Tournal of Engineering and Applied Sciences 14 (18): 6620-6624, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Development of the Java-Based Dijkstra Algorithm for Optimal Path Detection

ECH-Chelfi Wiame and El Hammoumi Mohammed
Industrial Laboratory Techniques, F3T, Sidi Mohammed Ben Abdellah University (USMBA),
Fez, Morocco

Abstract: In a supply chain management, road transport plays an important role in getting goods from a point
of origin to a point of destination, this research focuses on the principle of graph theory to find the optimal path
between two points, the document proposes a Dijkstra algorithm to determme the k shortest paths from a single
source node to several destination nodes. So, a program based on Java language is developed in two stages
The first stage 1s simulated on a simple model of routing of the goods with affection of the costs and in the
second stage a general algorithm has developed to answer all the models regardless of the number of nodes
and link, the program simulation can automatically detect the shortest path related to the minimum cost.

Key words: SCM, graph theory, Dijkstra, Java, algorithm, optimal path

INTRODUCTION

Finding the shortest time, the shortest distance or the
shortest cost of any node-i-source to a node-j (or target)
of a given transport network is a significant and
fundamental problem for transport modeling, especially
in a supply chain that requires more integration and
inter-actor coordination.

Many articles study algorithms for the shortest paths
(Bako and Kas, 1977; Brander and Sinclair, 1996; BL.,
1975; Ahuja et af., 1990, Clarkson, 1987; Borgwardt and
Kriegel, 2005). Yen cites several additional articles on
the subject going back to 1957. It 18 necessary to
distinguish several of the
problem. In most of the documents cited above, the

common variations
paths are limited to being simple, 1.e., no vertex can be
repeated. Several papers by Katoh et al (1982),
Kumar and Ghosh (1994) consider the version of the
problem of smaller paths in which repeated vertices are
allowed and this is the version we are also studying.

This study illustrates the best way of routing
between two pomts by automatically detecting the least
expensive route according to the value assigned to each
link. Dyjkstra’s algorithm 1s a graph search algorithm that
solves the problem of the shortest single-source path with
non-negative path costs, producing a shortest path tree.
For a given source vertex (node) in the graph, the
algorithm finds the search costs from the shortest paths
from a single vertex to a single destination vertex by
stopping the algorithm once the shortest path to the
vertex destination has been determined.

MATERIALS AND METHODS

The supply chain is a network of interdependent
partners whose overall goal is lower cost customer
satisfaction (Mentzer et af, 2001). The supply chain
performs several activities: supply of raw materials and
components, production of goods and processing of
materials, physical distribution of finished products to
end customers (Cavellin et al., 2005). There are several
activitties 1n the distribution process, transport is
considered as a link of particular importance because it
provides the link between the different levels of the
logistics system from supply to distribution (Wiame,
2017). Transport 1s one of the major elements m the
quality of service and logistics cost, since, it 15 directly
related to delays, errors, losses, breakages, theft, damage,
etc. (Baglin, 2005).

The company itself can carry out the transport
activity by transporting its products either with its own
vehicles or by renting a fleet of vehicles with drivers. The
company may also have recourse to a professional carrier
directly in charge of the carrier or through a forwarding
agent/freight forwarder.

In the transport sector, several activities are carried
out: the determination of the routes, the planning of the
tours, the preparation of the documents of transport, the
loading, the unloading, the follow-up of the disputes, etc.
Transportation management aims to determine the most
effective approach to managing all these activities in order
to provide a better level of service to customers at lower
costs.

Corresponding Author: ECH-Chelfi Wiame, Industrial Laboratory Techniques, FST,
Sidi Mohammed Ben Abdellah University (USMBA), Fez, Morocco
6620

J. Eng. Applied Sci., 14 (18): 6620-6624, 2019

|Human resoutce-Finance-Marketing-Accounting |
4

4 F 3 F 3

F 3

Suppliers

Fig. 1: Transport modeling in an SC (Wiame, 2017)

During the routing of the products, unexpected
events can occur: appearance of a new request, loss of
products, delay, exceeding of the temperature threshold,
error of delivery, etc. Not having a real-time visibility on
the status of the products transported, the carrier was
executing 1its tours according to the roadmap imtially
planned. Decisions could not be taken at the right
moment, thus, impacting the performance of the transport
function.

Faced with this instability of the enviromment,
transport companies must support their management on
their ability to adapt to uncertainty and respond quickly
to different hazards. For tlus, the availability of
information relating to the state of the resources (location
of the vehicle, arrival times, etc.) and the products
transported (conformity, integrity, etc.) becomes more and
more necessary for a decision. Reactive decision-making,
especially with the environmental awareness of
companies and sustainable development. Thus, new
reflections are put in place consisting of developing an
optimal choice of path system based on the dynamic
mformation of carriers and adapting mn real time to
different path disturbances. The next study will introduce
the diyjkstra algorithm, that we will develop 1t using Java
language to have speed, flexibility and assistance to the
supply chain manager to make the right decision adapted
to the requirements of cost, delay, safety, velucle capacity
and trip status (Fig. 1).

Dijkstra algorithm with Java language: Dikstra has
developed one of the most efficient algorithms for finding
the shortest paths from one node to all other nodes in the
network. This algorithm assumes that all the lengths d (1,
1) of all the links of the network G = (N, A) are non-
negative.

We denote by-a-the node for which we must discover
the shortest paths to all the other nodes of the network.
During the process of discovering these shortest paths
each node can be in one of two possible states: in an
open state if the node 1s designated by a temporary tag or
ina closed state if it is marked by a permanent label. Tn the
case of the permanent label, we are not sure that the open
path 1s the shortest path.

Dijkstra’s algorithm progressively changes temporary
labels into permanent labels. The mitial distances between
any two nodes of the networl are defined as follows. The
distance between the node-a-at the node-a-i1s zero. The
distance between two nodes 1s equal to o if there 1s no
link between these two nodes. If there is a link that
connects two nodes, the distance between these nodes is
equal to the length of the link that connects them. If there
are some lmks that commect two nodes, the distance
between these nodes is equal to the length of the shortest
link that connects them.

Dykstra 1s asymptotically the best known single-
source short-path algorithm for arbitrary-oriented graphs
with unbounded non-negative weights. These are the
motivations that led us to use the Dijkstra algorithm.

RESULTS AND DISCUSSION

The calculation steps of the Dikstra algorithm
discussed in this research are as follows:

Step 1: Position the different nodes of the coordinates (x,
Yo (% Yoo s (%o ¥

Step 2: Male a link between the different nodes.

6621

J. Eng. Applied Sci., 14 (18): 6620-6624, 2019

Table 1: Summary table of trip data

Steps N Div). p(v) Diw), pew) Dix), p(x) D). p&) Di(z), p(z)
0 u 2,u 5,u 1l,u 8 8
1 ux 2,u 4, x 2, % 8
2 uxy 2u 3y 4y
3 Uxyv 3.y 4y
4 UXy VW 4y
5 UXYVWZ
5
\% Vo —_
/ W /3\ W 5
/ \ 5 \
U z u 2 3 | z
2
y g gy %
X X 1

Fig. 2: The sample network

Step 3: Assign a weight to each stop that can designate
the cost, delay or distance in our case it was estimated
that the weight of the stop from an original node to a
destination node is the cost or a formula that takes mto
consideration the three parameters or a formula based on
a variable number of parameters

Step 4: Run the program on a simple model.
Step 5: Develop a general path processing language.

Step 1; Position the different nodes: We took an example,
Table 1 to test the right approach of our development
principle, Table 1 mentions & nodes whose U is the
original node and (V-7Z) can be destination or passage
nodes, the table specifies at each destination the minimal
cost and the preceding-p-for example, in step O from node
U-Z it is - because there is not a direct path between U
and Z. To view the best road transportation path, a graph
1s drawn. Figure 2 to analyze the different routes available.

Step 2; Make a link between the different nodes: To creat
a link between the diffierent nodes show the sample
network m Fig. 2.

Step 3; Assign an estimated cost: A graph without
assigmng the parameters s useless, the affected cost
can be in relation with the expenses of the route, the
time consumed, the degree of security. This research
affects estimated costs to find the minimum cost of
travel and in the end it 13 up to the decision-maker
to validate the choice of trip according to his fixed
priorities.

Fig. 3: The allocation of costs

Figure 3 presents the different costs associated
with each link, the UXYZ path is the optimal path
determined manually according to the principle of the
Dijkstra algorithm and thus, step 4 using a developed
program must validate what is theoretically determined in
step 3.

Step 4: Run the program on a practical example: Java is
considered among the most well-known languages, it
knows today a great craze in particular thanks to the
internet web. Algorithm 1 a developed program capture
contains the declaration of differnts nodes as well the
cost affection for each liason.

Algorithm 1; Statement nodes and the addition of costs:
private void exp3 () {
Stats s1=new Stats (“u”, 1)
Stats s2=new Stats (v, 2)
Stats s3=new Stats (*w", 3)
Stats s4—new Stats (“x”, 4)
Stats s5=mew Stats (¥, 5)
Stats s6—new Stats (2", 6)
MapProject mp=new MapProject (s1)
mp.addRoadCost (s1, s2, 52)
mp.addRoadCost (s1, 54, s1)
mp.addRoadCost (52, s3, 53)
mp.addRoadCost (s2, s, s2)
mp.addRoadCost (53, s4, s3)
mp.addRoadCost (s3, 85, s1)
mp.addRoadCost (s3, s6, s5)
mp.addRoadCost (s1, 83, s5)
mp.addRoadCost (s4, s5, 1)
mp.addRoadCost. (s5, 86, s2)
TransportRoadMap tr—=new TransportRoadMap
tr.calcLignel)
tr.affiche ()
}
public static void main (Staring[] args) {
// TODO Auto-generated method strub
new buildMap Test ()
}
}

6622

J. Eng. Applied Sci., 14 (18): 6620-6624, 2019

The first example, result display is done on
a console linked to the Java interface algorithm 2.

Algorithm 2; Java interface algorithm:

uvicoast =2

ux:coast=1

uw:coast=35

uy:coast =-1

u:z:coast = -1

targetJocProv: Target [target=[x-, y-], statsSource = u, stats Destination =
v, Etat=sherch]

targetJocProv: Target [target=[x-, y-, w-], statsSource = u, stats Destination
=w, Btat=sherch]

targetTocProv: Target [target=x-, y-, Z-], statsSource = u, stats Destination
=z, Etat=sherch]

targetlocProv Target [target= [v-], statsSource = u, stats Destination = v,
Etat=sherch]

Target jok=Target
Etat=end]

null

Target [targetTx-], statsSource=u, statsDestination—=x, Etat=end]

Target [target=x-, ¥-, w-], statsSource=u, statsDestination=w, Etat=end]
Target [target=x-, y-], statsSource=u, statsDestination=y, Etat=end]

[target={v-], statsSource=u, statsDestination=v,

The simulation of this development confirmed the
result obtained manually to go from U-Z the console
displays as optimal path UXYZ path whose U is the
source node, X and Y are passing nodes and Z the
destination node.

The next step 1s an extension and generalization of
the program to trace the n nodes, assign the costs and
detect automatically and visually the optimal path to each
terminal node.

Step 5: make the operation automatic and general:
Algorithm 3 presents the routing code of the goods in a
multi-node graph with a projection of information on a
table, the program content helps to declare the nodes and
assign a cost in the middle of each link and a piece of
code 1s reserved for displaying an interface to run the
simulation.

Algorithm 3; Extract Java language developed:
package Map
Import Java.util Hashtable
public class Transport RoadMap {
private MapProject mp
private Stats statsSource
private Hashtable<Stats, Target> targets
private Vector<Stats> stats
private Target targetoc
public TransportRoadMap (MapProject mp, Stats statsSol
this.mp=inp
this. statsS ource=statsS ource
targets=new Hashtable<Stats, Targets> ()
stats=rmp. getStats ()
statsS ource=mp.getStatsSource ()

}
public void EndTarget () {
for (int i=0;i<stats.size () i++) {
Stats st=stats.get (i)
Target tr=targets.get (st)
If (tr l=ull)
If tr.equals(targetoc)) {
Targets.get (st). end
return

Fig. 4. Manual tracing of nodes and allocation of costs
in the developed application

Table 2: Display of results obtained

Sources Destination Target Cloast
A B [B-] 4

A C [C] 6

A G [B-, G-] 9

A F [F-] 6

A D [C-, D-] 11
A E [F-, E-] 14
A H [F-, H-] 13

public Vector<Vector<String=>> affiche ¢) {
Systemn.out.printin(*“Target jok="+targetJoc)
Systemn.out.printin(“Target.get (statsSource))
Vector<Vector<String=> vv—new Vector<Vector<String>> ()
for(int i=1;i<stats.size (); i++) {
Vector<String= v1=new Vector<String> ()
Stats st=stats.get (i)
v1.add (targets. get (st).getStatsS ource() .getName ())
vl.add (targets.get (st). getStatsDestination().getName())
vl.add (targets.get (st). getTarget()+"")
vl.add (targets.get (st). getCoastTarget O+)
vv.add(v1)
System.out. printIn(targets.get(st))
}
refurn vv
}
Override
public String toString() {
return “TransportRoadMap [mp="+mp+", statsSource="+statsSc
+" targets="+targets+", stats="+stats+"]"

After the program simulation to detect the
optimal path from a source to different locations,
displaymng a routing graph drawing interface (Fig. 4)
and a summary table of results, Table 2 is necessary
at the end to make the

understandable.

work accessible and

6623

J. Eng. Applied Sci., 14 (18): 6620-6624, 2019

CONCLUSION

The study proposes a computerized Dijkstra
algorithm to determine the k shortest paths from a single
source node to multiple destination nodes. The algorithm
uses the connection matrix of a given network and links to
obtain the shortest paths. The proposed Dijkstra
algonthm has been applied to two successive examples of
network topology The first example is a test model to
check the program execution and its adequacy with the
theoretical and manual resolution, so, the second
developed program 1s general and adaptable to a number
of nodes and links unlimited, the results obtained at the
end of study are satisfactory produced by a minimum
number of operations.

The proposed program i1s considered the first
algorithm that uses Dijkstra algorithms to obtain the k
shortest paths of a single source node with multiple
destination nodes developed on the Java programming
language 6.

REFERENCES

Ahyja, RX., K. Mehlhorn, J. Orlin and R.E. Tarjan, 1990.
Faster algorithms for the shortest path problem. J.
ACM., 37: 213-223,

BL, F., 1975. K-th shortest paths and applications to the
probabilistic networks. ORSA/TIMS. Jomt National
Meeting, 23: 263-263.

Baglin, G., 2005. Industrial and Logistics Management:
Designing and Managing the Supply Chain. 5th Edn.,
Edition Economica, Paris, ISBN:9782717853421,
Pages: 746 (In French).

Bako, A. and P. Kas, 1977. Determining the K-th shortest
path by matrix method. Szigma, 10: 61-66.

Borgwardt, K.M. and HP. Kriegel, 2005. Shortest-path
kernels on graphs. Proceedings of the 5th IEEE
International Conference on Data Mining, November
27-30, 2005, Houston, TX., USA., pp: 74-81.

Brander, A.'W. and M.C. Sinclair, 1996. A Comparative
Study of K-Shortest Path Algorithms. Tn:

Performance Engineering of Computer and
Telecommunications Systems, Merabti, M., M. Carew
and F. Ball (Eds). Springer, Londen, UK.,
ISBN:978-3-540-76008-5, pp: 370-379.

Cavellin, I., M.C. Debourg and O. Perrier, 2005. Marketing
Practice. 2nd Edn., BERTI Editions, Dely Ibratum,
Algeria, Pages: 372.

Clarkson, K., 1987. Approximation algorithms for shortest
path motion planning. Proceedings of the 19th annual
ACM Symposium on Theory of Computing
(STOC'8T), May 25-27, 1987, ACM, New York, USA.,
ISBN:0-89791-221-7, pp: 56-65.

Katch, N., T. Ibaraki and H. Mime, 1982. An efficient
algorithm for K shortest simple paths. Networks, 12:
411-427.

Kumar, N. and R.K. Ghosh, 1994. Parallel algorithm for
finding first K shortest paths. Comput. Sci. Inf., 24:
21-28.

Mentzer, I.T., W. DeWitt, I.S. Keebler, S. Min, N.W. Nix,
C.D. Smith and Z.GG. Zacharia, 2001. Defimng supply
chain management. I. Bus. Logist., 22: 1-25.

Wiame, EHE.C,, 2017. The orgamzational modeling of a
supply chain management. Intl. J. Innovations Eng.
Technol., 8 76-81.

6624

	6620-6624 - Copy_Page_1
	6620-6624 - Copy_Page_2
	6620-6624 - Copy_Page_3
	6620-6624 - Copy_Page_4
	6620-6624 - Copy_Page_5

