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Abstract: The asymptotic spanning tree entropy 1s a natural measure related to topological and dynamic
properties of networks, namely their reliability. However, computing the number of spanning trees of networks

using classical algebraic methods is very demanding tasks on term computational resources and time, especially
for large networks such as complex networks. In this study, we give an analytic formula for the number of
spanning trees and the asymptotic entropy of two type of small-world networks G, and C, by using two
methods of decomposition based on geometrical transformation which are Bipartite method and Reduction
method. Then, we estimate and compare the robustness level of the networks G, and C, that have the same

average degree of nodes.
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INTRODUCTION
In real life, often complex systems can be
modeled by networks, the nodes represent the

components of the system and links symbolize their
mteraction. For example, social networks, airline
networks, biological networks and so on (Zhang, 2015;
Reggiani et al., 2010; Javari et al., 2016). The complex
systems characterized by their structural properties
such as degree correlation, average distance, clustering
coefficient,network synchronization, number of spanning
trees and other characteristics (Newman ef al., 2006,
Cancho et al., 2001; Newman, 2003; Nishikawa and
Motter, 2006). Many researches have proven rigorously
relations between topological and dynamical properties
of network. Then, knowing the topological properties
of network, we expect accurately its behavior and its
dynamical characteristics. In graph theory, the asymptotic
spaming tree entropy present a powerful tools to
interpret and analyze the relationship between structural
proprieties and reliability of networks. The robustness
and reliability is the ability of a network to continue
performing well when it 1s subject to failures (Wang et al.,
2006; Myrvold et al., 1991; Colbourn, 1987). The
asymptotic spanning tree entropy is very useful to
measure the level of reliability and robustness of
networks.

In this study, we use the spanning trees entropy to
estimate and compare the robustness of two kind of
small-world networks Gy and C,. The entropy of G.Jf
denoted by p(G,) defined (Lyons, 2005) as the limiting
value:

p(G,)= lim log7(Gy)
[7 (G J2 ] ‘V[ck)

First, we compute the number of spanming trees or
what called the complexity p(Gy). The best known method
that computes the number of spanning trees of a graph G
is the matrix-tree theorem (Kirkoff, 1847). However,
computing the number of spanning trees using this
method having high complexity @ (n’) is a demanding and
difficult task namely for large graphs such as complex
network “Small world network”. For this reason, there has
been much interest to find alternative methods to avoid
the tedious calculations by giving explicit expressions for
the number of spanning trees for some networlks families
such as Sierpinski gaskets grids and lattices (Wu, 1977;
Nikolopoulos and Papadopoulos, 2004; Shrock and W,
2000, Chang et al, 2007; Teufl and Wagner, 2011,
Daouad, 2013, TLiang et «l., 2014). But most methods
proposed require a lot of algebraic calculation. In this
research, we propose an efficient combinatorial method
based on principle of geometrical transformation (Bipartite
and reduction ) to compute the number of spanning trees
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in the small world network G, and C,. Then, we compare
the robustness level of G, and C, which have the same
average degree of nodes.

MATERIALS AND METHODS

Methods of decomposition (reduction and bipartite): In
this study, we introduce two approaches used in the
construction of the small world networks G, and C,, the
reduction method and the bipartite method. Reduction
and bipartite are tow methods of decomposition based on
principle geometrical transformation consist to reduce the
number of vertex and edges in a multiple graph G.

Let G be a planar graph. The reduced graph Red, (G)
is the graph obtained when we add a new edge that
connects each two adjacent vertex of G. If we add y-1
edges the obtained graph dencted by Red, (G), called the
y-reduced graph of G (Fig. 1).

Propriety: Let G be a planar graph and Red, (G) its
y-reduced graph, some structural parameters of Red, (&)
depending on the parameters of G are given by:

¢ Thenumber of vertex inRed, (G) is: [V (Red, (G))| = |V
(@)l

¢ The number of edges 1s: |E (Red, (G3))| = y*[E (G)|

¢ The number of faces is: |[F (Red, (G))| = [F
(DHy-D=[E (G)

Theorem 1: Let G be a planar graph and Red, (G) the
y-reduced graph of G. The number of spanning trees in
Red, (Q) 15 given by Lotfi et af. (2015):

WRed, (G)) =y < T(G) (1

Let G be a planar graph. If we add a new vertex in
each edge of G, the graph obtained Bip, (G) is The
Bipartite graph of G. When we add x-1 new vertex, the
obtained graph denoted by Bip, (G), called the x-Bipartite
graph of G (Fig. 2). Now, we give the same structural
proprieties for the Bip, (G).

Propriety 2: TLet G be a planar graph and Bip, (G) its
y-reduced graph

¢ The number of vertex in Bip, (G) is: |V (Bip, (G))] =
IV(G)Hx-1)<|E (G

¢ The number of edges is: |E (Bip, (G))| = x=|/E(G)|

¢ The number of faces is: [F (Bip, (G))| = [F(GQ)|

Theorem 2: Let G be a planar graph and Bip, (G) the
x-Bipartite graph of G. The number of spanning trees in
Bip, (G) 1s given by Lotfi et al. (2015):

@ (b) ©
Fig. 1. A graph G, 2-reduced graph and 3-reduced graph:
a) G; b) Red, (G) and ¢) Red, (3)

afRRimE

Fig. 2: A graph G, 2-bipartite and 3-bipartite graphs: a) G;
b) Bip, (G) and ¢) Bip, (G)

(Bip, () = x*H (G (2)

The entropy of the small world networks G, and C: In
this study, reduction method and bipartite method are
combined m a recursive way to construct the small world
networks G, and C, where G ,and C are the network
formed from G, and C., the networks of previous
iteration k-1, after the reduction transformation and the
bipartite transformation. In thus research, we study the
both cases:

» Reduction transformation followed by bipartite
transformation:

Gy = Bip, e Red, (G, ;) = Bip,(Red (G, )

s Bipartite transformation followed by reduction
transformation:

Cf = Red, = Bip,(C, )= Red_(Bip,(C, )

The entropy of G: The construction of the small world
networks G is iterative as follow: G, = Bip,"Red,
{Gy.)) = Bip, (Red, (G,))), the process start with G, which
1s simple path contains two vertex, at the next step, the
reduced method is applied upon on G, adding y-1 new
edges, followed by the bipartite method adding x-1 vertex
in each edge of the network Red, (G,). So, the network G,
15 formed after these geometrical transformations as is
illustrated in Fig. 3 where x=4andy =3 G, =Bip,"Red,
(G,) = Bip, (Red, (G,)). Then, the process go to the next
iteration in the same way until the kth iteration. We give
the topological proprieties of the network G,.
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Fig. 3: Networks of the first three iterations of Gy: a) G; b)
G, and ¢) G,

Lemma 3.1: Let G, a small world network. The number of
vertex, edges and faces are given by:

¢ |EG)| =&y
xy)" -1

V(G| = 2+Y(X'1)ﬁ

* G| = 1Hy-n &
Xy -1

Theorem 3.2: The number of spanning trees in the the
small world network G, is given by:

(G, =y G)

(xy-1)° |

B= (x -D{y((xy)* -Drkiy -1)xy -1)
(xy-1)*

" z( & Dby ()" -1)-k<xy-1)]]_

Proof: According to the construction of Gy

UG, ) = T(Bip, o Red, (G, )=
©Bip, (Red, (G, )))

by using theorem 1 and 2, we get:
T(Gk) = X(‘F(REdY(Gk'l)l-IJT(RBdY (Gk,l ))
T(Gk) _ X(|F(R'3dy(Gk,ﬂ\'l)y(l\f((Gk,l)\—I)T(Gk_l)

by using property 1, we substitute |F (Red, (Gy.,)))| by its
value we obtain:

T(Gk) = X(lF(Gk-l)H(V'U‘E(Gk-l)H)y(‘v((Gk-l)l'l)T(Gkrl)
— o UF(Gy ) G- DIEG ) V(G 1)
TGy ) =17 Ry TGy )
— o UF(G I Gr-DIEG )1 VG- 1)
HG)=x"" "y *T(Gy)

where, T(G;) = 1. We multiply these equations, then, we
get:

WG,) = Xzf;‘u(|F(G))|+(y-1)\E(G;)|-1)y2fju(\w(e;)|-1)
k

using lemma 3.1 to substitute |V (&), [F (G))| and |E(G,):
Ilg 1 1

ety i el Koot -1)
Ko e e EH e

&
y-1)
€(G,) = x> y>
we calculate the both summation, then, we get the result.

Corollary 3.3: Let G, be a small world network, the
asymptotic spanning tree entropy of G, given by:

(G, - 7L logl(x -Llog(y) @
G-y 1)

Proof: As 1s already defined, the asymptotic entropy of G,
1s a the limiting value:

logt(G, )

p(G,) = lim
* |Gy |

[Gifte

Using the above theorem and substituting t(G,) by its
expression where:

V(G| = 2y &L
xy-1

We get:
log(t(G, ))
|G|
DBt - ke 1] 3 (x-llM(xYJk-U*HY“U(xY-U)
lo (X G 1)? Gor1)? )
lim 8 y
|Gy |—sbee (xy)y -1
X -

p(G,) = lim

|Gyt

2+yx-1)

y -1
_ (y-Dxlog(x)+(x -Dlog(y)
(xy-1)(x-1)
Hence, the result.

The entropy of C: The construction of the small world
networks C, 1s similar to the construction of G, it 1s as
follow:

C, = Red, = Bip,(C, , ) = Red, (Bip,(C, ,))
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@ (b)

o9 o e e e o

Fig. 4: Networks of the first three iteration of Cy; a) Cy; b)
C,andc) C,

At the first iteration, we apply the bipartite method by
adding new x-1 vertex to C, then, we apply the reduced
method, adding y-1 new edges between each two adjacent
vertex in the network Bib, (C,). So, the network C, 1s built
after these geometrical transformations (Fig. 4) withx =4
and y = 2 (C, = Red,cBip, (C;)). Then with the same
manner, the process 1s repeated in the next iteration until
the kth iteration.

Lemma 4.1: Let C, a small world network. The structural
proprieties of the network C, are given by:

¢ The number of vertex: [E (C)| = (xy)*
¢ The number of edges |V (Cy)| = 2H(x-1) (xy)* /xy-1
+  The number of faces |F (C) = 14+x (y-1)(xy )" /xy-1

Theorem 4.2: The number of spanmng trees mn the the
small world network C, 1s given by:

UC,) = y'x* (%)
5, -Dxy(O)* - Dy - Doy -1)
(xy-1)*
Xy D[ (xy)f D -kxy-1) |
M= 2
(xy-1)

Proof: According to the construction of Cy:
(C, ) =t(Red, °Bip, (C,_,)) = ©(Red, (Bip, (C,_,}))
By using theorem 1 and 2, we get:
(C, ) =y G )“”r( Bip, (C,., ))
T(Ck) _ y(WBlpx(ck_l )I—l)X(\F((Ck_l)I—l)T(Ck%)

By using property 2, we substitute |V (Bip, (Cy )| by its
value we obtain:

— AVIC I G- DIE(C, 1), (FEC, -1
TC )=y e e St (S

T(ck—l) = y(\V(Ck-z)H (X'l)\E(Ck-zﬂ'I)X(\F((Ck-zﬂ'l)r(ckﬂ)
— o VIC I G- DIEC L, (FOCo )
tHC )y =y e e S (7Y

where T (Cp) = 1. We multiply these equations, then we
get:

EH (W3 I+ LYEAC; 1-1) ZH [FC; D
i x i=0

TC, ) =y="
using lemma 4.1 to substitute |V (G}, |F (G))| and [E (G;)]:

B DGR, ey R DY)
r(Ck):yZ‘:E'“ e +(X1)(XY))XZ‘:°( e

we calculate these summation, then, we get the result.

Corollary 4.3: Let C, be a small world networl, the
asymptotic spanning tree entropy of G, given by:

o(C, ) = Y -DlogGo+x(y -Diog(y) (6)
g (x-1)xy-1)

Proof: As 1s already defined, the asymptotic entropy of C,
15!

p(C,) = lim 08HC)

Gl | Cy |

Using the above theorem and substituting (C,) by its
expression where:
k
Ve, = 2+(x -1
xy-1
we get:
. logt(C,)
Cy= 1 juint =l S
P(Cy) = lm C.]

Do e oD, D D1
b2 o 1)?

log(y X )
2(x-1y 1
xy-1

lim
Gy [tem

_ xy(x-Dlogxtx(y -1)logy
(x-1)xy-1)

RESULTS AND DISCUSSION

Results interpretation: Now we compare the asymptotic
entropy of the two complex networks G, and C, which
have the same average degree. Fust we give some
particular values for x and y, for example, we choose x = 4,
we get curves of p(Cy) and p(G,) depending ony. And we
givey = 3, we get curves of p(C,) and p(G,) depending on
x. Next, we plot p(C,) and p(G,) as multiple vanables
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Fig. 5. Multiple variables functions: a) The curves are ploted with x = 4; b) The curves are ploted with x = 3 and ¢) The

curve pf p(G) 13 red and p(C) 13 green

functions that depend on x and y. All obtained Fig. 5
show clearly p(C) 13 higher than p(G,). Indeed,
algebraically we prove p(C,) 1s higher than p(G,):

_ xy(x -Dlogx+x(y -Llogy
PC,)-p(G,) T
(y -1xlogxt+(x -1logy
x-1{xy-1)
W(C)-p(G,) = X% 2y Dlogl) ey - 2xlogly)
(x-1)(xy-1)

(x=2) and (y=2)=(C)-p(Gy)=0. Tt means the network
C, has more spanning trees than the other network G
Thus, This result proves the network C, 1s more robust
and more reliable than the network G,. Then, owing to the
growth of the number of spanning trees in C, which
provides more connection between nodes related by
eventual mnterrupted links that ensures more reliability and
robustness and avoid having dysfunction of this network.

CONCLUSION

The asymptotic sparming tree entropy of a network
is used to measure reliability and robustness of network.
In this study, We proposed two
approaches: the bipartite and the reduction to construct

combinatorial

two examples of small world network by giving their
topological properties, computing their number of
spanning trees. Finally, we evaluated their spanning tree
entropy in order to estimate and compare the level of
robustness of these two type of complex network that
have the same average degree.
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