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Abstract: In this study, we evaluate the buckling load with energy approach with fimte element models for
mechanical buckling analysis of Functionally Graded Materials (FGMs) variable thickness cylindrical shell with
nitial imperfection. By defining the shell, mathematical equations are obtained which are dominating on the
displacement of the shell, using third order shear deformation theory and Von Karman-type kinematic
nonlmearity relationships. Considering cylindrical shell properties, so that, the function of properties change
15 considered as exponential function and variable properties are in the line with the thickness and variable
length, the research continues and by applying a mechanical force in the longitudinal direction of the shell,
strain-displacement relations and external load research in to the shell and bearing in mind the lasting
relationship, the nonlinear finite element model of the relationship of the cylindrical shell of FGM variable
thickness with imtial imperfection will be defined. Using picard numerical iterative method, nonlinear finite
element model of the problem will be solved and then using the Budiansky’s criterion, critical buckling load is
achieved. Simultaneous with the critical buckling load, another objective should be minimized like weight and
cost of manufacturing cylindrical shell. Therefore, multi-objective optimization problem 1s defned in which
using the genetic algorithm method such goals can be achieved, namely, maximum critical buckling load and
minimum weight of the shell and are shown in Pareto Front diagram.
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INTRODUCTION

Nowadays, along with incredible scientific advances
and massive mdustrial developments and due to the
tendency of big business holders to use appropriate
methods to improve mdustrial technologies and achieve
superior technology, addressing new research topics
always was on the agenda of related industries and
researchers. In this regard, one of the most important
issues which are always taken into consideration is to
discuss about the use of new technologies toward new
and efficient matenals with specific capabilities in order to
achieve better performance as well as competitive facilities
in scientific, mdustrial and economical arenas.

Functionally Graded Materials (FGM) cylindrical
shells are very widely used m various mdustries and with
some changes in properties, it can be reached to
structures with higher quality. One of the methods in this
regard 1s the changes in shell thickness which makes
beneficial changes m certain behaviors such as buckling
and vibration of structures. Yang et al. (2013) evaluated
at an article entitled, * Buckling of cylindrical shells with

general axisymmetric thickness imperfections under
external pressure” using linear regression equations,
partial layouts complete with wvariable thickness and
analysis this numerical scales. In this study, three cases
of defects buckling of cylindrical shell thuckness have
been assessed under ambient pressure. Shariat and
Asghann (2013) studies an article entitled “Nonlinear
thermal buckling and postbuckling analyses of imperfect
variable thickness temperature-dependent bidirectional
functionally graded cylindrical shells” using numerical
methods of limited elements. Characterization of materials
used 1n the shell in both radial and longitudinal directions
is variable and material properties may be dependent on
temperature. In this study, critical buckling loads are
evaluated using Budiansky’s criterion. Yang ef af. (2014)
have presented an article titled, “An analytical method for
the buckling analysis of cylindrical shells with non-
axisymmetric thickness variations under external
pressure” in this study, evaluated the analytical method
using fourier expansion series and a turmoil method was
used to analyze the buckling of cylindrical shells with
variable asymmetric thickness under external pressure.
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The foregoing review reveals that buckling analysis
of functionally graded cylindrical shell with variable
thickness have not been considered so far, especially for
cylindrical shells with tow directional heterogeneity. In
the present study, nonlinear mechanical buckling analysis
of imperfect variable thickness cylindrical shells made of
two-directional functionally graded materials 1s presented,
employ the third-order shear-deformation theory and
using picard numerical iterative method, nonlinear finite
element model of the problem will be solved and then
using the Budiansky’s criterion, critical buckling load 1s
achieved. Simultaneous with the critical buckling load,
another objective should be minimized like weight and
cost of manufacturing cylindrical shell. Therefore, multi-
objective optimization problem 1s defined in which using
the genetic algorithm method such goals can be achieved,
namely, maximum critical buckling load and minimum
weight of the shell and are shown in Pareto Front diagram.

Description of problem

The governing equations of FGM shell variable
thickness: Geometric parameters as well as the coordinate
system of the considered FGM cylindrical shell are shown
m Fig. 1. The matenial properties used i the shell in both
radial and longitudinal directions are different and varied.
In Eq. 1, h is the shell variable thickness, R is the Radius
of the shell to the middle plate and 1 1s the length of the
cylindrical shell and P 1s the Properties of materials, P, 1s
the innermost layer of the shell and P, is the outermost
layer of the shell. Z =1-R is also established:

P(x, z)—{RﬂPU-R){O.MEJn}e*T‘ (D

In Eq. 1, p 18 the representative function view of
material properties and changing the rate of change of
material properties in the longitudinal direction (X-axis) of

L o

A

1 Th(x)

Fig. 1: The coordinate system and geometric parameters
of the bidirectional FGM cylindrical shell
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cylindrical shell and n represents exponential function of
material properties and changing the rate of change in the
material properties along with the tluckness of the
cylindrical shell. Elastic coefficient matrix D is defined as
Eq 2

1 8 0 0 0
3 1 0 0 0
1-8
0 0 0 0
E
D(x z) = % 2 (2)
T loo o oy
2

00 0o o 2
L 2]

Where:

E = The Young’s modulus

U

Poissen ratio

The governing equations of shell: Displacement field of
the cylindrical shell is defined based on third order shear
deformation theory:

R
ah’ (x)
ab’ (x)

w=w, (X, 0)

u= uU +lex_ (Wx +WU,X)

3

1
V=V ty,- (We""EWu: 0)

In this relationship, wy, vy, v, are moved through the
crust middle plate and in this study, strain-displacement
relations are used in the following form:

1 2 _
B, = U, (W)W, W,

1
ZR

S (W O+2w, W)

B = (9 tw)r
@

YXZ = wX +WX

w
Yo, = We"r?@

1 _ _
Tee = Vx +E[“e +( W, TW, ) We +WxWeJ

In Eq. 4, W represents cylindrical shell initial
functon geometric imperfections. Cylindrical shell
initial geometric imperfections function is defined as
Eq. 5

W= %sin %"Xj sin (30) (5)
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Where:
w" = The cylindrical shell initial geometric imperfections
h = Vanable thickness

1 = The length of the shell

The relationship of cylindrical shell variable
thickness 13 defined as the form of Eq. 6 and b, 1s the
thickness of shell at x = O:

h(x) = h,&*" (6)

In Eq. 6, B is a view of change function of the
thickness of the cylindrical shell and this variable
represents the rate of changes toward the longitudinal
axis of the cylinder. Strain-displacement relation 1s derived
from the displacement and we express them in the form of
a matrix. Derivation of different operators 1s as follow:
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(10)

Based on the displacement and displacement-strain

relationships, these relationships can be short and be
written as the following form:

g= (D“ +ZD1+Z2D2+Z3D3)U =BU (11)

In Eq. 11, Uis the position vector which 1s defined as
follows:

U’ = (uu Vo W Wy We) 12

According to strain-displacement relations, we can
represent relation changes as follows:

bg, = du, +Hw, +w) Ow,

1 1 _
bg, = R (588+5W)+§ (wotw,) 0w,
By, = Sy, +8w, (13)

oW
8Yq, = Syt Re

1
By, = BV, +E [5u9+(WX W) 6W8+(W8+W8)Wx]

Equation 13 as a matrix could be written as follows:
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(14)
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s = (D'+ZD'+Z*D*+Z' D) 8U = B'xsu  (13)

According to the definition of potential energy which
was explained in the previous study, we write potential
energy relationship as Eq. 16 and we take the changes and
put it equal to zero:

S =J, 8U®" (B" DB) U® dv-
J,8U®TNTE do=0

(16)

As for as Eq. 11 and Eq. 15 and using element form
functions we’ll have:
B = BN = (D"+ZD'+Z’D*+Z°D*)N (17)

B =B'N = (D"+ZD+7D*+7°D)N (18)

According to thus relation, Eq. 19 1s attained as
follows: II = Total strain energy mechanical force work:

SIT=[, 8U™T (BT DB) U® dv-

(19)
[, 83U NT Edo=0
In which Eq. 19, we have:
R (U™ =[BT (U®) D BU®) dV (20)
F, =/, 3U®T NTF, do 21)

Equation 20 1s the stram energy and Eq. 21 18
forces entered the border of cylindrical shell. So, in

summary these relationships can be written as
Eq. 22

8I1=38U"T RU®.E, =0 (22)
Where:
K = Element stiffness matrix
B, = Mechanical load into the edge of the cylindrical

shell
MATERIALS AND METHODS

The governing equations of finite element model: Shape
functions for eight-node quadrilateral element is as
follows:
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N, (1-&) (1) (-En-1)

N, (148) (1) (§m-1)

N, (148) (14m) (&+n-1)

N N1 (1-&) Elm)(-ém-l) (23)

N, 4]201-€) ()

N, 2(1+8) (Im*)

N, 2(1-€%) (14+m)

N, 2(1-8) (1m*)

where, £ and 1) are natural coordinate axes of eight-node
quadrilateral element and we have E(-1<£<1) and
mn(-1<m<1). Thus, for each node of elements we will have
a form of function which are from N, to N, and elements
natural coordmmate axes, according to the following
equation will be concerned with the axis of the shell:

x = [i+(&-1)]Ax, 6=[j+(n-1)]A8 (24)

In Eq. 24, i and | are counters elements in the
longitudinal direction and shell environment, respectively
Ax and AB are longitudinal and perimeter sizes of the
elements, respectively (Fig. 2).

In the rectangular element of eight nodes, each
element node 13 defined by 5° of freedom and therefore
the relationship between the position vector and
functions is defined as Eq. 25:

U =NU® (25)
In Eq. 25, U® is defined as follows:

eT
U = (U, ¥, Wy W, W U ¥y W Y W) (26)

N as matrix 1s defined as follows:

N, 0 0 0 0 ,.,N 0 0 0 0
0O N 0 0 0 ,., 0N 0 0 0
N=/0 0 N 0 0 ,.., 0 0 N 0 0
0 0 0N 0 ,.., 0 0 0 N, 0

0 0 0 0 N ,.. 0 0 0 0 N,

(27

After assembling matrix element, we will get to form
of fimte element equation of the shell which 1s in the form
of Eq. 28:

R0 =F (28)

In relation Eq. 28 U, K, F are the vector of inserted
force, stiffness matrix and nodes position vector of the
cylindrical shell.
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Fig. 2: Discretization of the cylindrical shell by eight-node
serendipity elements

Commentary

Numerical method: To be able to base its application, it
1s required at first to consider an algorithm to solve the
problem. Finite element form of nonlinear systems, ruling
on total shells which were obtained in the previous
section, we use from Picard’s method to solve nonlinear
equations with successive iterations and get the answer
by setting error. The main solutions process is as
follows:

Segmentation mechanical load mto the cylindrical
shell in the axial direction to small parts. Selecting a guess
vector for displacement values which are generally
considered to start guessing zero vector solution and in
the next iterations to mcrease the speed, the vectors
values displacement of previous step are used.

Put these values in the stiffness matrix and create new
stiffness matrix and at every step, updating the stiffness
matrix in which 1t’s mathematical form would be as
following:

KU u®=F (29)

U = [K(U(K-IJ)T FOE-D (30)

K is the number of repeat number in each stage. Solving
nonlinear equations using numerical iterative method with
the use of picard method and repeating each step to get
the answer. Achieving a desired response 1s checked on
the basis of the following criteria:

U <0001 31

After reaching the answer in step, a small amount is
added to power and solution process repeated again.
Displacement force curve 1s plotted and using the
Budiansky’s criterion which has cylinder shell buckling
critical FGM, variable thickness will be obtained of the
initial imperfection.
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Table 1: Genetic algorithm parameters in optimization
Genetic algorithmn parameters

Number of populations

Numner of generations

Supposed numbers
70
500

Boundary conditions: Boundary relations conditions can
be defined as follows:

X=0U,V,W,y,=0 (32)
X=1V,W,y,y,=0 (33)
This boundary conditions state that n x = 0,

cylindrical shell could rotate only in the direction of 1,
and 1t 18 mhibited at all angles around the shell as well as
displacement radial cylindrical shell is zero and m x = 1
shell cylindrical can be displacement just in the
longitudinal axis and it is harmessed m all angles around
1t and also 1t 18 zero the displacement radial cylindrical
shell. Natural boundary conditions cylindrical shell edge
1s defined mathematically as:

(34)

The boundary conditions would be added to the
equations governing the cylindrical shell.

Assumptions of problem optimization: Multi-objective
optimization 1s performed using multi-objective genetic
algorithms. Genetic algorithm parameters and values are
shown in Table 1 and the other parameters are as default
MATLAB Software.

RESULTS AND DISCUSSTION

The analysis of results: In the present model the material
of metal and ceramics are used in which the properties of
these materials are shown m Table 2 and geometrical
parameters are shown in Table 3. Also, for the mside of
the shell, ceramics is intended and for its exterior metal 1s
intended. The model dimensionless geometrical
parameters are assumed as follows:

2
L300, R o a0
Rh h

In this study, three design variables are used in
which n is the function of material properties, 1 is the view
of the characteristics of the materials used m the
cylindrical shell as well as B is the view of fimction
change of the thickness of the shell cylindrical as in
Table 4.



J. Eng. Applied Sci., 14 (2): 655-665, 2019

Table 2: Material properties use in FGM cylindrical shell

Table 6: The value of design variable in Pareto Front

Materials Elastic modulus (GPa) Density (keg/m?)
Si3 N4 34843 2370
SUS304 201.04 8166

Table 3: Geometric parameters of the FGM shell
Geometric parameter

Sparameter’s numbers

Amplitude of the initial 0.0001 (m)
Geometric imperfection 0.04 (W)
Poisson’s ratio () 0.28

Table 4: Boundary of coefficient design

Coefficients design Lower bound Upper bound
n 0 3

i 02 +0.2

p -0.5 +0.5

Table 5: A comparison between present results and results reported by
Shen and Noda (2005)

O [MPa] n=0.2 n=1 n=2

Results reported 400.462 461.427 489,047
by Shen and Noda (2003)

Results reported 382434 438.340 463.736
by Shariyat (2007, 2008)

Present results 351.063 404.255 425.531

In this part, the numerical method of critical buckling
load for constant thickness of cylindrical shell under
evenly axial load and without initial imperfections and
homogeneous are examined and the results are compared
with existing references. Assuming a homogeneous
cylindrical shell with a fixed radius of R as well as shell
thickness 1s considered constant, h,.

Since, the shell is considered to be homogeneous, so,
it is enough that the parameter n is equal to zero in which
case the shell will be homogeneous in the thickness
direction also, parameter view of material properties, 1 is
set equal to zero n which case, a pure and homogeneous
metal shell is obtained in both axial direction and
thickness. To check the accuracy of proposed fimte
element model, the results will be compared with results
available in the literature. For this purpose, references in
this particular case as explained above, would be applied
on research and result 1s displayed in Table 5.

Table 5 the critical layouts for three different values
of n are shown. The force-displacement diagram for
coefficient design n = 0, p = -02, p = -0.5 is shown
in Fig. 3. Comparing the critical buckling load for
cylindrical shell with variable thickness 1s accompanied
with increasing the n parameter, 1.e. by increasing the
fimetion of material properties which alters the properties
materials in order to thick cylindrical shell, two
parameters of u and B are considered to be constant
and by increasing the variable of n, the critical buckling
load will be increases.

Alson = 0 which 1s an expression of a homogeneous
cylindrical shell as is clear that in the diagram, the lowest
critical buckling load will result. The comparison is shown
in Fig. 4.
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Design variable n &) 1L
Upper point 2.9704 -0.1337 -0.4846
Utopia point 2.7240 0.1942 -0.3850
Lower point 2.1633 0.1970 0.1960
Table 7: The value of objectives fimctions in Pareto Front
vahie of ohjectives Lower point Upper point Utopia point
functions ™) )] ()]
Wight 38.0768 21.1272 26.4412
Bucklingx1¢® 7.9419 51226 7.4256
6% 10°
n=20 o
e =202 =X 1,135
597 u-w05 Y:5.695¢+05
44
z ‘,,,‘»4"".X:0.4435
" Y:3.797e+05
=] 34
il 20,1627
2 © Y:2531e+05
| ]
#X:0.09301
11 ; Y:1.688e+05
*
0 T T T T T 1
0 0.2 04 0.6 0.8 1.0 1.2
W, (mm)

Fig. 3: Force-displacement.
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Fig. 4: Influence of power-law index on the force-
displacement

With the view that on the impact of design variables
1n the process of solving the optimization problem will be
defined in which design variables are included power and
exponential function to change the properties of materials,
facade function of variable thickness at the same time and
in accordance with Table 4 which specifies the scope of
design variables, the answer must be sought in this area
to eliminate all possible states, finally, the lowest value
obtained, at the same time for each two objectives,
including  the critical buckling load and weight of the
shell. The Pareto Front as shown in Fig. 5 is considered
cylindrical shell which bears the greatest burden of the
crisis and at the same time have the least weight (Table 6
and 7).
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CONCLUSION

In this study, for the first time, a two-objective
optimization including the critical buckling load and FGM
variable thickness cylindrical shell weight, bi-directional
with imtial imperfection, under mechanical loading axis
with three design varables including power and
exponential function of the material properties and view
change function of thickness and the impact of various
parameters on the critical buckling load, weight and
cylindrical shell to obtamn the optimal goal Using two-
objective optimization, the results in this study can be
used in design and choosing the parameters achieved in
such a way that the critical buckling load maximum and
minimum weight of the shell. The objective function
value has been obtained with respect to the design
variables in the lower, upper and compromise of the
Pareto Front.

According to the results in general to enhance
the critical buckling load capacity and lower
welght of the shell the following notes should be
considered.

Thickness always increases the critical load and the
weight of the cylindrical shell therefore, finding the
minimum thickness is considered to optimize the
weight in which the optimal parameters for cylindrical
shell which is discussed in this issue is shown in Pareto
diagram.

According to the results with an increase of n
parameter (exponential function of matenal properties) the
critical buckling load eylinder will be mereased.

With the increases of P, the view change function of
thickness (critical buckling of cylindrical shell) would be
increased. Shell weight also, changes according to the
design parameters and its optimized value 1s shown in the
diagram of Pareto Front.
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NOMENCLATURE

B.B" = The total differentiation operators of the
strain and strain increment vectors

B,B" = The total differentiation operators of the
shape functions associated with the strain
and strain increment vectors

D = Elastic coefficients matrix

D" D!, = Matrices of the differentiation operators

D% D’

D’ = First matrix of the matrices of the
differentiation operators associated with the
strain vector increment

E = Young’s modulus

h, h, = Variable thickness, the reference thickness

K, B, K = Stiffness matrix, stiffness matrix of the
element, stiffness matrix of the whole shell

€ = Volume

n = Power-law material properties mdex

N, N = Shape function, shape functions matrix

P, P, P, = A representative material property and its
values at the inner and outer radii

0.0y = Radial and circumferential normal stresses

R = Radius of the mid-surface

v, ¥, = Circumferential displacement component,
circumnferential displacement component of
the mid-surface

1, U. = Nodal radial displacement, vector of the

u® U displacement parameters, vector of the nodal
displacement parameters of the element,
vector of the nodal displacement parameters
of the whole shell

W, W, = Lateral deflection, lateral deflection of the
mid-surface

w oW = Tnitial lateral geometric imperfection function,

amplitude of the mitial geometric imperfection
REFERENCES

Shariyat, M. and D. Asgari, 2013. Nonlmear thermal
buckling and postbuckling analyses of imperfect
variable thickness temperature-dependent
bidirectional functionally graded cylindrical shells.
Intl. J. Pressure Vessels Pip., 111: 310-320.

Shariyat, M., 2007. Thermal buckling analysis of
rectangular composite plates with temperature-
dependent properties based on a layerwise theory.
Thin Walled Struct., 45: 439-452.



J. Eng. Applied Sci., 14 (2): 655-665, 2019

Shariyat, M., 2008. Dynamic thermal buckling of suddenly
heated temperature-dependent FGM cylindrical
shells under combined axial compression and
external pressure. Intl. J. Solids Struct, 45
2598-2612.

Shen, S. and N. Noda, 2005. Postbuckling of FGM
cylindrical shells under combined axial and radial
mechanical loads m thermal environments. Intl. .
Solids Struct., 42: 4641-4662.

665

Yang, L., Y. Luo, T. Qiu, M. Yang and G. Zhou et al.,
2014. An analytical method for the buckling analysis
of cylindrical shells with non-axisymmetric thickness
variations under external pressure. Thin Walled
Struct., 85: 431-440.

Yang, I.., 7. Chen, F. Chen, W. Guo and G. Cao, 2013.
Buckling of cylindrical shells with general
axisymmetric thickness imperfections under external
pressure. Eur. T. Mech. A. Solids, 38: 90-99.



	658-665_Page_1
	658-665_Page_2
	658-665_Page_3
	658-665_Page_4
	658-665_Page_5
	658-665_Page_6
	658-665_Page_7
	658-665_Page_8

