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Abstract: A dominating set D of a graph G = G(V, E) is called metro dominating set of G if for every pair of
vertices 1, v there exists a vertex w in D such that d(u, w)#d(v, w). The k-metro domination number of square
of a cycle, AP, (C%) is the order of a smallest k-dominating set of (C2) which resolves as a metric set. In this

study, we caculate the k-metro domination number of 3.
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INTRODUCTION

All the graph considered here are simple, finite and
connected. A set of nodes S resolves a graph G if every
node of G is determined uniquely by its vector of distance
to the nodes in S. The work in this study undertakes a
general study of resolving sets in square cycles of
graphs. Harary and Melter (1976) introduce the notion of
metric dimension in the year 1976. A vertex xeV(Q)
resolves a pair of vertices 0, weV(Q) if div, x)#d(w, x). A
set of vertices Sc V() resolves G and S is resolving set of
G, if every pair of distinct vertices of G areresolved by
some vertex in 5. A resolving set S of G with minimum
cardinality is a metric basis of G and its cardinality is the
metric dimension of G, dencted by P(G). Harary and
Melter (1976) introduce the notion of the metric
dimension. A vertex will be represented by a work place in
the graph and the connection between the two places will
be represented by edges of the graph. Tdentifying the
minimum number of machines to be placed at certain
vertices to trace each and every vertices exactly once 1s a
classical problem. Using the network concept the above
problem can be solved. The vertices of a network where
machines are placed is called land marks. Tt is necessary
to determine a collection of vertices at which to place
detection device, so that, if there is an object at any vertex
in the graph, it can be detected and its position uniquely
identified. Tn order to detect an object which might be at
any vertex in V(G). Tt is necessary to have a dominating
set. The additional problem of uniquely indentifying the
location of the object requires a metric dimension feature.
These two concept motivated for the investigating of the
new graph invariant called locating domination number by
Slater et al. (2005).

MATERIALS AND METHODS

Definition 2.1; Locating number: A sub set D of V(G)
called a dominating set, if every vertex V-D is adjacent to

at least one vertex in D. The minimum cardinality of a
dommating set 1s called the domination mumber of the
graph G. The metric dimension of a graph G is the
cardinality of minimal subset S of V such that for each pair
of vertices u,v of V there 1s a vertex w m S such that the
length of the shortest path from w to u is different from
the length of a shortest path from w to v. The metric
dimension of G 1s also called locating number of G. A
dominating set D is called a locating dom-inating set or
simply LD-set if for each pair of vertices u, veV-D, N D(u)
#N D(v) where, N D(u) = N(u)rnD, an LD set of the graph
G is called the locating domination number of G denoted
by vL(G).

Definition 2.2; Metro domination number: A dominating
set D of V(G) having the property that for each pair of
vertices U, v there exists a vertex w in D such that d(u, w)
#d(v, w) is called the metro dominating set of G or simply
MD set. The minimum cardinality of a metro dominating
set of G is called metro domination number of G and is

denoted by y4{G).
RESULTS AND DISCUSSION

We recall the following results which we use in the
next sections.

Theorem 3.1; Harary and Melter (1976): The metric
dimension of non trivial complete graph of order n 1s
n-1.

Theorem 3.2; Alishahi and Shalmaee (2015): For any
non trivial graph G onn=2 vertices, Plk(G) = n-1 if and only
if diam(G)<k where, k=1 is any integer.

Theorem 3.3; Raghunath et af. (2014): Graph with metric
dimension two cannot have a sub graph isomorphic to K,
or K.
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Theorem 3.4; Raghunath et al. (2005): 1f C, is cycle of
order n, then, B(C,) = 2.

Theorem 3.5; Caro et al. (2000): For any two positive
mtegers 1, k with k<, g, )= ich)

Theorem 3.6; Shanmukha et al. (2002): Let, G be a graph
on n vertices, Then, v4(G) = n-1 if and only if G is
K,ork,,, forn=1.

Theorem 3.7; Shanmukha et al. (2002): If y(3) = 2 then,
G camnot have K, as a sub graph of G.

Remark 3.8: If C,is a cycle with n vertices then:

k+1if n 20 (mod 2k)
B(CEY = 1 2k+1if n = 0(mod 2k)
Zk if n =1(mod 2k)

Main results
Lemma 4.1: Forany integer n 1,(C})=[n/9],n26.

Proof: Let v,, v,, v;, ..., v, be the vertices of the square
path ¢ Let, D be the minimum 2-dominating set of ¢
Let, W = V-D. Any vertex v,€D will be adjacent to four
vertices of W. Also, all the vertices of W are either
adjacent to at least one of the vertex of D or it will be at
the distance less than or equal to four from one of the
vertex of D. Hence, each v.€D, domimates at most eight
vertices of W. Thus:

2 n (1)
1,(C) E{J

To prove the reverse mequality, we define the
following dominating sets:

We note that the above dominating set serve as
a 2-dominating set. Thus:

Byl (2)
vz(Cn){J

| &
vz(Cn){J

Lemma 4.2: For any integer:

n
v, (C3)=| — |, n=10
1, (C,) LJ

From Eq. 1 and 2:

Proof: Let, v, v,, v ..., v, be the vertices of the square
path ¢&. Let, D be the mimmum 3-dominating set of ci.

Let, W = V-D. Any vertex vieD will be adjacent to four
vertices of W. Also, all the vertices of W are either
adjacent to at least one of the vertex of D or it will be at
the distance less than or equal to six from one of the
vertex of D. Hence, each v,eD, dominates at most twelve
vertices of W. Thus:

7,(CH= (ﬂ 3)

To prove the reverse inequality, we define the
following dominating sets:

1
D= {mGﬂ;o<k<L LHJ},H= 10
13

We note that the above dominating set serve as
a 3-dominating set. Thus:

3y < n—‘

75(C) (13
From Eq. 1 and 2:

3y = a

7, (C) LJ

Lemma 4.3: For any integer:

n,v,(C1)= Lﬂ,mm

Proof: Let, v,, v,, v, ..., ¥, be the vertices of the square
path ¢ Let, D be the minimum 4-dominating set of ¢
Let, W = V-D. Any vertex vieD will be adjacent to four
vertices of W. Also, all the vertices of W are either
adjacent to at least one of the vertex of D or it will be at
the distance less than or equal to eight from one of the
vertex of D. Hence, each v,eD dominates at most 17
vertices of W. Thus:
1y | I 5
mcn)_LJ ()

To prove the reverse inequality, we define the
following dominating sets:

D= {mGﬂ; 0<k<L H—;ﬂ nz14

We note that the above dominating set serve as
a 3-dominating set. Thus:

ch<| L ()
Y4( n) ’717—‘
From Eq. 1 and 2:
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Theorem 4.4: For any integer n:

3if6<n <18
4ifn=1(mod 4), n €36,1=26

(ﬂifrww
0

Proof: By Lemma 4.1, it 1s clear that:

Yoz (Ci) =

=[] nss

this 2-dominating set serves as a metric set by remark 3.9.
Thus:
n
Vs (Ci ) 2 (9—‘

To prove the reverse nequality, we defne the
following dominating sets:

D={v,v,v n=67
D={v,v,v }n=810,11, 12
D={v, vy, Vs, Vo =9
D={v,v,v,v,}n=13
D={v, v, v,1n=14,15
D={v,v,v;in=16
D={v,v,v,,v.n=17

1D ={v,v,,v,}n=18,20,22 24
D={v,v,, v,y n=1923 27
D={v, v, v, vyt n=21
D={v,v

D=1{v,, Vi Vi, V353 =26

4=‘n

102 14’v23}n 25

D_{ Voerps 05k = ( QQ—H:HEO(IHOdz)EII"IdnE3(HDd4),H>28

D= {Vm; 0<k SEP}U"[&] UV{LTQ’ n=1(mod4),n > 28

2 2

We note that, the above dominating sets serves as
mimmum 2-dominating set and also by remark 3.9, it
serves as a metric set. Thus:

ACHE H ®
From Eq. 1 and 2:

ry_ | I
1,(C;) (J

Theorem 4.5: For any integer n:

3if 10=n <26
YR, (C2y=14if n=1(mod4),n <52

(nw if n>27
13

Proof: By lemma 4.2, it is clear that:

(e —LI;—‘,H>10

this 3-dominating set serves as a metric set by remark 3.9.
Thus:
n
ChHz| —
TB(C.) L J

To prove the reverse mequality, we define the
following dominating sets:

D={v,v,,v,in=10,11,1215
D={v.v.v,vn=13
D={v, v, v in=14
D={v.v.v,in=1618
D={v,v;, v, Vst =17
D={v,v,v,in=19
D={v,v,v,in=20
D={v,v,v,, v, tn=21
22,2324
D={v,V;, V¥, ¥,;; n =25
D={v,v, v, n=26

D={v, v,vin=

n

13
D= {me;o<k< “13 } n=27,31,3539
D=1V, 0<k< “1';3 } n =28 30,32,34,36
D=V, ;0<k< nl'f }Uvm Uvm +13,n=29,33 37

13

[n-13
13

n=0med 2)end n =3(mad 4), n =40

{
{

D= {VWI;O<1<< w1l }
{ |
{

Z}UVn+3 UVn+3 +13, n=1(mod 4y n =40
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We note that the above dominating sets serves as
it 3- dothinating sets and dso by remark 39, it
serves as a metric set. Thas

R (10)

From Eq 1 and2:

YR(C)) = H

Theorem 4.6: For any integer 1o

Jif 14=n=34
YR = 14if n=1{mod 4), n =68

B lifnzas
17

Proof: By Lenuna 4.3, it is clear that

¥, (C3)= [%—‘ nz14 (11}

this d-dominatitir et serves as a metric set by remark
3.9 Thus
gy e
'lrﬁqlz .:' [1?-‘

To prove the reverse inecuality, we define the
foll ow itz dominating sets:

D={v,v,.¥ n=1415

D= {v,v,. v, n=16

D= {v, ¥ ¥ig. Yoy 1=17
D={v,v.v, n=18

D= {v,v,. v, 1=19,20,22 34 24
D= ), W Vg Vg g 1=25

D= {w, v, Ve 1= 27,28, 30

D= v, ¥ Vig, Vasy 1= 29

D= {v,v, v, n=313234

D= {w, ¥ 5. Vg, ¥pep =33

D= {v,,,.“,-,n sk [%—H n=135, 39, 41, 47

152

D= {?mh,;ﬂﬂkﬂ"%-”,n=36, 40, 44, 48

D=, Wiga Vg g =45

n-17
D= {‘ifm‘l;l:lﬂk ﬂ[ T

11 = Amodd), n = 52

” 1= 0{mod 2) and

D={1F|3M;C|£k£’7£-|-2}u o d L T
7 [ ] R

2 2

n=1{mod 4), nz 52

We note that, the above dominating sets serves as
minithim 4-dominatitg sets and dgo by remark 39, it
serves as a metric set. Thus

n(s|E] &

¥, (0 = [%-‘

&g the generdization of the Theorem 4.4, Thorem 4.5
and Theorem 4.6, the following theorem follows
(Fig. 1 atwd D Buckley and Hararsy, 1290, Dirac, 1252,
Drreyrer, 2000; Edndler ef af , 19967

From Eq 1 and 2

Theorem 4.7: For atiy integer o

A 4k-2=n<8k+2

YRICH =4 4if n=l{mod 4)

1 -Iif nEEkHA Rz 2
AkH

Fig 1: ypitii=4
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263 273 372 362

Fig. 2: (€5 =3
CONCLUSION

In this study, we obtain k-metro domination number
of square of cycle.
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