH -algebra \mathfrak{X} is called a subalgebra of \mathfrak{X}, if for any $x, y \in S$, we have $x^{*} y \in S$.

Definition 3; Abbass and Dahham (2012): A BHalgebra \mathfrak{X} is said a 0 -commutative if : $x^{*}\left(0^{*} y\right)=y^{*}\left(0^{*} x\right)$. For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathfrak{Z}$.

Definition 4; Abbass and Mhadi (2014): Let \mathfrak{X} be a BH-algebra. Then the $\operatorname{set} G(\mathfrak{X})=\left\{x \in \mathfrak{X}: 0^{*} x=x\right\}$ is called G-part.

Definition 5; Abbass and Mahdi (2014): Let \mathfrak{X} be a BH-algebra. Then the set $\mathfrak{X}_{+}=\left\{x \in \mathfrak{X}: 0^{*} \mathrm{X}=0\right\}$ is called the BCA-part of \mathfrak{X}.

Definition 6; Kim and Ahn (2011): Let, \mathfrak{X} be a BH -algebra. For any subsets G and H of \mathfrak{X}, we define $G^{*} H=\left\{x^{*} y: x \in G\right.$, $y y \in H\}$.

Theorem 1; Kim and Ahn (2011): Let a subsets A, B and E of a BH -algebra, we have:

- $\mathrm{A} \subseteq \mathrm{B} \Rightarrow \mathrm{A}^{*} \mathrm{E} \subseteq \mathrm{B}^{*} \mathrm{E}$ and $\mathrm{E}^{*} \mathrm{~A} \subseteq \mathrm{E}^{*} \mathrm{~B}$
- $(A \cap B)^{*} E \subset\left(A^{*} E\right) \cap\left(B^{*} E\right)$
- $E^{*}(A \cap B) \subseteq\left(E^{*} A\right) \cap\left(E^{*} B\right)$
- $\quad(\mathrm{A} \cup \mathrm{B})^{*} \mathrm{E}=\left(\mathrm{A}^{*} \mathrm{E}\right) \cup\left(\mathrm{B}^{*} \mathrm{E}\right)$
- $\quad E^{*}(A \cup B)=\left(E^{*} A\right) \cup\left(E^{*} B\right)$

Definition 7; Kim and Ahn (2011): If A is a nonempty subset of a $B H$-algebra \mathfrak{X} satisfies $A^{*} \mathfrak{X}=A$, then A is called essence of \mathfrak{X}.

Theorem 2; Kim and Ahn (2011): Let \mathfrak{X} be a BH-algebra. Then every a essence of \mathfrak{X} is a subalgebra of \mathfrak{X}.

Theorem 3; Kim and Ahn (2011): Let \mathfrak{X} be a BH-algebra. Then, every essence of \mathfrak{X} contains the zero element 0 .

Definition 8; Jun et al. (1998): Let, \mathfrak{X} be a BH-algebra and $\mathrm{I}(\neq \varnothing) \subseteq \mathfrak{X}$. Then, I is called an ideal of \mathfrak{X} if it satisfies:

- $0 € \mathrm{I}$
- If $x^{*} y \in I$ and $y \in I \Rightarrow x \in I$, for all $x \in \mathfrak{X}$

Definition 9: An ideal I of a BCH -algebra is called a closed ideal of \mathfrak{X} if for every $x \in I$, we have $0^{*} x \in I$. We generalize the concept of an ideal to a BH -algebra.

Definition 10: An ideal I of a BH -algebra \mathfrak{X} is called a closed ideal of \mathfrak{X} if: $0^{*} x \in I$, for all $x \in I$.

Definition 11; Abbass and Dahham (2012): Let \mathfrak{X} be a BH-algebra and I be a subset of \mathfrak{X}. Then I is called a BH-ideal of \mathfrak{X} if it satisfies the following conditions:

- $0 € \mathrm{I}$
- $x^{*} y \in I$ and $y \in I$ imply $x \in I$
- $x \in I$ and $y \in \mathfrak{X}$ imply $x^{*} y \in I, I^{*} \mathfrak{X} \subseteq I$

Definition 12; Jun and Kim (2015): A pseudo BH-algebra is a nonempty set \mathfrak{X} with a constant 0 and two binary operations "*" and "\#" satisfying the folloeing condition:

- $x^{*} x=x \# x=0$
- $x^{*} 0=x \# 0=x$
- $x^{*} y=y \# x=0 \Rightarrow x=y, \forall x, y \in \mathfrak{Z}$

Definition 13; Jun and Kim (2015): Let ($\mathfrak{X},{ }^{*}, \#, 0$) be a pseudo BH -algebra, then a nonempty subset S of a pseudo BH-algebra \mathfrak{X} is called a pseudo subalgebra of \mathfrak{X}, if for any $x, y \in S$, we have $x^{*} y, x \nexists y \in S$.

Definition 14; Jun and Kim (2015): Let ($\left.\mathfrak{X},{ }^{*}, \#, 0\right)$ be a pseudo BH-algebra, then I is called pseudo ideal of \mathfrak{X}, if it satisfies:

- $0 € \mathrm{I}$
- $x^{*} y, x \nexists y \in I, y \in I \Rightarrow x \in I, \forall x, y \in \nsupseteq$

Definition 15; Jun and Kim (2015): A pseudo ideal I of a pseudo BH -algebra \mathfrak{X} is called a pseudo closed ideal of \mathfrak{X}, if for every $x \in I$, we have $0^{*} x, 0 \# x \in I$.

RESULTS AND DISCUSSION

In this study, we define a new types of a pseudo ideals, a pseudo essence subset and a pseudo essence ideal of a pseudo BH -algebra. Also, we study some propostions to other some types of a pseudo ideals of a pseudo BH-algebra.

Definition 1: A pseudo BH-algebra \mathfrak{X} is said a pseudo 0 -commutative if:

- $x^{*}(0 \# y)=y^{*}(0 \# x)$
- $x \#\left(0^{*} y\right)=y \#\left(0^{*} x\right)$. For all $x, y, z \in \mathfrak{X}$

Example 1: Let $\mathfrak{X}=\{0,1,2\}$ be a set with the following Cayley Table 1. Then \mathfrak{H} is a pseudo BH -algebra.

Table 1: Pseudo 0-commutative

$*$	0	1	2					
0	0	1	2					
1	1	0	1					
2	2	1	0		$\#$	0	1	2
:---	:---	:---	:---					
0	0	1	2					
1	1	0	2					
2	2	2	0					

Definition 2: Let be a pseudo BH-algebra. Then thae set $G(X)=\left\{x \in \mathbb{X}: 0^{*} x=0 \# x=x\right\}$ is called a pseudo G-part of \mathfrak{X}.

Example 2: Let $=\{0,1,2,3\}$ be a set with the following Cayley Table 2.

Table 2: Pseudo G-part of 2

*	0	1	2	3	\#	0	1	2	3
0	0	1	2	3	0	0	1	2	3
1	1	0	2	3	1	1	0	2	3
2	2	1	0	1	2	2	2	0	2
3	3	3	3	0	3	3	3	1	0

Definition 3: Let be a pseudo BH-algebra. Then the set $\mathbb{X}_{+}=\left\{\mathrm{x} \in: 0^{*} \mathrm{x}=0 \# \mathrm{x}=0\right\}$ is called a BCA-part of \mathfrak{X}.

Example 3: Let $=\{0,1,2,3\}$ be a set with the following Cayley Table 3.

Table 3: Pseudo BCA-part of

${ }^{*}$	0	1	2	3							
0	0	0	0	0							
1	1	0	2	3							
2	2	1	0	1							
3	3	3	3	0	$	$	$\#$	0	1	2	3
:---	:---	:---	:---	:---	:---						
0	0	0	0	0							
1	1	0	2	3							
2	2	2	0	2							
3	3	3	1	0							

Definition 4: A nonempty subset I of a pseudo BH-algebra \mathfrak{X} is called a pseudo B-ideal of \mathfrak{X} if it stisfies:

- $0 € \mathrm{I}$
- $x^{*}\left(z \#\left(0^{*} y\right)\right), y \in I$ imply $x^{*} z \in I$
- $x \#(z-(0 \# y)), y \in I$ imply $x \# z \in I$

Example 4: Let $=\{0,1,2,3\}$ be a set with the following cayley (Table 4). Then, x is a pseudo BH -algebra and let $I=\{0,1\}$ be a subset of \mathbb{X}, then, it is a pseudo B-ideal of \mathfrak{X}.

Table 4: Pseudo B-ideal of

$*$	0	1	2					
0	0	0	0					
1	1	0	2					
2	2	1	0		$\#$	0	1	2
:---	:---	:---	:---					
0	0	0	0					
1	1	0	2					
2	2	2	0					

Proposition 1: Let, \mathfrak{X} be a pseudo BH -algebra such that $\mathfrak{X}=\mathfrak{X}_{+}$, then, every pseudo ideal of \mathfrak{X} is a B-ideal of \mathfrak{X}.

Proof: Let, I be a pseudo ideal of \mathfrak{X} and $x^{*}\left(z \#\left(0^{*} y\right)\right), y \in I$. For all $x, y, z \in \mathfrak{X}$. Since, $\mathfrak{X}=\mathfrak{X}_{+} \Rightarrow x^{*}(z \# 0) \in I$. Since, \mathfrak{X} is a pseudo $B H$-algebre $\Rightarrow x^{*} z \in I$. Thus, $x^{*} z \in I$. Similarly, $x \#$ ($z^{*}(0 \# y)$), $y \in I$ imply $x \# z \in I$. Hence, I is a pseudo B-ideal of \mathfrak{X}.

Proposition 2: Let \mathfrak{X} be a pseudo BH -algebra. If a pseudo B-ideal of \mathfrak{X} is a pseudo G-part of \mathfrak{X} then, it is a pseudo ideal of \mathfrak{X}.

Proof: Let, \mathfrak{X} be a pseudo ideal of \mathfrak{t} andlet $x^{*} y, x \not \# y \in I$, $y \in I$. For all $x, y, z \in \mathfrak{X}$. Since, I is pseudo G-pert of $\mathfrak{X} \Rightarrow x^{*} 0 \in I . \Rightarrow x^{*}\left(0 \#\left(0^{*} y\right)\right) \in I$ and $y \in I$. Since, I is a pseudo B-ideal of $\mathfrak{X} \Rightarrow x^{*} 0 \in I$. Since, \mathfrak{X} is a pseudo $B H$-algebra $\Rightarrow x \in I$. Similarly, $x \# y \in I, y \in I \Rightarrow x \in I$. Hence, I is a pseudo ideal of \mathfrak{X}.

Proposition 3: Let \mathfrak{X} be a pseudo BH -algebra such that $y=z \#\left(0^{*} y\right)$ and $y=z^{*}(0 \# y)$, then every pseudo B ideal of \mathfrak{X} is a pseudo ideal of \mathfrak{X}.

Proof: Let I be a pseudo B-ideal of \mathfrak{X} and $x^{*}\left(z \#\left(0^{*} y\right)\right)$, $y \in I$. For all $x, y, z \in \mathfrak{X}$. Since, $y=z \#\left(0^{*} y\right)$ then $x^{*} y, y \in I$ imply $x \in I$. Similarly, x \# ($z^{*}(0 \# y)$), $y \in I$ imply $x \in I$. Hence, I is a pseudo ideal of \mathfrak{X}.

Definition 5: A non empty subset I of a pseudo BH -algebra \mathfrak{X} is called a pseudo H -ideal of \mathfrak{X} if it satisfies:

- $0 \in \mathrm{I}$
- ($\left.\mathrm{x}^{*} \mathrm{y}\right) \#\left(\mathrm{x}^{*} \mathrm{z}\right) \in \mathrm{I}$ and $\mathrm{y} \in \mathrm{I} \Rightarrow \mathrm{x} \in \mathrm{I}$
- $(x \# y)^{*}(x \# z) \in I$ and $y \in I \Rightarrow x \in I$. For all $x, y, z \in \mathfrak{X}$

Example 5: Let, $\mathfrak{X}=\{0,1,2,3\}$ be a set with the following Cayley Table 5. Then, \mathfrak{X} is a pseudo BH-algebra and let $\mathrm{I}=\{0,1\}$ be a subset of \mathfrak{X}, then it is a pseudo H-ideal of \mathfrak{X}.

Table 5: Pseudo H-ideal of X

$*$	0	1	2	3
0	0	1	2	3
1	1	0	2	3
2	2	1	0	2
3	3	0	0	0
$\#$	0	1	2	3
0	0	1	2	3
1	1	0	2	2
2	2	0	0	1
3	3	0	0	0

Proposition 4: Every pseudo H-ideal of a pseudo BH -algebra ${ }^{2}$ is a pseudo ideal of .

Proof: Let, I be a pseudo H^{*}-ideal of \mathfrak{X} and let $\mathrm{x}^{*} \mathrm{y}$, $x \# y \in I$ and $y \in I$. For all $x, y, z \in \mathbb{X}$. Since, \mathfrak{X} is a pseudo BH-algebra $\Rightarrow\left(x^{*} y\right) \in I=\left(\left(x^{*} y\right) \# 0\right) \in \mathrm{I}=\left(x^{*} y\right) \#\left(x^{*} x\right) \in \mathrm{I}$ and $\mathrm{y} \in \mathrm{I}$. Since, I is a pseudo H-ideal $\Rightarrow x \in I$. Similarly, $x \# y \in I$ and $y \in I \Rightarrow x \in I$. Hence, I is a pseudo ideal of \mathfrak{X}.

Definition 6: Le, t æe a pseudo BH -algebra. For a subsets A and B of \mathfrak{X}, then $A * B$ and $A \# B$ are defined as follows:

- $\quad A^{*} B=\left\{x^{*} y: x \in A, y \in B\right\}$
- $A \# B=\{x \# y: x \in A, y \in B\}$

Proposition 5: Let, \mathfrak{X} be a pseudo BH -algebra.

- If $0 € \mathrm{~B} \subseteq \mathfrak{X}$. Then $\forall \mathrm{B} \subseteq \mathfrak{X}$, we have $\mathrm{B} \subseteq \mathrm{A}^{*} \mathrm{~B}$ and $\mathrm{B} \subseteq \mathrm{A} \# \mathrm{~B}$
- If $0 \in \mathrm{~A} \subseteq \mathfrak{X}$. Then $\forall \mathrm{B} \subseteq \mathfrak{X}$, we have $\mathrm{B} \subseteq \mathrm{A}^{*} \mathrm{~B}$ and $\mathrm{B} \subseteq \mathrm{A} \# \mathrm{~B}$

Proof: Let, $x \in A$, Since, \mathfrak{X} is a pseudo $B H$-algebra, then, $x=x^{*} 0 \in A * B$ and $x=x \# 0 \in A \# B$. Hence, $\left(A \subseteq A^{*} B\right)$ ($\mathrm{A} \subseteq \mathrm{A} \# \mathrm{~B}$). Similarly of (1).

Definition 7: If A is a nonempty subset of a pseudo BHalgebra \mathfrak{X} satisfies $\mathrm{A}^{*} \mathfrak{X}=\mathrm{A}$ and $\mathrm{A} \# \mathfrak{X}=\mathrm{A}$, then A is called a pseudo essence subset of \mathfrak{X}. If A is a pseudo ideal of \mathfrak{X}, then it is called a pseudo essence ideal of \mathfrak{X}.

Example 6: Let, $\mathfrak{X}=\{0,1,2,3\}$ be a set with the following Cayley Table 6.

Table 6: Pseudo essence of

$*$	0	1	2	3
0	0	0	0	0
1	1	0	2	3
2	2	1	0	1
3	3	3	3	0

$\#$	0	1	2	3
0	0	0	0	0
1	1	0	2	3
2	2	2	0	1
3	3	3	1	0

Then \mathfrak{X} is a pseudo BH -algebra. Let, $\mathrm{A}=\{0,1\}$, $B=\{0,2\}$ and $C=\{0,1,2\}$ then A, B and C are a pseudo
essence subset of \mathfrak{X}. But $D=\{0,3\}$ is not a pseudo essence subset of \mathfrak{X}, since, $3^{*} 2=1 \notin \mathrm{D}$ and $3 \# 2=2 \notin \mathrm{D}$.

Proposition 6: Let, \mathfrak{X} be a pseudo BH -algebra. Then every pseudo essence ideeal of \mathfrak{X} is a pseudo is a pseudo essence subset of \mathfrak{X}.

Proof: Let, A be a pseudo ideal of \mathfrak{X} and let $x, y \in A$. Since, $x^{*} y \in A \subseteq A^{*} A \subseteq A^{*} \mathfrak{X}=A$ and $x \# y \in A \subseteq A \# A \subseteq A \# \mathfrak{X}=A$. Hence, A is a pseudo essence subset of \mathfrak{X}.

Remark 1: The converse of prposition (6) may be not true in general as follows in example (1), since, A is a pseudo essence $1 * 3=0 \epsilon A$ and $1 \epsilon A$ but $3 \notin A$ and $1 \# 3=1 \epsilon A$ and $1 \in \mathrm{~A}$ but $3 \boxminus \mathrm{~A}$.

Proposition 7: Let, \mathfrak{X} be a pseudo BH -algebra. Then, every pseudo essence ideal of \mathfrak{X} is a pseudo closed ideal of \mathfrak{x}.

Proof: Let, A be a pseudo essence ideal of \mathfrak{X}, then, $0 \in A$. Let, $x \in A$, then, $0^{*} x \in A^{*} A \subseteq A^{*} \mathfrak{X}=A$. Thus, $0^{*} x \in A$, similarly, $0 \# x \in A$. Hence, A is a pseudo essence closed of \mathfrak{x}.

Definition 8: A nonempty subset I of a pseudo BH -algebra \mathfrak{X}. Then, I is called pseudo BH -ideal a of \mathfrak{X} if it satisfies:

- $0 \in \mathrm{I}$
- $x^{*} y, x$ \# $y \in I$ and $y \in I$ imply $x \in I$
- $x \in I$ and $y \in I$ and imply $x^{*} y, x \notin y \in I, I^{*} \mathfrak{X}, I \# \mathfrak{X} \subseteq I$. For all $\mathrm{x}, \mathrm{y} \in \mathfrak{X}$

Proposition 8: Let, \mathfrak{X} be a pseudo BH -algebra. Then every a pseudo essence ideal of \mathfrak{X} is a pseudo BH -ideal of \mathfrak{X}.

Proof: Let, A be pseudo essence ideal of \mathfrak{x}. Since, $\mathrm{A}^{*} \mathfrak{X}=\mathrm{A}$, then $\mathrm{A}^{*} \mathfrak{X} \subseteq \mathrm{~A}$ and $\mathrm{A} \# \mathfrak{X}=\mathrm{A}$, then $\mathrm{A} \# \mathfrak{X} \subseteq \mathrm{~A}$. Thus, A is a pseudo essence ideal of \mathfrak{X} and $\mathrm{A}^{*} \mathfrak{X}$, $\mathrm{A} \# \mathfrak{X} \subseteq \mathrm{~A}$. Hence, A is a pseudo pseudo BH -ideal of \mathfrak{X}.

CONCLUSION

In this study, the notions of pseudo B-ideal, pseudo H -ideal and pseudo essence of a pseudo BH -algebra are introduced. Furthermore, the results are examined in terms of the relationship between pseudo B-idea, pseudo H -ideal and pseudo essence of a pseudo BH -algebra.

REFERENCES

Abbass, H.H. and A.A. Hamza, 2017. On U-BG-filter of a U-BG-BH-algebra. Appl. Math. Sci., 11: 1297-1305.
Abbass, H.H. and H.A. Dahham, 2012. Some types of fuzzy ideals with respect to an element of a BG-algebra. MSc Thesis, University of Kufa, Kufa, Iraq.
Abbass, H.H. and L.S. Mahdi, 2014. A new class of BH-algebra. MSc. Thesis, University of Kufa, Kufa, Iraq.
Jun, Y.B. and S.S. Kim, 2015. On pseudo BH-algebra. Honam Math. J., 37: 207-219.
Jun, Y.B., E.H. Roh and H.S. Kim, 1998. On BH-algebras. Sci. Math., 1: 347-534.
Kim, E.M. and S.S. Ahn, 2011. An application of complicationness to BH-algebra. J. Korea Soc. Math. Educ., 4: 293-304.

