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On the Behavior of Solutions of a Fourth-Order Differential System at Infinity
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Abstract: The asymptotic behavior of the fundamental system of solutions of two fourth-order singular
differential equations for large values of the spectral parameter 1s investigated m this article. The asymptotic
formulas for the fundamental system of solutions are determined uniformly with respect to x when Iy = Ay, Ael,
A-coin the case of slow rotation of the eigenvectors of the real symmetric matrix Q(x) with twice continuously
differentiable elements. Replacing the variables in the system of equations of the fourth order allows us to pass
to a system of equations of the first order with a new unknown vector function. An orthogonal matrix 1s
introduced which can be reduced to diagonal form by means of transformations. For the system of equations
in the space of vector-functions, asymptotic formulas are obtained and proved. Due to the uniformity of the
asymptotic formulas, the asymptotics of the spectrum of the corresponding differential operator 15 calculated
mn this study. Using the obtained formulas, the defect indices of the corresponding differential operators are
calculated.
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INTRODUCTION

Tt happens that it is necessary to calculate a value
determined in some way and this calculation leads to a
very large mumber of actions and their execution becomes
practically impossible. A real treasure during this time can
be some other method of obtaining additional information
about this quantity which allows wus, at least
approximately, to find its value. According to Laplace,
such a method is “The more accurate the more it is
necessary” that is we get a more accurate approximation
to the desired value when more actions we perform
for its direct calculation. In this case, we mean asymptotic
estimates or asymptotic formulas.

Many problems, both theoretical and applied
mathematics, deal with the behavier of solutions of
differential equations near a singular point. Such
problems are asymptotic in nature because by means of
the transformation of an independent variable the singular
point can always be transferred to mfinity, after which the
question arises: how do the solutions of a differential
equation of the form F(t, y, y’, ..., ¥™) = 0 behave when we
have t-e for unknown function y = y(t)?

These problems often arise in stability objectives, on
linear and nonlinear oscillations, in quantum mechanics.

Applications of a different nature consist in the fact that
one can study the asymptotic behavior of solutions of the
fundamental system of two singular differential equations
in the space of vector-valued functions. In differential
equations, it is possible to replace dependent and
independent variables. After the completed replacements,
the task often looks different.

Another characteristic feature of the asymptotic
problems of differential equations 1s that one can guess
which asymptotic formula or asymptotic series we need to
obtain but to prove that this is indeed an asymptotic
formula 1s rather difficult.

In the proof of a certain asymptotic formula
for solving a certamn system of equations, we must
try to conclude this solution between two functions
which asymptotic behavior 1s known. These mequalities
are obtained by means of simple theorems of the
type.

Tet y(t) be solution for differential first-order equation
vy’ = (t, y)(a<t<b) but @(t) function satisfying conditions:
@ (O<F(t, g(t), (a<t<b), p(a)<y(a) then p(H)<y(E)a<t<b)
In other words, to obtain the inequality of a function y(t),
it is not necessary to solve the differential equation
precisely, it 18 easier to find a function @(t), satisfying
condition @' <F(t, @)
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The aim of our research is to prove the theorem
on the solution of differential equations in the space
of vector functions whose behavior 1s described
asymptotically. To describe the behavior of a function f(x)
where x-¢e in terms of a known function g(x), we use
definitions introduced by Landau. Tet x€R, ag (x) if x-<
converge to zero, to mfinity or behave as you like.

Definition 1: Tf f(x)/g(x)-1 where x-oo, then it is written
and said f asymptotically converge to g or g is an
asymptotic approximation of the function f.

Definition 2: If f(x)/g(x)~ 0 where x-+=, then it is said that
degree of order of f is less that g degree of order.

Definition 3: If the relation |f{(x)/g(x)| 13 himited, then it 1s
written f = O(g) and said that the function f has order not
exceeding g order. That means that Jc€R is such that if
x2X, then |[f{x)|<c|g(x)| (x2% ) inequality 18 satisfied.

MATERIALS AND METHODS

The research task of the asymptotical behaviour of
solutions of ordnary differential equations depending on
behaviour of coefficients is one of the central tasks in the
theory of the ODE. A considerable number of works is
devoted to the solution of tlis task (Fedoryuk, 1983).
However, generally scalar differential equations are
investigated in these works. We investigate the
asymptotical behaviour of solutions of differential
equations 1n space of vector functions. The followng set
of equations 1s considered:

ly =y +Q(x)y = Ay, 0<x <+ (1

A-complex parameter, Ael', I' = {A:A = otlt, T = oy,
O<y<l}. vy = (v,x)Vyx))»vector, O<x<tee Q(X) i a
real-valued symmetric matrix with twice contimuously
differentiable elements. g ,(x), 1. j = 1, 2, whose
Eigenvalues are py(x)--ce if x-te. We introduce the
following notation:

o(x) = larctan 5, (%)-q,,(x)
2z 2q,,(x)

¢ (x) rotation speed of eigenvectors of matrix Q (x). We
will be interested in asymptotical formulas for the
fundamental system of solutions of the Eq. 1 if Ael", A,
evenly on x: O<x<+e in case of slow rotations of
Eigenvectors of matrix Q(x). Asymptotical formulas, that
are uniform on x are important both from the point of
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view of the asymptotical theory of differential equations
and from the point of view of the spectral theory of
differential operators. The matter 1s their knowledge gives
the opportunity to mvestigate spectral properties of
corresponding differential operators (Kostyuchenko and
Sargsyan, 1979). Let us note that earlier one of the
researchers of this research (Sultanayev, 1974) considered
a question of the asymptotical behaviour of solutions of
the second order system -y"+Q(x)y = Ay, Ael’, Ao evenly
on x. In the same research, the asymptotic of a range of
the relevant differential operator 1s calculated which 1s
possible to do due to the uniformity of asymptotical
formulas. Asymptotical formulas are found in research
(Sultanayev and Myakinova, 2009; Sultanaev and
Berdenova, 2014; Berdenova, 2015) for the Eq. 1 if x~eo
which 18 enough for calculation of mmimum indices of
operator defect generated in L0, «) by differential
expression of ly. For the research of the asymptotic of a
range of the operator that will be studied separately,
asymptotical formulas on 4 are necessary that are uniform
on x which is the main finding of the research.

RESULTS AND DISCUSSION

Theorem 1: Suppose the following conditions are
fulfilled: for rather large x, and if x=x;:

|p'(x)|<c, e=0

b (x)

B(x)

0<A < =B

T\(Mﬁ (X))\'idx% jﬂ de=o) el A >oni=12
| (A ()

%

‘p.;(x)‘ < o(‘p.l(x)‘m), X—tw,i=1, 2, O<oc<%p,;(x)

and p(x)maintain the sign if x>x,. Then system 1 has
eight linearly independent solutions of y; (x, A) such that
Ao, del' 1s even on x, if Qgx<tee,

¥, ¢, (x, Mexp{ij@'ul(t))“dt} (1+o(1))

¥, , = $,0x Mexp {ﬂf (hepy (1) dt} (T+e(1))
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y,,=0,(x, h)exp{i | (h-u;t)ﬁdt}(lm(l))

y,,=bx mexp{iij <h—u2<t))4dt}a+oa>>

1 cos  &(x)
A= ——|
¢1(X ) S(K-MI(X))B [—Sm ¢(X)}
1 sin - ¢(x)
)= ——
¢2(X ) 8[—@_“2()())3 [cos ¢(X)j

Proof: By the means of the change of variables:

from system 1, we will pass to system of differential
equations of first order z° = Az where, z=(z, (x, 1), z, (%,

)L)a ZE (Xa }l‘): 24 (X: )L))

0 100
0 01 0
A=
0 0 01
QI 0 0 0

and I is the 2x2 identily matrix. Let us mtroduce an
orthogonal ~matrix _[coslil(X) Sinli)(X)] such that
Ui'QU1 = A=diag{p, 1} -sin ¢(x) cosd(x)

{ 2 2 2 2
_ q11+q22+ (qll-qZZ) +4q12 _ q11+q22- (qll_qZZ) +4q12
B 2 M 2

1

n

1

Further, we will make a replacement:

zZ= diag{Ul,Ul,Ul,Ul}co =Un
z'=U'w+tUn'
U'ew+Ue'= AU
o'=(U'ADe-U'U's

0 10 0

U'AU = 0 oo 2
0 0 0 I
AR 0 0 0

U™U'= diag{p. p. p. p}. p= ¢’(XJ{_01 (1)]

Further, as condition 1) of the theorem is fulfilled, the

pivots in system 2 will be U'ATU matrix elements. Let us

bnng it to the diagonality. There 15 a matrix bringing
U" AU to the diagonality. Let us denote it by C (x, A):

-1 -1 _ 1 ~ -~ ™ ™ ~ ~
CHUTAUYC =M =diag{fi, [, L, W, b, B [ L

1 1
A= Oep), L= (o))

1 1
f=0n) f =0

1 1
A =0t R =10
1 1
B= ) = )

Elements of C matrix are defined from a set of equations:

C11“’1 = 021’ 021“'1 = 039 C31}71'1 = 0415‘ 041“'1 = (_A+7\‘I)Ch
where, ¢, i=14,j=14 are two-dimensional matrixes,
elements C:

(RO 0 — (R0
T meo T 0 m

CRE 0 (R0
STl o meo Mo A

From this system, matrix C is located ambiguously,
with an accuracy to post-multiplication by block-diagonal
matrix &(x) = diag {8,(x), 8,(x), §:(x), 8,(x)}. Then elements
C have the appearance:

6, = 8,60, =8GO (x)
¢, = 8,00, ¢ ~ 80X

We find matrix C* from the condition C'C =E. Let us
dencte by T = C'C' and we will find its elements. Let us
choese matrix & (x), so that, the condition (C'C", = 0 by
i=18 can be fulfilled. Then matrix & (x) blocks have the
appearance:

8 ()= (u(xp 7,8 (x)=(-p (X)) 2,

3
z

8.(x) = (-ip (x)) 2, 8, (x) = (ip, (x)
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[

TRC R ¢ LR T ¢S R TRV

o | HEOT GG ()T i, (0)

RO (R GOP R GO)? i, ()

W OF GO R GO P i, (x)?

_ 3 _ L - v _ 3 — 3
ROOT ROOT RO0TRGOT p0?
_ 13 ! R R — 3
L G0 ), 00) iR ) L () 2
C ==
- El _ 1 _ 1 — 2
(in ()7 i, (x))° o () i, ()
- El _ L _ 4 — 2
(ip, G® -ilip, () ~(ip, (xp) ° -ifip (x)) 2
0 0 -+ 0 ' (1) 0 ' (14)
7\.-].1.1 7\.-].1.1 7\.-].1.1
- u 1+ -u' (14
0 0 0 ) 0 ', (1+1) 0 ', (1-i)
h—pl 7\.-].1.2 h—pz
- -u' (1A -u! (14
Ml 0 0 0 M 0 M 0
7\.-p.1 7\.-p.1 7\.-p.1
- - (14 - (1
0 M, 0 0 0 M 0 M
- 1 7\.-}.!.1 7L—|.L2 h—pz
8w (14) 0 ' (1H) 0 0 -+ 0
7\.-].1.1 7\.-].1.1 7\.-].1.1
0 ' (1) 0 u' (1+) 0 0 0 '
h—pz 7\.-].1.2 7\.-].1.1
- (141) 0 -’ (14) M 0 0 0
7\.-].1.1 7\.-|.L1 7\.-].1.1
0 ' (1H) 0 ' (14) 0 -+ 0 0
h—pz 7\.-].1.2 A-LL

Suppose w = C(I + Gu where matrix G with elements

Let us pre-multiply this equation by C™:
g, satisfies the formula:

T(I+Gu+Gu+HI+G ' = M(I+GHu-C'PC(I+G
Tut+TGu+G u+HI+G ' = (M+MG u-CPC(I+G

GM-MG =-T-C"'PC

r ' — Nak!
(cc '-C'lPC)i_ o Tut+TGu+GuHI+G ' = (M+MG u+Tu-C " PCu+
g, =0 g =—""+——" iz] C'PCu-C'PCGu
A
By pre-multiplying this equation by (I + &)™, we will
o' = C(1+G u+CG u+C(I+G !

have the system of equations:
CI+GHCG 'u+C(I+G ' =

U'AUC(+Gu-PCI+G w' = (M+8(x, A)u (3
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If we suppose that in Eq. 3 with constant i, G =1,8:
u= S><exp{j|."l.1 (t,k)dt}
0

where, s = (5, 8, 85 84 85 54 85 85 18 the unknown
vector function, we will have a system of equations of
first order:

%51 (X.A)= vl(x,h)si (X. 7L)+Z Bim (X. h)sm (x.A),1=1,8
m=1
4
Where:
V(5,0 = R 06 A, (%,4)
8
o=lo,cenf,,
The same as in Eq. 3. Let us demonstrate that:
[locemfix = o) Ael, 2> (5)
0

Here and thereafter, we will consider that the norm of
matrix is the sum of absolute values of elements. Let us
consider elements g; of matrix G. All gy(x, A) are
constrained above by linear combinations of the kind:

i)

2 L
DK e ()
i=1
If Ael', A~oo, then A = otit, 00, T = 0", O<y<1. It means

that:
J (6)

Aoty ()
Aoty ()

A (x)
(Ampy(x)

P(x) [
W(x)

53

(e, ()Y

K, = const.

>

A= (x))=(o+it—pw (x)) =

* J— (ou, (x))[m
x)

1

¥

c
G44,(x)

(o-u, (X)){Hi

As long as (x)<0:

GT

<g"' 50
o-u (x)

If 8-0 evenly on x, O<x<te. Consequently: from
Eq. 6 we get that: A (x)~ou(x)hel, k>« evenly on x,
Ozx<tes, Next:

p(x)
! ‘ =0, hel, A

e G
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evenly on x, x€[0, x,] because:

Lﬂsgéao G —> +owo

() ot

If:
B ()
XE|:XU,+OO), “ ‘ -=K L ——0
‘(x-pi(x)) SN CETNES)E
If 0-+e evenly on x. As for the summand:
3 1
B 8
ool [P0 T [ 20
Ay () | e, ()
K, = const.

)

2 KOl

Then the numerator 1s evenly constrained according to
conditions 1 and 2. The consequent goes up infirutely if
Ael’, Ao evenly on x because:

‘k-ul(x)‘% ~ ‘G—},Ll (X)‘% > G% —> o0

Thus, |G(x, A)| if Ael’, A~ evenly on x, 0 = x <x<too
can be made, for nstance, 1/2. Consequently, if A€, A<,
matrix (I+Q) has a bounded inverse matrix (I+G)™.

So, |T+G| < const, |(T+G)™ | = const, A€l’, A-cc evenly
on x. Therefore, for the correctness of Eq. 5 it is enough to
show that these values are valid for matrixes TG, G°, C
PCG. Let us now proceed to the evaluation of matrix TG
elements. They are constrained linear
combinations of functions of the kind:

above by

R ) ‘

(2. 00) 5, o

P'x) {
ey

ERTHES)

>

et ()
Aot ()

Rt ()
Aot ()

9

f

(e ()

i=12

Let us prove that:
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THTGde =o(l), hel, A—w
0

=

dx= |
0

@

{

@

GO |7

A GOy A GOy

(L ()

B, GOY

(Hl(x))g ix (®

That the first summand in the right part of Eq. 8 1is
o(1) A-w, Ael' results from the continuity of the
subintegral function and availability of 4 in the
consequent. As for the second summand, then:

©

-[ iy
"t G0

2]

<KJ
" o ()

GOy | o 000 . Ge |,

e, 0yt

5
ol |a . 5
KZ(G-}.LI(X)) 4 . — 0 if 8— 4o because O(.<Z

As to the integral in the second function in Eq. 7,
again we break the integral into | and i 1 -0if Ael', A-eo
because the subintegral function i¥ btontinuous and
contains A in the consequent. According to conditions 1

and 2:
voo 2 s

o ] 1
KJ‘MdX = Ko (x) 4[5 = o(1) if § > o0

0 (G-, (%))

A ()
At ()

B () A (x)

J 5 A, ()

% (g, (X))

Now, Let us prove that:

©

JI

0

G'(x,A)dx = o(1)

For that, we are going to use values that we got
before from the elements of matrix G. In case when:

g, (%, K):L(X)i'
(A= p (xp)*
&)= KUH(X)E K, H(x) K, 5M§(X)M§(XE)_
(e, (x))* Qep (Dt A0 (x))*
Consequently:
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Rt ‘
O, O (e ()

Wi(x)

< K, [ dx

[le:
1]

Let us break this integral into |, | then:
a

Ha

g

W)

1
Box) ‘
5 + 9

VO ) (e ()Y

dx=o(l), e, A—>w

As far as the subintegral functions are continuous
and A-p(x)#0. Next because of condition 4:

o

)

]

0

HESE ‘dx k[ BOL gy o ()

2 2y 5
(A () (o (x))* a-

n

5
o(l),c — w0 as 0:<Z,

2]

dx < Kj
| (G-, ()|

T‘ M) 9‘

| (Ao (x)°

563 desis—>0,c—>+oo

04

For elements:

At (%)
Ao (%)

Aot ()
S

i)

> K (A, xn?
P'(x)

e
2K (e )

K, GO { (4 (%) ) mpt; ()4 (XA, (X))
8 3K, (A, (01 Oty ()7

CORCEl
;L-Mf{

Aot (%)
PRSI ()

K,9'(x) [
(g,) =

o | —

Ao, ()
Aot ()

Ao, ()
Ao ()

K

A, ()
A ()

Ao, ()
Ao (%)

Ay ()
At (%)

POK, [ j (i ()
(9)
K

ij
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Then:
. ) : : 2 GO () ) bt () A, () )
[ {h-ui(X)Jg{h-ul(X)T e [, 2 e
b2 L a-u, u, ¥ K, (A- ‘(-
[ ZKno\"“ﬁ(X))“ 2 “"J(X) 2 MJ(X) Z 1( I'Li(x)) ( l'j'J(X)) (11)
-1 5 7
3 1 -y Y
- . B (a 32w 0 | 1 A—wo |
_[Kl P'(x) : A-p, (%) " A-p, (%) dx+ {8 it (X)] {m} dx
A e, e J
SR, G, Gt | N I
1=1
- Y i g é_ The first integral in the right part of Eq. 11 is o(1) if
jKij - ¢ () - {h-p. (%) A (0 dx A€l A-eo results from the continuity of the subintegral
%0 Z K, (hp, () A (x) Aspai(x) function and A-p,(x)=0. For the second summand in Eq. 11,
i=1 - the following values are correct:
(10)

The first summand in the night part of Eq. 10 15 o(1) 1if
Ael’, A-oo results from the continuity of the subintegral
function and availability of A in the consequent. For the
second summand m Eq. 10, the following values are

cp'(x}(( M () O, (x)) 4 GO ()

K
ZK (P42 (7L- () ‘

& g

correct: 3 2z
3 () | ° A-H(X) ke
, , hu(x)) B A )
J- K, (%) {[ i"ui EX; JS +[ i-Mi EX;JS ]dx < R
% 4 H LK HLx 9 ' ' 8 i
; Z K, (ht, (x)) w ‘(p(X)|‘((—].Li(x))(h-}.tj(x))-}.tj (XA, (x)))‘ 3(BE4BE)
<K, g i dx =
. (p«x)[BiB%J - i TR (00 0oty 00
&J‘ — JMx=< constj ﬂdx =o(l)
K T T
1 _ 4 o (- 4
(G-, (X)) (emt; () \Ml ()t feaeam (x))\
B (o) \o swes
If hel', A=< according to condition 3. Next, Let us
estimate the second summand in Eq. 9 that is: ]‘u MJ( ) =o(l), A,A,=consth >0, kel
Oy (X))“

TK ‘@'(X)—((-MZ(X))(K-MJ(X))-M'J(X)(K-M, (x)))‘

: 2 L For the third integral in Eq 9, the followin
‘ S, (Aept (O (o, (00 ‘ o ¢ ®
—~ values are correct:

3 - 3 1{ - g P 1
{-H(X)J +{_M‘(X)J dx = , A"Mi (X) 8 K_MI(X) 8 ,
8 h-py (X)) 8l A, (x) (XK, + (%)

At (%) A (%)
jKu 2 5 -
1%, (P'(x)-((-uxx))(k-uj(x))—u’j@)(’h-w(x)))‘ D ZR O
0 : .ZKI(K-}.LI(X))i(;\«'Hj(X))Z ‘ 2 (x) 3 Al (%) ;
i=1 ' — KX ! “HilX ’ !
. . ) P(XK, {h_uj(x)} +[7\«'MJ(X)J 1 (%)
3| 1w &, ; : o
BA-p(x) ] Bl A- (0 v 43 K (e (x)*
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Ao, ()
Aot ()

e
A, ()

} B (x)
(12)
dx

X

AR (Ao ()

' (OK; {

That the first summand in the right part Eq. 12 is o(1)
if A€, A-o0 results from the continuity of the subintegral
function and A-p(x)#0. For the second summand in Eq. 12,
the following values are correct:

@ (XU (x)(B? +B)

5

K 2 :
0 3 e GO
o{l),A,=const, L >0, Al

©

dx < A,

o K1J

“‘i (X) - dX —
| o= (X))
Thus, THG'(X,?L)HdX = o1y if A=ee, A€l Let us prove that:
0

THC"PCGde =o(l)
1]

Since, the elements of matrix C* PC are constrained
above by linear combinations of the kind:

e

Then, using the formulas we have found for the
elements of matrix G, Let us write out the elements of
matrix C” PCG:

At ()
A, ()

At ()
A, (%)

goo [ ] [0 Tl e
Moty (3| 2y (0 O
ww) D)l x

goo| [ LT [2ueo T K
0] G0 | | S

Let us break the integral from the first formula into the
sum:

3 1

J)

s

A, ()
A ()

w(x)

5

(e G

dx =

fll oo {

732

[ oo ] [ ] e, M0
° N P e o
oo o] [ o,
< N B G0

(13)

As for the first summand in Eg 13, it is

o(1) if Ael’, A~ and results from the continuity of the
subintegral function and A-p(x)#0. For the second
summand in Eq 13, the numerator is constrained
according to conditions 1 and 2. The subsequent
goes up infinitely if Ael’, A-o evenly on x as long
as |A-p ()]~ |o-p()):

i oo [;u (x)T {;—u, (x)T MG ‘dx .

b -, (X) -, (X) O, (Y

K,K(B? +B€)T &)5 dx SKUIZT “:L)de = o(1),
" (A, ) " O, )

if ¢ —>+mw

For the second element of matrix C' PCG, the
following values are correct:
1

ESEES)

Kz(Bg B K, | Ll = o(1)
% (G-, (X))

@

[NE:LES;

g

K,
2 L

2 ey

A, ()
Ay ()

A ()
A, ()

dx

=

If 0-e according to conditions 1 and 3. For the
further proof, we need the
Kostyuchenko and Belogrud (1979).

lemma proved by

Lemma: Let the following conditions be fulfilled.
Functions v, (x, A) locally are summarised at any value
A€l Atsome 1, 1<i<n, v (x, 4)= O and if 1#] of Re function
v, (%, A)} do not change the sign if x>x,, for sufficiently
larger and A€el'; Functions 0., (x, A) are
summarised on [0, <) and:

Xy

b
[l66x, e = o(1), > o0 he T
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Then system 4 has the solution that is satisfying if
Ao, A€l s, (x, A) = 14+o(1) s, (x, A) = (1), m=k 1s even
relating to x, x€[0, ). Let us demonstrate that
Re (i (0-) does not change the sign at sufficiently
large x,,i.j=1.8i=j Let us demonstrate, for example, for
case1=1,]=2

Re(iL, (3, () = Re((A-p, () +(h-p, () ) =

Re(2(o+itw,) ) = 2Re{(k-al (x>>4+(h-nl<x>>4j

Aslong as A = oHit, T =0, O<y<], 10, then if x-co,
we have:

2Re{(cs+i'|:—},t1 (X))i‘} =2Re (-p.l (x)[ gtit -s-lB4 =
by ()

1+7

2Req| -1,
N T ul(x)

{ e )[6(1-2;()1)) D 2Re{ _Ml(x)(lJrO(l)))Z}

When |p(x)|=c, x~co there are two possible cases:
[(x)-e¢ then -p,(x)=0, consequently, (-p,(x)"™ real
number and Re{(u,(x))|"*} does not change the sign at
larger x. p,(x)~+< then = p,(x)<0, consequently:

{J’ iz J

(-MI(X))“ [Tev

Then:

QRG{MI(X)| {£+£]} J_|M1(X)‘

Also does not change the sign at large x. Next as we
showed that:

j o, 2] dx = o(1)

Then system 4 13 L-diagonal and the Lemma is
applicable to it. Now by the means of formulas z = Uw,
w = C(E+G)u, we can return from vector u to the required
vector z. Then taking into account the formulas for the

elements of matrixes U and C and that (G); (x, A)-0 if A-es,
A€’ evenly on x, we will receive the necessary
asymptotical formulas.

CONCLUSION

The asymptotic formulas obtained for the
fundamental system of solutions of the Eq. 1 if Ael’, Ao,
evenly on x: O<x<teo in case of slow rotation of the
eigenvectors of the matrix Q(x) are necessary for
nvestigating the asymptotic behavior of the spectrum of
a differential operator in the space vector-valued
functions. Asymptotic formulas that are uniform mn x are
important both from the point of view of the asymptotic
theory of differential equations and from the pomt of view
of differential operators.
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