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Abstract: This research concerns with free vibration analysis of piezoelectric composite materials. Based on
the theory of elasticity and piezoelectricity, the governing equations of the problem were derived. Two
differential quadrature techniques are employed to reduce the problem to an eigen-value problem. That is
solved for different materials and boundary conditions. The natural frequencies of the composite are obtained.
Numerical analysis 1s mtroduced to explain influence of computational characteristics of the proposed schemes
on convergence, accuracy and efficiency of the obtained results. The obtained results agreed with the previous
analytical and numerical ones. Also, the proposed schemes record less execution time then previous ones.
Furthermore, a parametric study 13 mtroduced to investigate the influence of elastic and geometric

characteristics of the composite on the results.
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INTRODUCTION

Piezoelectric materials have been frequently arise in
many engineering, electro-mechanical problems such as
transducers actuators and sensors which have ability of
transferring from electrical to mechanical energy and
vice-versa (Nechibvute et af., 201 2; Hung, 2005). Vibration
analysis of such composites can be used to predict the
behavior of smart structures.

Due to the complexity of such problems, only limited
cases can analytically be solved. A number of
approximate theories of the vibration problems are 1ssued
by Khdeir (1988), Wu and Chen (1994), Matsunaga (2000)
and Cho et al. (1991). Literature on the numerical solution
of research subject is sparse. Typical useful numerical
methods such as spline finite strip (Fan and Cheung,
1984, Galerkin Chia, 1985) least squares (Zitnan, 1996,
meshless (Donning and Liu, 1998; Rayleigh-RitzY oung,
1950) and finite element (Leung and Chan, 199%)
techniques are used to solve such problems. The
drawback of these numerical methods is the need to large
number of grid points as well as a large computer capacity
to attain a considerable accuracy.

More recently, Differential Quadrature Methods

(DOMs) have many successful applications in
engineering fields (Zhang et al, 2006). Earlier
approximations depend on lagrange interpolation

polynomials. Convergence and stability of the solution

are not ensured through that version which 1s only
suitable for rectangular domains. Therefore, this version
cannot be individually employed for geometric or material
discontinuity problems. This drawback can be overcome
by combining DQM with the domain decomposition
technique and geometric mapping (Xionghua and Shen,
2004; Zong et al., 2005). Hybnd techmique based on
State-Space and Differential Quadrature Methods
(SSDOQM) is used to solve such problems for complex
geometry and different boundary conditions (Chen and
Lu, 2005, Zhou et al., 2010, Feri et al., 2015). In this
approach, DQM is used in two directions and state space
method 13 employed along the thickness direction. Sinc
Differential Quadrature Method (SDQM) (Bellomo et af.,
2001, El-Gamel et al., 2003, Dockery, 1991; El-Gamel and
Zayed, 2002; Yin, 1994; Carlson et al., 1997) and Discrete
Singular Convolution Differential Quadrature Method
(DSCDQM) (Ng et al, 2004; We1, 1999a, b; 2000a, b;
2001, Wel et al, 2002, Wan et al, 2002, We1 et dal.,
2001) are more reliable versions than polynomial based
DOM.

Up to knowledge of the researchers, SDOM and
DSCDOM are not examined for vibration analysis of
composite piezoelectric plate materials. Based on these
versions, numerical schemes are designed for free
vibration of piezoelectric composites. The natural
frequencies are obtained and compared with previous
analytical and numerical ones. For each scheme the
convergence and efficiency is verified. Also, a parametric
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study is introduced to investigate the influence of elastic,
geometric characteristics of the composite on the
results.

MATERIALS AND METHODS

Formulation of the problem: Considera three-dimensional
piezoelectric composite with (O<x<a, O<y<h, O<z<h)
where, a, b and h are length, width and total thickness of
the composite. This composite 1s olarized in z direction
and consisting of m layers with different types of
materials as shown m Fig. 1. Based on the theory of
elasticity and piezoelectricity the equations of motion
and the charge equation of electrostatic can be written as
Feri et al (2015):
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Fig. 1: Piezoelectric composite (sensor is PZT-4 and
actuator is BaZNaNb35015)
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where, C, e and m are the components of the effective
elastic, piezoelectric and dielectric constants of the same
plezoelectric material, respectively. Also, ¢ is the electrical
potential. For harmonic behavior, one can assume that:

u(x, Z, t) = Ueiwt, v(x, Z, t) = Vei‘m, w(x, Z t) = %
Wem, (])(x, z,t) = Pel™

Where:

@ = The natural frequency of the plate and I = \/-1. U,
W

@ = The amplitudes for u, w and ¢, respectively

The elastic material constants can be determined as
follows using the reciprocal theorem (Zhouet al., 2010):

2
El(Ez'Vza Ea)

Cu Ey-viy® Ei/El Va3 E3-vi3E) Eg /B, (Vi3-2v12va3)
(8)
Cpy =Cpy =—— ‘2’12E2+V13V23E3
Iy Ey fE vy By /By -vig Es/El(V13'2V12V23)
)
Ciy = Cyy — —— 2E3 {(viztviavas)
L-viy”Eq /By V3" E3 /By -vi3 E3 /By (Vi3-2v12V13)
(10)
c,, = i ZEZ(El'VIBZEB)
By-vip"Ep-vys " BB /By -vysB, (V13'2V12V23)
(1)
Cys = Cyy = _ ESZ(V23E1+V12V13E2)
Eyvi2 Ep-vay” E1E3/Ep -vi3E; (vi3-2viavas )
(12)
Cas = - 2E3(E1'V122E2)
Ej-vi2 Ey-vy, ElEs/Ez'V13E3(V13'2V12V23)
(13
Caq =Gz, Cs5 =63, Cgg =G
(14)

where, Ep, Gpq and vpq (p, q = 1, 2, 3) are Young's
moduli, shear moduli and Poisson’s ratios. Substituting
from Eq. 5-14 into 1-4 the problem can be reduced to
a quasi-static one as:

2*U U 2*U *V
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ox oz oxady (13)
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The boundary conditions can be described as:

, atx=0,a (19)

For sumply Supported edge (3):
w=v=u=0 atx=0a y=0,b (20)

For Clamped edge (C):

atx=0,a

aty=0,b

=Ty = Ty =0

Ox (1)
[9)

y =Tyz =Ty =0

For Free edge (F) Mechanical and electrical boundary
conditions at lower and upper surfaces of the composite
are:

XZ zy — 'z = (22)

To ensure the continuity between electric and elastic
layers, the following conditions can be considered:
U(X, Y, hs') = U(X, Y, h:), V(X, Y, hs') =
V(X, v, h:),W(x, v, h;):W(X, v, h;’), (23)

CI)(X, v, h;) :(I)(X, Y, h:)
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U (x, Y:(hﬁhc)i) =U (x, v, (h, +h, )+),
V(X, va (hs+h:)7) = V(x, v, (h,+h, )+),
W (x, v, (h, +h, )7) =W (X, v. (b, +hc)+),

Q(&y4m+mf):®(xyihﬁhgj

(24)

Also, the continuity conditions between different elastic
materials are:

U(x, v, h;) = U(X, v, h;), V(x, v, h;) =
V(x, v, h;),W(x, v, h;):W(x, v, h;): (23)

(I)(x, ¥, h;):(b(x, ¥, h;)

Method of solution: Two differential quadrature
techmques are employed to reduce the governing
equations into an eigenvalue problem as follows:

Sinc Differential Quadrature Method (SDQM): Cardinal
sine function is used as a shape function such that the
unknown | and its derivatives can be approximated as a
weighted linear sum of nodal values, Y1, (1 = -N, N) as
follows (Korkmaz and Dag, 2011, Bellomo et al,
2001; El-Gamel et al., 2003; Dockery, 1991; El-Gamel and
Zayed, 2002; Yin, 1994; Carlson et al., 1997):

vou= § T8 ]

=N T (Xl-X

(i=-N,N), h,>0

Wi (o6
]

i ( ) @D
- = Afy(x;), (i=-N,N

xx=x oy 1

o*y N .

. =Y Bfw(x), (i=-N,N (28)
aXZ X = Xi J;N l ] ( )

Where:
I = Denotesto ], V, Wand &
N = The number of grid points hx is grid size

The weighting coefficients A%, B, can be determined
by differentiating (Eq. 26) as:

1y 20-1 Ps]
Sk . 2 n2
A% = T aa ] B - h “(Gi4) (29)
ij x(l J) ? bl 2
0 i= T =
3h

X

Discrete Singular Convolution Differential Quadrature
Method (DSCDQM): A smgular convolution can be

defined as Korkmaz and Dag (2011), Bellomo et ad. (2001),
El-Gamel et al. (2003), Dockery (1991); El-Gamel and Zayed
(2002), Yin (1994) and Carlson et ai. (1997):

Bo=(Tn)(t)= [ r(txn(xjax GO

b —p

where, T(t-x) is a singular kernel. The DSC algorithm can
be applied using many types of kernels. These kernels are
applied as shape functions such that the unknown r and
its derivatives are approximated as a weighted linear sum
of In, (1 = -N, N), over a narrow bandwidth (x-x,,
x+xy) (Ng etal., 2004; Wei, 19993, b; Wei, 2002a, b, 2001,
Wei et al., 2000, Wan et al. (2002), Wei ef al., 2001). Two
kernels of DSC will be employed as follows: Delta
Lagrange Kernel (DLK) can be used as a shape function
such that the unknown  and its derivatives can be
approximated as a weighted linear sum of nodal values,
1, (1= -N, N) as follows:

M

w(xn) = 2 1{}MM IIJr(Xj)’ 31
j:’M(xl—xJ) H (XJ-Xk) (31)

=M, j#k

(i=-N.N),M=1

dy RS Py

gX:Xi _FEMAU‘”( J)’ ?xzx1 (32)

M

2 Bf;u!(xj), (1 =-N, N)

j=-M

where, 2M+1 1s the effective computational band width.
A%, BY; are defined as:

ij>

1 fﬁ (%) i#j

(Xi'xj)k=-M,k¢i,j(Xj_Xk)
A= M

Y =l

j=-M,j#i

(33)

. x Ab o
2Aij.Aii— 1#]

(Xi-xj)
M
- Y B i=]

=M, ji

X _
B =

Regularized Shannon Kernel (RSK) can also, be used
as a shape function such that the unknown Y and its
derivatives can be approximated as a weighted linear sum
of nodal values, i, (i =-N, N) as follows:
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M sjn[n(xi—xj)/hx} {(Xﬂz;)
w )71-:2.1:‘4 — (x;) (34)
(1 =-N, N), G:(I’*hx)>0

Ay C ax A

e e ZAijw(XJ)’_z e

X [X =X Py K x=x (35)

Where:
¢ = Regularization parameter
r = A computational parameter

The weighting coefficients A%, B are defined as
(Ng et al, 2004, Wei, 1999a, b, Wei, 2000a, b; 2001,
Wei et al., 2001, Wan et al., 2002, Wei et al., 2002):

o [ }
i -h, [—
AX — ( 1) e 262 N 1 i]

i hx (1_.])
0 =]
.. i _1)2 (36)
2(' )I-Jﬂ +L e-hi[ 267 ] P#]
B =\ b4 ’
o 3h.’ :

Similarly, one can approximate 1y, ,, WV, |, and
caleulated A%, A%, B, BY. On suitable substitution from
equations of weighting coefficients (Eq. 26-36) into
(Eqg. 15-18), the problem can be reduced to the followimng
Eigen-value problem:

N

Nx NY b4
X v z
Cn Z BiiUjjk *Ces 2 B Uimk +<ss 2 Bion Ui *
1=-N, =-Ny n=-N_

(C1a+Ces)
I=-N_ m:-Ny (37)
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NZ NX
z X
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NY NZ
¥ z _
M3 Bjm(Dimk MNs 2 B Pyjy =0
m :.Ny n=-N,

The boundary conditions Eq. 19-25 can also be

approximated using two DQMs as. Siunply Supported (3):
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Wl_]k - 1_]]( _Cll E AllUl_]k +C12 2 A_]mvl.[nk +C13 E AkHWl T E Akn

I=-N,

iin =0, atx=0,a
e e (41)

N,
Wl_]k - l_]k *CIZ 2 AlUl_]kJrcll 2 A_]m k+c13 z Aknwl_]nJreZ z Akn ijn =0, aty = 0.b
n=-N, n=-N,

Wi = Vi

i ik = Ui =0, atx=0,a y=0,b (42)

Clamped (C). Free surface (F):

N, N,
Cin 2 AflUj +Cha E Al Vi +Cr3 E Al Wijn e E Al @i =0
n=-N, n=-N,
2 Al Wik 2 AgnUjjn |1 ©5 2 Al =Ces 2 Al Vi + 2 AL Ui |=0 atx=0.a

I=-N, n=-N_ 1=—-N,

=N (43)

NX Y NZ NZ
X y z z

Cr2 2 AUk Cn Z Al Vimk TCi3 Z Akn Wijn 782 Z A ®

=N, m=-N, n=-N, n=-N,
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¥y Zz ¥y — X ¥y — —
Caq 2 Ay Wink + Z Afn Vign |84 2 At Pimk = Ce6 2 Aji Vi + 2 AjmUimk |=0 aty =0b
m=-N, n=-N, m=-N, =N, m=-N,

Mechanical and electrical boundary conditions at lower and upper surfaces of the composite are:

Cis 2 AUk tCr3 2 A Vink 7Cs3 2 A Wijn 2 Z A ®

N, n=-N,

NX NZ
_ x z
iin =Cs5 ErAillekJr E, AUja [*
I=-N, n=-N_

N, Ny N, Ny, Ny Ny
x _ Y z ¥y _ x ¥y
es 2 AjPy =0Cyy 2 Ay Wik + 2 Akn Vi |14 Z AinPimk =1 Z AjUytey 2 A Vimk *
I=—N, " n=-N, m=-Ny l=-N, m=-Ny

m=-N
N N,
C3 2 Aknwl_]n N3 2 Akn ijn =0 atz= OCIS 2 AllUle+C13 2 A_]m 1mk+c33 E Aﬁnwijn+ (44)
n=- I=-N, m=-N, n=-N,
Nz Nx NZ Nx NY NZ
&3 2 AgnPijn E AWy + 2 A Ujin |Fes EAﬁq’uk =0Cy 2 AY Wiy + E Agn Vi |+
n=-N_ 1=-N, n=-N, 1=1 m=-N, n=-N,
NY
m:-Ny

The continuity conditions between the mterfaces of
layers can be assumed as:

W ij E] \qu - V U :U ’ qjukl :qjukz (45)

ik = ik gk 2

We have solved the generalized eigen value problem
(Vel et al., 2004; Zhang et al., 2006):

KX = o MX (46)

Where:

K = The coefficient matrix of previous system
M

The mass matrix can be diagonal with zero diagonal
elements and

w = Free vibration frequencies squared. Rewriting the
equation in the form

6545



J. Eng. Applied Sci., 14 (17): 6540-6553, 2019

[Kaal [Kgcl ) [04] P [M] [0] Y [¢q]
(Keal [Keel | [¢] (01 [o1 ) [o.]
where
[Kq1] [Kqp] [Kys] [Kqq]
Koo =| [Ky] [Kpa] [Kasl |0 Ko =| [Kpl
[Kz] [Ksp] [Ks3] [K34]
Ke :([K:u JIK 421K y3] ) K :([K44)
[U]

¢'a: [V] > ¢c:([®])a M:_pl
[W]

(47)

where, I 1s the unit matrix. From previous equations we
get:

K0, = ™Mo, (48)

where, K, = K _-K_K_'K,, We get ¢, in alone side in terms
of ¢, using the following relation:

1
¢'c = _chKcaq)a (49)

RESULTS AND DISCUSSION
The present numerical results demonstrate

convergence and efficiency of each one of the proposed
schemes for vibration analysis of piezoelectric
composite materials. For all results, the boundary
conditions Eq. 42-45 are augmented in the governing
Eq. 37-40. For practical purpose, the field quanties are

normalized such as:

* * #*
Oy .Gy .0, .

BT N E )

Ky o VXZ o byz

(U*,V*,w*) —(U,V,W)/h,
(Gxacyaczarxyarxzaryz)/EZ

cij* :Cij/Ez, X =X/a, ya= =y/b, 7 =

(51)
z/h, h=hg+h +h,, h, =h; =h,

Where:

U,V W' = The normalized amplitudes of
displacements, o', 0*5,, o, are the
normalized amplitudes of stresses

Tay» Taz» Ty = The normalized amplitudes of shear

stresses and h,, h, are the thickness of
actuator and sensor

The computational characteristics of each scheme are
adapted to reach accurate results with error of order
<10-8 The obtained dimensionless frequencies {2 and
are evaluated such as:

2
Q-wh [P mogx 2
E, h

where, p, and E, are the density and the Young’s modulus
of the bottom layer, respectively. For the present
results, material parameters for the composite are
listed in Table 1.

For sinc DQ scheme, the problem is solved over a
regular grids ranging from 3*5*5-11%5*5. Table 2 shows
convergence of the obtaned results. They agreed with
exact ones (Khdeir, 1988; Wu and Chen, 1994,
Matsunaga, 2000; Zhou et al., 2010; Korkimaz and Dag,
2011) over grid size >7*5%5.

For DSCDQ scheme based on delta Lagrange kernel,
the problem 1s also solved over a umform grids
ranging from 3*5%5-11*5%5. The bandwidth 2M+1 ranges
from 3-11. Table 3 shows convergence of the obtained
fundamental frequency which agreed with exact ones
(Khdeir, 1988; Wu and Chen, 1994; Matsunaga, 2000,
Zhou et al., 2010; Korkmaz and Dag, 2011) over grid size
=7*5%5 and bandwidth =5. Table 4 shows that the
obtained results are more accurate than that were
obtamed using state space DQM (Zhou et al, 2010,
Korkmaz and Dag, 2011). This table also shows that
execution time of DSCDOM-DLK is less than that of sinc
DOM.

For DSCDQ scheme based on Regularized Shannon
Kernel (RSK), the problem is also solved over a uniform
grids ranging from 3*5%5-9*5*5. The bandwidth 2M+1
ranges from 3-11 and the regularization parameter o = rhx
ranges from 1.0-2.5 hx where hx = 1/N-1. Table 5 shows
convergence of the obtained fundamental frequency to
the exact ones (Khdeir, 1988, Wu and Chen, 1994,
Matsunaga, 2000; Zhou et al., 2010, Korkmaz and Dag,
2011) over gnd size 25%5*5, bandwidth >3 and
regulization parameter 0 = Zhx.

Table 6-8 insist that the obtained results from DQ
schemes are more accurate than that of state space DQM
(Zhou et al., 2010; Korkmaz and Dag, 2011; Zhang et al.,
2006). Further, execution time of this scheme is the
least.

Therefore, DSCDQM-RSK scheme 1s the best choice
among the examined quadrature schemes for vibration
analysis of piezoelectric composite materials. Also,
Table 7 shows the convergence of normalized frequencies
at total thickness he = 0.04. As well as for different
boundary conditions Table 8 ensures that DSCDQM-RSK
scheme is the best choice for free vibration analysis of
piezoelectric composite materials.

Furthermore, a parametric study 1s mtroduced to
wvestigate the mfluence of elastic, geometric
characteristics of the composite and type of material on
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Table 1: Material property for composite piezoelectric plate (Feri et al.. 2015)

Material properties - Young’s moduli{(GPa)--  ----o-- Shear moduli (GPa)---=ooee  —oooeeeo Poisson’s ratiog------- Density (ke/m®)
E2 El E3 G12 G13 G23 Vi Viz Vg o
7 25E2 E2 0.5E2 Gl12 0.2E2 0.25 0.03 0.4 1600
Effective elastic (GPa)
Cl11 C12 C13 C22 C23 C33 c44 C55 Co6
Sensor PZT4 139 78 74 139 74 115 25.6 25.6 30.5
Sensor BaTiO: 166 77 78 166 78 162 43 43 44.5
Actuator BaZNalNb5S0O15 239 104 5 247 52 135 65 66 76
Actuator PZT-5A 121 77 77 121 111 21 21 21 23
Material property Piezoelectric constants (C/m?) Dielectric constants (F/m) *10-9 Density (kg/m®)
€ € € €y €5 Th T s P
Sensor PZT4 -5.2 -5.2 15.1 12.7 12.7 6.5 6.5 5.6 7500
Sensor BaTiO: -4.4 -4.4 18.6 11.6 11.6 11.2 11.2 12.6 5700
Actuator BaZNaNbSO15 -0.4 -0.3 4.3 34 28 19.6 2.01 0.28 5300
Actuator PAT-5A -5.4 -5.4 15.8 3.4 34 8.11 8.11 7.34 2330

Table 2: Comparison between the normalized fundamental frequencies by using Sinc DQM, grid size N and the previous exact and numerical ones for simply
supported square plate.(ah = 5. h./h, =25)

Results/Normalized frequencies (N) ol 2 ey pav ey v
Sinc DQM

3 10.628293 11.85211 17.16022 34.21303 68.96996 78.75195
5 10.63829 11.89586 1716215 34.21560 68.94715 78.76118
7 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
9 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
11 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
Analytical (Korkmaz and 10.68214

Dag, 2011)

SSDQM (Zhou ef ., 2010) 10.68218

N=7

SSDOQM (Korkmaz and Dag, 10.68221

200 N=11

Individual layer plate theory 10.673

(Cho et al., 1991)

Two dimensional local 10.682

(Wu and Chen, 1994)

Global higher order theory 10.6876

(Matsunaga, 2000)

Execution time (sec) 5.691851 over N = 7*5*5

Table 3: Comparison between the normalized fundamental frequency by using DSCDQM-DLK, band width (2M+1)and grid size N for simply supported
square plate. (h./h,=25. ath =5)

Fundamental frequency () DSCDQM-DLK

Band width (N) 3 S 7 9 11
2M+1 =3 10.07465 10.11616 1030714 10.75052 10.64289
2M+1 =5 10.65705 10.59648 10.68214 10.68214 10.68214
2MHL =7 10.91236 10.52187 10.68214 10.68214 10.68214
2MF+1 =9 10.40054 10.41530 10.68214 10.68214 10.68214
2Mt1 =11 10.26374 10.01 760 10.68214 10.68214 10.68214

Table4: Comparison between the normalized frequencies by using DSCDQM-DLK, grid sizes N and the previous exact and numerical ones for simply
supported square plate. (2M+1= 5. h./h, =25, ah = 5)

Normmalized frequencies/

Results/N wl w2 i ol s 6
DSCDOM-DLK

3 10.91236 11.45357 1745644 34.09842 69.07229 78.88594
5 10.52187 11.89871 1742412 3554378 71.81753 77.78916
7 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
9 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
Analytical (Korkmaz and 10.68214 e mmmmmmeee e e e
Dag, 2011)

SSDOM (Zhouet al., 2010) N =7 10.68218 ————— e T e B e L
$8DOM (Korkmaz and Dag, 2011) 10.68221 e e e e
N=11

Individual layer plate theory 10.67300 e e e e
(Cho et af., 1991)

Two dimensional local (Wu and Chen, 10.68200 e e e e
1994)

Global higher order theory (Matsunaga, 10.68760 e e e e
2000)

Execution time (sec) 5.592470 over N = 7#5*5
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Table 5: Comparison between the normalized findamental frequency by using DSC DQM-RSK, band width (2M+1), regularization parameter o and grid
gize N for simply supported square plate. (hy/h, =25, ah=35)

DSCDQM-RSK

Fundamental frequency o N/

Regularization parameter (2M+1) g =1*hx g =1.5%hx a = 2%hx a=2.5%hx
3

3 10.01106 10.27275 10.31357 10.16323
5 10.32780 10.69052 10.45065 10.51694
7 10.33695 10.48258 10.54917 10.54542
9 10.33436 10.52011 10.64838 10.68517
11 10.33436 10.52011 10.63909 10.68517
3

3 10.00594 10.07620 10.68214 10.68214
5 10.05511 10.66973 10.68214 10.68214
7 10.13542 10.29284 10.68214 10.68214
9 10.32286 10.59687 10.68214 10.68214
11 10.32286 10.59687 10.68214 10.68214
"

3 10.53556 10.19711 10.68214 10.68214
5 10.32330 10.67450 10.68214 10.68214
7 10.52063 10.46442 10.68214 10.68214
9 10.67811 10.62821 10.68214 10.68214
11 10.67811 10.62821 10.68214 10.68214
9

3 10.52030 10.73963 10.68214 10.68214
5 10.53121 10.77107 10.68214 10.68214
7 10.43665 10.58812 10.68214 10.68214
9 10.70606 10.69206 10.68214 10.68214
11 10.70606 10.69206 10.68214 10.68214

Table 6: Comparison between the nommalized frequencies by using DSCDOM-RSK, grid sizes N and the previous exact and numerical ones for simply
suppoited square plate. (2M=+1 = 3,0 =2 *hx, hy'h, = 205, ah = 5)
Nommnalized frequencies

Results™N wl o2 m ol ms o6
DSCDQM-RSK

3 10.31357 11.48038 17.46617 34.57306 68.68437 78.27151
5 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
7 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
9 10.68214 11.89686 17.16601 34.22266 68.98614 78.76893
Analytical Korkmaz and 10.68214 eememeeeee emmmemeeee emmeeeee e
Dag (2011)

SSDOM (Zhu et al., 2010) N =7 1068218 e e s e
SSDQM (Korkmaz and 1068221  eememeeeee emmmemeeee emmemeee e

Dag, 201 )N =11
Individual layer plate theory 10.673  meemeeeeemmeeeeemmemeeeee e

Cho et al. (1991)
Two dimensional local 10,682 e e e e

(Wu and Chen, 1994)
Global higher order theory 10,6876  eememeeee et eeee e

(Matsurange, 2000)

Execution 1.915793 over N = 5%5%5
time (sec)
the values of natural frequencies. Table 9 and Fig. 2-8 Figure 4 shows the natural frequencies decrease with

show that the natural frequencies increase with  decreasing the piezoelectric layer thickness (he/hp).
increasing side to thickness ratio (a/h), Young's Further, Fig. 6 show the natural frequencies decrease with
modulus gradation ratio, (E1/E2), shear modulus increasing the aspect ratio (a/b) at different values of (a/h)
gradation ratio (G13/G12) and mumber of layers. (Fig. 7-9).
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Table 7: Comparison between the normalized frequencies, thickness (h) and the previous exact and numerical ones for simply supported rectangular plate.
(a’h =4, a’b=0.0001)
Normmalized frequencies

Results/h wl »2 el ol o5 w6
DSCDQM-RSK N =5

0.01 2.2428 10.5956 24.1111 42.5443 49,8596 60.4815
0.02 2.2453 10.5135 24.1137 41.5900 49,5302 60.5342
0.03 2.2604 10.1289 24.2830 41.4227 49,5221 59.8661
0.035 2.2604 10.0485 24.0988 41.2223 49,5218 59.8449
0.04 2.2604 10.0421 24.0968 41.1223 49,5168 59.8447
0.045 2.2604 10.0421 24.0968 41.1223 49,5168 59.8447
0.05 2.2604 10.0421 24.0968 41.1223 49,5168 59.8447
Analytical (Vel et ad., 2004) 2.2603 10.087 24.088 41.663 49511 -
Liew (Zhang et ai., 2006) 2.2630 10.0896 23.7761 40.483 485185 e
h=0.05N=7

Liew (Zhang et ai., 2006) 2.2630 10.0896 23.7761 40.4831 485185 e
h=01.N=7

B.CS/Results Q1 Q2 03 Q4 Qs 06
SSSS
DSCDQM-RSK 0.0253 0.0522 0.0672 0.0753 0.0962 01045
SSDQM (Korkmaz and Dag, 2011) 0.0251 0.0533 0.0678
ccce
DSCDQM-RSK 0.0377 0.0816 0.113 0.2538 0.3268 04323
SSDQM (Korkmaz and Dag, 2011) 0.0377 0.0802 0.1103
SCSC
DSCDQM-RSK 0.0296 0.0534 0.0807 0.1253 0.1795 02404
SSDQM (Korkmaz and Dag, 2011) 0.0296 0.0558 0.0878
CCCF
DSCDQM-RSK 0.0111 0.0193 0.0256 0.0318 0.0400 00518
SSDOM (Korkmaz and Dag, 2011) 0.0105 0.0194 0.0255
0.207 (a) 0.307
——— CSCS e .
L [ ccee e & 0254
2 . $8SS e .- g
2 0161 — crer - £ 0.20-
£ 0.141 L - E
g g ] £ 0.154
2 0.121 P 5
5 £ 0.10
_ £o.
§ 0.10 =
£ 008  0.05-
0.067 0.00
0,40
0.04
& i
0.35- § 035
P Z 0.304
50307 £
20 25- A
hahe 2
T‘:‘ ﬂé 0.20
-£0.20 ]
g g 0.154
g Z
5 0.154 0.104
g
“0.10- 0.05
G13/G12
0.0J
0

Fig. 3: Vanation of fundamental frequency with shear
modulus(G13/G12), different boundary conditions

Fig. 2: Variation of the fmdamentql frequency with and different materials of square plate (h/h, = 45,
Young's modulus(E1/E2), different boundary ah = 10); a) Semsor is PZT-4 actuator is
conditions and different materials for square plate ; . . .
(/b = 45, a/h = 10); a) Actuator is Ba2NaNb5O15 E;iN;ibSOlS andb) Sensor is BaTi0,, actuator is

and b) Actuator 1s PZT-5A
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Fig. 4: Varnation of fundamental frequency with composite layer thickness to piezoelectric thickness ratio E1/E2 = 25;
a)a/h=5andb)ah=10
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Fig. 5: Varation of fundamental frequency with side to thickness ratio (a/h) ,different boundary conditions and different
materials for square plate ( E/E, = 25) a) Sensor 1s BaTi0,, actuator 18 BaZNalNb5015 b) sensor 15 BaT10;, actuator

is PZT-5A

Non dimensional frequency

Non dimensional frequency

(a)

Non dimensional frequency

Non dimensional frequency

(b)

10 20

a/b

15

Fig. 6: Vanation of fundamental frequency with aspect ratio (a/b) , different values of ath and different boundary
conditions for square plate (h/h, = 25, E1/E2 = 25); a) SSS8; b) CSCS; ¢) SCSC and d) CCCF
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Variation of fundamental frequency with number of layers, different boundary conditions and different materials

of square plate (h/h, = 45, a’h = 5): a) Sensor is PZT-4, actuator is BaZNalNb3O15 and b) Sensor is BaTiO ,
actuator is PZT-5A
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a, b) Variation of fundamental frequency with Young's modulus(E1/E2) , shear modulus(G13/G12) and different

number of layers for different materials (sensor is BaTi0, and actuatoer is PZT-5A) of square plate (h/h, = 45, a/h
=10)
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Fig. 9: Variation of normalized mode shape W with time for first three modes at different boundary conditions for square
plate with total thickness 0.04 (h/h, = 25, E1/E2 = 25, a/h = 10 ); a) S88; b) CCCC; ¢) SCSC and d) CCCF
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Table 9: Comparison between the normalized frequencies, thickness ratio (a/h) and the previous exact and numerical ones for simply supported square plate

(ho/h, =25)

Nommnalized frequencies

=

wl

Results

2 3 od s 6
DSCDOM-RSKN =35 2 531446 5.73301 9.03459 18.60067 37.31455 3874211
5 10.68214 11.89684 17.16601 34.22266 68.98614 78.76893
10 15.06858 16.27407 25.61706 54.80471 101.458346 120.22605
Analytical (Zhou et al., 2010) 2 5.31466
5 10.68214
10 15.06859
SSDQM (Zhou ef ., 20L0) N =7 2 5.31410
5 10.68218
10 15.06867
SSDQM (Korkmaz and Dag, 2011) N =11 2 531416
5 10.52109
10 15.01937
Moreover, the natural frequencies remains constant when REFERENCES

(h/h>20) in all different edge conditions. Figure 2-3
and 5 show the effect of material type on the natural
frequency. Tt is seen that, the sensor is more significant
than actuators. The mnatural frequency 1s almost
unchanged when (a/h =40). Also, the influence of BaT10,
material is more affected on the natural frequencies than
PZT-4 material. Furthermore, Fig. 9 shows the first three
mode shapes of normalized transverse displacement (W).
From previous figure, it 1s seen that, the normalized
transverse displacement is maximum for the CCCF plate
and is minimum for the CCCC plate.

CONCLUSION

have been
successfully applied for free vibration analysis of
plezoelectric composite materials. A MATLAB program is
designed for each one such that the maximum error
(comparing with the previous exact results) 1s <10-8. Also,

Two different quadrature schemes

execution time for each scheme 1s determined. It is
concluded that discrete singular convolution differential
quadrature method based on regularized Shannon kernel
(DSCDOM-RSK) with grid size =5*5*5, bandwidth
2M+1 23 and regulization parameter 0 = 2 hx leads to best
accurate efficient results for the concerned problem (three
layered piezoelectric composite with total thickness =
0.04). Based on this scheme, a parametric study is
mtroduced to mvestigate the influence of elastic,
geometric characteristics of the composite and type of
material of the vibrated plate, on results. The thinner
composite has larger frequencies more than thick one.
Composite plate with CCCC conditions has minimum
normalized transverse displacement where as it has
maximum value for CCCF conditions. Further, it 18 aimed
that these results may be useful for piezoelectric dampers
as a part of smart structures system for buildings.
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