Tournal of Engineering and Applied Sciences 14 (Special Tssue 1): 3934-3937, 2019
ISSN: 1816-949X
© Medwell Journals, 2019

A Study on Compression of 3D) Model Data and Optimization of Website

'Geonhee Lee, “Seunghyun Lee and *Soonchul Kwon
'Department of Smart Systems, School of Smart Convergence, Kwangwoon University Graduate,
Seoul, Korea
*Ingenium College of Liberal Arts, Kwangwoon University, Seoul, Korea
*Research Institute of Human Factors Convergence, Academy of Kwangwoon, Seoul, Korea

Abstract: Since, the mvention of the web has made many advances. A lot of research has been done in the
graphics field. As aresult, a GPU was created inside the browser to render graphics on the web. The way to run
the GPU 1s to use an API called Web Graphics Library (WebGL). But WebGL for implementing graphics on the
web is difficult to use. So, Three js was developed to make WebGL easy to use. It is a 3D graphics TavaScript
library that has the advantage of being easy to use WebGL. However, it can also be a problem after web
graphics are easily configured using Three.js. Sometimes it takes too much time to load on your website. The
reason 1s that the size of the 3D Model data such as OBJ is too large or the source code that constitutes 1t is
not optimized. To solve this problem, it is necessary to compress 3D Model data files such as OBT and source
code. OBJimg.js is a compression method of 3D Model data. OBT and MTL files into a single PNG image,
resulting in about 70% storage saving. The best way to optimize the source code is to use gulp.js, CDN,
JavaSceript and CSS compression techmques. In this study, we propose the quantitative analysis on
compression of the 3D Model data end optimization of the loading time of the website. This research 1s expected

to be helpful for the compression of 3D Model data and the optimization of the website.

Key words: WebGL, Three js, OBlimg. s, 3D graphics, optimization, quantitative data

INTRODUCTION

The first start of the internet was ARPAnet
developed by the US Department of Defense to facilitate
networking research. ARPAnet connected mainframe
computers from various universities and after 20 years,
ARPAnet was the internet. British scientist Tim
Berners-Lee invented the World Wide Web (WWW) at
CERN, a Swiss physics research institute. About 2 years
later, a browser-like WWW was launched. This was the
world’s first browser. Many browsers have begun to
emerge from the beginning of this innovation. Tn 2008,
Chrome was developed by Google and it was ranked #1 in
browser rankings. As the web browsers progress, WebGL
made many advances. But it is not as powerful as 3D
professional authoring tools. Therefore, it 1s necessary to
optimize 3D Model data and related source codes. This
study quantitatively measures the compression of 3D
Model data and the three proposed methods (Nath et al.,
2014).

MATERIALS AND METHODS

Materials and simulation: WebGL (Web Graphics
Library): WebGL is a TavaScript library for rendering 2D
and 3D graphics in a web browser. WebGL 15 used in
HTMLS5 by <canvas> element which provides 3D graphics

through the introduction of OpenGI. ES 2.0 compliant
APIs. WebGL does not need a separate plug-mm and 2D
and 3D graphics are played back in the browser as soon
as the code i1s written. WebGL works on almost all
browsers and uses less GPU than CPU, so, it does not
burden CPU. Figure 1 shows the outline of WebGL..

WebGL supported browser and Three.js: WebGL
supports from Chrome to Samsung Internet browser as
shown m Fig. 2. It has an environment that almost
everyone can experience and develop. WebGL, however,
is difficult to use linguistically by inexperienced users.
Therefore, there is a JavaScript library developed for easy
use by newbie users. The most used library 1s Three js.
Threejs was first released in April 2010 by Ricardo
Cabello on GitHub. WebGL is the most widely used
TavaScript library and Application Programming Interface
(APT). When implementing a 3D Model ina Web browser,
developers can save time and money by simplifying
existing WebGL syntax (L1 ef al., 2016). Three.js can create
GPU-accelerated 3D animations using the JavaScript
language as part of their website without relying on
proprietary browser plug-ins.

Associated JavaScript library: OBJlimg.js is a
TavaScript library developed by Jordan-delcros. OBlimg.js
compresses OBJ and MTL files into one PNG image wluch

Corresponding Author: Soonchul Kwon, Research Institute of Human Factors Convergence, Academy of Kwangwoon, Seoul, Korea
3934

J. Eng. Applied Sci., 14 {Special Issue 1): 3934-3937, 2019

| WebGL

v

A4

v

v

Management and support | | Supported browsers | | Features | | Tools for easy writing
. Three.js
KHRONOS group Almost all gis\l/];gﬂ:];eccg,gum ore room Screen.js
GLGE
Fig. 1: A simple summary of WebGT,

@ (b)

Fig. 2. The process of the ‘compressed’ method for: a) IronMan.obj; b) TronMan.obj. PNG and ¢) Rendered result

Table 1 : Difference in capacity between OB/ file and PNG images

Table 3: Experiment environment

Type TronMan. obj TronMan.obj. PNG

Classification Location

Capacity 16.194 kB 2.949 kB

Table 2: Comparing the time difference of compression degree
Type Cormpressed Uncompressed
Time to fully load 14.006 sec 34.557 gec

results in reduced file size and improved rendering speed.
For convenience and understanding, the method using
OBJ-MTL Loaderjs is described as ‘uncompressed
method’ and the method by OBlung.js 15 defined as
‘compressed method’. This study focuses on the
algorithm of OBIimg.js. Through the algorithm of
OBlimg.js, 3D Model composed of OBJ and MTL 1s
converted into PNG, thereby achieving speed efficiency
by reducing the file size. Table 1 shows that the capacity
1s reduced through the compression method.

Figure 2 shows the OBJ and MTL files are converted
to a single PNG and then rendered by the ORJimg.js
algorithm. Figure 2a shows a 3D Model in a blender using
OBJ and MTL files. However, if the 3D Model is
downloaded and then rendered through Three.js, the size
may not be appropriate. Blender 1s used to adjust the size
of the 3D Model. Figure 2b shows a PNG image
compressed using the OBJimg.js algorithm. Figure 2¢
shows the process of extracting the components of the 3D

Measurement tool
Experiment site
Used browsers
Test location

http://webpagetest.org
http://regiit.org

Firefox, Chrome, Microsoft Edge
Dulles, VA USA

Model contained in pixel by the algorithm and rendering
1t in the web browser. To extract the mformation from the
3D Model from the PNG, the algorithm of OBIimg.js
should be used again. Apply the codes generated by the
algorithm according to Threejs. Then the 3D Model 1s
loaded on the web. As can be seen 1n Table 2, therefore,
it is much faster than ‘uncompressed’” method. Future
experiments target compressed PNG images.

Experiment environment: The experimental environment
1s shown in Table 3. A good computer shows the loading
speed of a very fast 3D Model on the local host but the
experiment is not related to the performance of the
computer, since, it was performed on an external public
server. Tools for measuring the loading speed of 3D
Models were performed at webpagetestorg. Speed
measurement 1 mdividual browsers such as Firefox,
Chrome and Microsoft Edge 1s also important. In Korea,
3D Model loading time is shorter than other countries
because the server is based on Dulles, Virginia, the TJSA
to meet the global standard.

3935

J. Eng. Applied Sci., 14 {Special Issue 1): 3934-3937, 2019

JavaScript (Three.js)

v v

OBIMTL loader js | OBJimgjs

| Image (PNG) I

Apply three variables

* v

CDN o sty ey " gulp.js

|| JavaScript and CSS Minify

‘ Applied Lo multiple browsers

v

| Firefox, Chrome, Microsoft Edga

Derive average of load time

Fig. 3: The flow diagram of the process of ‘compressed’

method

Experiment composition: Nine tests were performed
to measure the loading time. The standard of the
comparisons 18 the average of the loading time. It 15 based
on the PNG image computed by OBlimg.js which 1s
compressed. Three methods including CDN, gulp.js and
JavaScript and CSS compression were applied in the
experiment. A CDN can fetch data at high speed from a
nearby server (Aloui et al, 2018). gulpjs combines
multiple JavaScript codes into a single file(). Compressing
JavaScript and CSS makes your code light. These
methods were applied to Firefox, Chrome and Microsoft
Edge, to measure the final load time of 3D Model.
Figure 3 is a flow chart that illustrates the experiment flow
diagram.

RESULTS AND DISCUSSION

Table 4 shows the loading time when three methods
including gulp.js, CDN and JavaScript&CSS compression
are utilized and when they are not utilized. When three
methods were used, it was shown that the time was
reduced by about 15% rather than the state where nothing
was applied.

Figure 4 shows the results of Table 4 in the form of
graphs. Figure 4a shows a graph of the final loading time
result when nothing applied. The highest loading time for
Chrome browser’s 3D Model 1s slow that reaches the
27.30 sec. Because Chrome uses a lot of resources to
speed things up, it tends to slow down if the state of the
server does not properly download the resources on time.
Figure 4b shows the final loading time when three
methods are applied. The Chrome browser showed fewer
time variations. It complements an unstable server when
the resources required for loading through the CDN are
not downloaded properly. Both graphs show that
Microsoft Edge loads faster than other browsers.

(a)

-4~ Chrome

- Firefox

& Microsoft Edge
¢ Average

304

20 4

2 154
&
10 1
54
0 T T T T T T T T T
1 2 3 4 5 6 78 9
Chrome 18724 16803 20253 17537 17351 27174 23034 16211 20.586
Firefox 16398 16252 15373 16178 16299 16544 17822 17570 16079
Microsoft Edgel2387 11294 11751 13637 10907 11349 11443 11053 10762
Average 15836 14783 15792 15784 14852 18356 17433 14945 15809
30 9 by
25
20 -
2 15
2
10 4
5
0 T T T T T T T T T
1 2 3 4 5 6 78 9
Chrome 16478 13734 14186 14754 12852 14356 14558 14333 14.060
Fircfox 16126 16,108 11971 15574 16183 15944 11568 14777 15557
Microsoft Edgel1.041 11571 11971 13819 10560 11333 11168 12.022 11.034
Average 14548 13804 12709 14716 13198 13878 12431 13711 13550

Number of tests

Fig. 4: Performance comparison: a) None applied and b)
All applied

Table 4: Results of loading time test

Classification Average time (sec) Compare

Fully applied 13.616 .14.65%

Nothing applied 15.954 Standard
CONCLUSION

The study describes an optimization method for
improving the loading speed and thus reducing the
loading time of 3D Models in the Web environment
(Righy et al., 2016). The first step 1s to compress the 3D
Model data. The 3D Model data 15 compressed through
OBTimg.js. The second step is to optimize the source code
using three methods: firstly, the CDN takes the data from
the nearest server and reduces the time it takes to load the
relevant sources. Secondly, gulp s combines the number

3936

J. Eng. Applied Sci., 14 {Special Issue 1): 3934-3937, 2019

of different script files into a single file. Thirdly, TavaScript
and CSS files are compressed. In order to obtain the
results of the compression of the 3D Model and the
unproved state of the code, 1t was applied to mndividual
browsers and results are derived through by graphs. This
study is expected to be a way to improve the loading
speed of websites by compressing large 3D Models and
optimizing source files (Rahman and Chung, 2018).

ACKNOWLEDGEMENTS

This research was supported by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support
program (IITP-2018-2015-0-00448) supervised by the IITP

(Institute for Information and Communications
Technology Promotion).
REFERENCES

Aloui, M., H. Elbiaze, R. Glitho and S. Yangui, 2018.
Analytics as a service architecture for cloud-based
CDN: Case of wvideo popularity prediction
Proceedings of the IEEE 15th Annual International
Conference on Consumer Communications and
Networking Conference (CCNC), Tanuary 12-15, 2018,
IEEE, Las Vegas, NV, USA., ISBN:978-1-5386-4791-2,
pp: 1-4.

Li, P, X Yu and I Wang, 2016 Progressive
compression and transmission of 3D model with
WebGL. Proceedings of the 2016 International
Conference on Audio, Language and Image
Processing (ICALIP), Tuly 11-12, 2016, TEEE,
Shanghai, China, ISBN:978-1-3090-0655-7, pp:
170-173.

Nath, K., S. Dhar and S. Basishtha, 2014. Web 1.0 to
Web 3.0-evolution of the web and its various
challenges. Proceedings of the 2014 International
Conference on Reliabilty, Optimization and
Information Technology (ICROIT), February 6-8,
2014,1EEE, Faridabad, India, ISBN:978-1-4799-3958-9,
pp: 86-89.

Rahman, W.U. and K. Chung, 2018 An efficient rate
adaptation algorithm for streaming over HTTP.
Proceedings of the 2018 International Conference on
Information Networking (TCOIN), January 10-12, 2018,
IEEE, Chiang Mai, Thailand, I[SBN:978-1-5386-2291-9,
pp: 486-491.

Rigby, P.C., Y.C. Zhu, S.M. Donadelli and A. Mockus,
2016. Quantifying and mitigating turnover-induced
knowledge loss: Case studies of chrome and a
project at Avaya. Proceedings of the 2016
TEEE/ACM 38th International Conference on
Software Engineering (ICSE), May 14-22, 2016, TEEE,
Austin, Texas, UUSA., [SBN:978-1-5090-2071-3, pp:
1006-1016.

3937

	3934-3937TT - Copy_Page_1
	3934-3937TT - Copy_Page_2
	3934-3937TT - Copy_Page_3
	3934-3937TT - Copy_Page_4

