Tournal of Engineering and Applied Sciences 14 (Special Issue 6): 9202-9208, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Modified Kinetic Model of Biodiesel Production from Crude
Palm Oil with Agitation to Increase Mixing Performance
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Abstract: This study focuses on the effect of mixing on transesterification m biodiesel production. A
stired-tank reactor assisted by ultrasonic wave was used in experiment. Crude Palm Oil (CPO) was used as raw
material in transesterification. The optimum condition for giving the highest yield is at temperature of 60°C, CPO
to Methanol ratio 1:9 and Na,CO./ceramic 3% by weight of CPO. The kinetic model fitted experimental data well
and can be used to describe the mixing performance. Biodiesel production was strongly affected by the level
of mixing, thus the stirring speed. At 300 rpm stirring speed, productivity of biodiesel 15 higher than 90%
conversion of triglyceride. Ultrasonic wave did not increase biodiesel conversion but significantly enhanced

the reaction rate.
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INTRODUCTION

Due to increasing environmental concerns, global
warming, air pollutions and decreasing fossil fuels the
priority of using alternative environmental friendly fuels
and renewable fuels sources have encouraged researchers
to investigate alternative sources derived from plant oils
or animal fats (Sharma et al., 2008; Atadashi et al., 2011).
Biodiesel is a Fatty Acid Methyl Ester (FAME) that can
be produced from transesterification of degummed crude
palm oil. Triglyceride (TG) 1s an active reactant in crude
palm oil for transesterification which reacts with Methanol
(ME) 1n the presence of catalyst to produce FAME (FA)
and Glycerol (GL) as a by-product as the following
mechamsms (Lam et al., 2010; Shalud and Jamal, 2008,
Fukuda et al., 2001, Freedman et al., 1986, Noureddim and
Zhu, 1997):

Ky
K;

(TG)+ (ME) Diglyceride(DG )+ (FA)

Diglyceride{DG )+ (FA) + (ME)\E_3

4
Menoglyceride(MG)+ (FA)

K
K

Monoglyceride(MG )+ (ME)

; (GL)+ (FA)

Several approaches have been used both in industrial
practices and in the literature to umprove process
efficiency, minimize waste and improve product quality.

Recently, many researchers are focusing on
heterogeneous catalysts, reactant’s ratio, microwave-and
ultrasound-assisted mass transfer and reactions, novel
mixing or even reactive-separation to achieve the goals
(Colucci et ai., 2005; Silva et al, 2010, Simasatitkul et af.,
2011; Ganesan et ai., 2009; Shahla et al., 2010; Lee et ai.,
2009, Anastopoulos ef al., 2013; Margaretha et al., 2012,
Likozar et al., 2016; Tyyaswami et al., 2013; Kim et al.,
2015, Xiang et al, 2016; Maran and Priya, 2015;
Reyman et al., 2014). On the other side of knowledge base
the complex nature of mass transfer and the reactions in
the process requires insightful understanding on how
various factors affect the process efficiency in order to
realize its full potential. The modeling approach will
provide the essential information used in process design,
scale-up, control and optimization. Therefore there has
been considerable attention paid by many researchers
(Hong etal., 2011, 2012; Fabiano et al., 2012; Aniva et al.,
2015; Roy et al, 2014; De Oliveira et al., 2005). Yet, there
are many missing understandings to be filled up.

This study aims not only to show quantitatively how
much indirect-ultrasound wave, a choice of applying
heterogeneous catalyst and mechanical mixing promote
the biodiesel conversion efficiency but we also attempt to
give some insight on the mechanism of the batch
process.

In our study the reaction batches were isothermally
operated so we can assume that all rate constants are not
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a function of temperature. Thus, the kinetic model of
the reaction can be written as follows (Vincente et al.,
2005):

dc

TTG: Kk CroChp h,CroChy L
dC

d‘?G =K CrCre = Ky CrpCra — K Crpg Gy 2

k4CMGCFA
dc
ﬁ =k,CpeCh K, CaCrs k. CraCue + (3)
kﬁcGLCFA

dc

TGL = k5cMGCME 7kaCGLCFA (4)
dc
= KCeCure ~kaCoaCron tkCoale - (5

k4CMGC FA +k5CMGCME - kﬁCGLCFA

dfl;vus =~k CroCoe K, CrpCry — kT Gy + (6)
k4CMGCFA7k5cMGCME +kﬁcGLCFA

Where:

C; = Concentration of component

I = Unitofmole/L

t = Time in minute

k = Integer subscripts are rate constants in umt of
L/molemin

These well-established reaction steps and their
corresponding ODE (Eq. 1-6) form a basis for the
discussion m the following sections.

MATERIALS AND METHODS

Firstly, crude palm oil was degummed by adding 1%
by weight phosphoric acid into CPO at 80°C. Then Free
Fatty Acid (FFA) was reduced to <0.53% by adding 3% by
welght sulfuric acid into CPO and usmg various molar
ratios of CPO-methanol at reaction temperature of 60°C.
The degumming steps decreased FFA m CPO to be not
larger than 0.2% by weight which was within standard for
biodiesel production. Catalysts used in experiments are
ceramic rings coated by NaCQ,. Many factors were varied
m this study to mvestigate thewr effects on rate of
transesterification. The condition with molar ratiol:9 of
triglyceride-methanol mixture reacting at temperature of
60°C in the presence of catalysts 3% by weight of CPO
with sturing speed at 250 rpm assisted by indirect
ultrasonic wave at 35 kHz was used as default if no any
other conditions were specified. Kinematic viscosity of
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Fig. 1: Transesterification at the default condition (1:9

ratio)
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Fig. 2: Transesterification of molar ratiol:12 of
triglyceride-methanol mixture and others as default

the mixture at default condition was 7.5x107 m*/sec.
Impeller diameter used for agitation was 0.073 m. Kinetic
model from Eq. 1-6 was used to fit data in Fig. 4 and later
figure for concentration of biodiesel (fitted triangles by
solid line), concentration of triglyceride (fitted circles by
dash line) and concentration of glycerol (fitted stars by
dot line). There are three different lines in Fig. 1 and 2
which each line stands for each duplicate.

RESULTS AND DISCUSSION

Effect of ratio of reactants on distribution of oil bubbles
in methanol: Triglyceride-to-methanol ratio was varied
from 1:18-1:6 which equivalent to molar fraction from
0.053 -0.143, respectively. It is found that the molar ratio
of 1.9 produced higher conversion within a shorter time
than other ratios as shown in Fig. 1. For using larger
amount of ethalnols such as 1:12 as shown m Fig. 2,
reaction progressed at the beginning was very slow due
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Fig. 3: Relationship between rate constant of triglyeceride
consuming and mitial mole fraction of TG-ME
mixture

to  low mixing performance. Different reactant
concentrations mixed by stirring distribute different sizes
of o1l bubbles in methanol and will affect mterfacial mass
transfer rate. In this study, reaction progress at the
beginning is strong characterized by rate constant k,. The
rate constant 1s largest at molar fraction of 0.1 (the molar
ratio 1:9) as shown mn Fig. 3.

Effect of catalysts loading on rate of transesterification:
At a certain condition of the molar ratio 1:9, reaction
temperature of 60°C and at fixed stiring speed of 250 rpm
the reaction rate dramatically increased at the beginning
of reaction time. This can be obviously seen with
catalysts loading of 1.5% by weight which was in between
the conditions in Fig. 4a, b. To make sure that catalysts’
loading is sufficient, excess amount of catalysts loading
of 3% by weight was used as default for other
experiments.

Effect of temperature on rate of transesterification: In
this study the rate of triglyceride consumed was focused
since its kinetics controls the rate of transesterification.
Temperatures of 40, 50 and 60°C were performed and rate
constant (k) was determined to estimate activation
energy required to change triglyceride to diglyceride and
further produced biodiesel. At beginning of reaction time,
temperatuire had strong effect on the reaction and the
activation energy of transesterification at our default
condition was 25.5 kI/mole and pre-exponential term is
2,600 L/mole'min calculated respectively from the slope
and from intercept point on y-axis of fitting line n Fig. 5
according to the Arrhenius’s law (Choudhury et al., 2014).

Effect of mixing performance on
transesterification: From the

rate of

kinetic model for
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Fig. 4: Transesterification a) With 1.0% catalysts loading
and b) With 3.0% catalysts loading and others as
default
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Fig. 5: Fitting of rate constant (k,) and temperature

tranesterification the main reason why the reaction at the
beginning occurs at vary small rate 15 that triglyceride (o1l)
and methanol were immiscible and mass transfer was
significantly affected, causing slow biodiesel production
rate 1f stirring speed of agitation 1s not sufficient. At the
initial time of reactior, some sets of data may not well fit
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Fig. 6: Transesterification with stiuring at 150 rpm and
others as default

by unmodified kinetics model because normally biodiesel
production by tranesterification began with two
separating phases of triglyceride and methanol. So with
unsuitable ratio there was too low interfacial area for mass
transfer due to insufficient mixing. However, triglyceride
and methanol with suitable ratios will form a good
emulsion of o1l in methanol which enhances mass transfer
between the two phases, playing important role on the
whole process. Thus, stiring was used to make tiny oil
bubbles suspending in excess amount of methanol to
enhance interfacial mass transfer rate
(Choedkiatsakul et al., 2014).

We modified the regular rate equations of
transesterification step by sinply using mass transfer
factor (+) for the rate of triglyceride disappearing in the
kinetic model. The mass transfer factor is reasonable
under two assumptions. Firstly, well mixing can be
achieved when stirring speed at 300 rpm was used since
»90% conversion can be achieved which after sufficient
reaction time could be accepted to be the equilibrium
conversion of this reversible reaction. Secondly by visual
observation, molar ratio 1:9 triglyceride-to-methanol
produced uniform size of oil bubbles suspended in
methanol. The rate constants (k;) were determined by
kinetic model fitting shown in Fig. 6-9 and values of rate
constants of 1.5x107 L/moele'min, 4.5x107 L/molewmin,
7.5x10°L/molerminand 1.5%107 L/mole'min were obtained
respectively. These values of k, did not satisfy
Arrhenius’s equation of which the rate constant should
be not different at a given temperature so we propose a
modified kinetic model for Eq. 1-6at a certain temperature.
For example, we fixed temperature at 60°C to demonstrate
how the following model works:

e _ poc,,C
dt

TG~ ME

JrkZ(jDG(jFA (7)
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Fig. 7. Transesterification with stiring at 200 rpm and
others as default
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Fig. 8 Transesterification with stirring speed at 250 rpm
and others as default

251 Data fiting

A FAME
B Glycerol
® Triglyceride

Concentration (mol/L)

0.5

0.0 T T T T T T T 1

Reaction time (min)

Fig. 9: Transesterification with stirring at 300 rpm and
others as default
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Fig. 10: Relationship between the rate constant k, and
stirring speed

Where k’; is the rate constant at temperature of 60°C
with stirring speed at 300 rpm and « stands for a factor
due to different rates of mass transfer from methanol
phase into oil phase which allowed the reaction to
proceed at various stirring speeds.

Besides, Eq. 1 will be replaced Eq. 7 for modifying the
traditional kinetic model, other equations with the
presence of k;such as Eq. 2, 5 and 6 must be modified by
replacing K, by (K’,*) into those equations to describe
kinetic model of the consecutively reversible reactions.

Conversion of triglyceride is dominated by the rate
constant k, which was high if the oil-in-methanol emulsion
was well-formed. Mixing time can be decreased by using
sufficient stirring speeds. A Plot between k, evaluated
from Fig. 6-9 and stirring speed is shown in Fig. 10.
Reynolds number (Re) fell between 17,800 and 35,500 for
different stirring speeds. Tt is well-known that the mixing
time decreases directly-proportional to the stirring speed
(Zlokarnik, 2001). A smaller mixing time promotes the
reaction to occur faster. From the fitted line in Fig. 10, we
can estimate * by considering that at 300 rpm stirring,
emulsion of oil in methanol was uniform distributed and
macro mixing can be assumed as sufficient and was not
the rate controlling step thus did not slow down the mass
transfer rate. Mass transfer factor + at 300 rpm is treated
to be 1 for maximum value of the rate constant and at
other stirring speeds ¢ can be determined by simply
relating to the maximum value corresponding to the linear
equation: in unit of (L/molesmin):

k, = 8.64x 107 (tpm) - 0.0122

in unit of (L/molexmin)

Rate constants were determined from data fitting by
keeping other rate parameters (k,-k,) constant to simplify
the calculation. The rate constants and mass transfer
factors are summarized in Table 1.
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Fig. 11: Transesterification at 250 rpm without assisted by
ultrasonic wave and others as default

Table 1: Rate constants * (L/moletnin) at $0°C and mass transfer factor (= )
at ditferent stirring speeds (ipm)
Rpm . k' k, k. k, ks kg

150 0.053 0.0137 24 33 58 88 0.0009
200 0.370 0.0137 24 33 58 1.88x10°  3.3500
250 0.680 0.0137 24 33 58 2.58=10°  5.3500
300 1.000 0.0137 24 33 58 3.5 0.0009

Walues of kyky are reported in a review of Giulio Santori et af. (2012)

Effect of ultrasonic wave on rate of transesterification:
From Fig. 8, it 1s clear that reaction assisted with
ultrasonic wave shows a better mass transfer at the initial
time of reaction (Choedkiatsakul et al., 2014) since
biodiesel production increases strongly during the first 30
min. Tt does also show that all components were almost
well mixed and mass transfer was not the limiting step for
further reaction to proceed. In contrast in the batch
without ultrasonic wave as demonstrated in Fig. 11,
biodiesel produced increased more gradually during the
beginning as compared with that in Fig. 8. This is because
the process needs a time for getting a good mixing to
induce reaction to occur effectively.

CONCLUSION

The nature of transesterification mvolves mass
transfer effect sice tniglyceride and alcohol are immmiscible
fluids. The reaction between the two fluids occurs in form
of emulsion so the molar ratio of the two fluids play a
crucial role on the rate of reaction. In this study the molar
ratio of 1:9 was the optimum pomnt for biodiesel
production. Temperature and catalysts loading did not
affect production yield strongly. This follows the kinetic
theory. However the amount of catalysts and temperature
should be large enough for the reaction to oceur as fast as
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possible (not constrained by the amount of catalyst and
temperature). In our experiments, we chose 3% by weight
of catalysts and temperature of 60°C as a reasonable
such. The energy of
transesterification at our default condition was 25.5

condition as activation
kl/mole and pre-exponential term was 2,600 L/mole'min.
The main pomnt of this research 13 how to enhance mass
transfer rate in this emulsion system. We studied effect of
stirring speed with ultrasonic wave aided on the rate of
transesterification and we get high biodiesel production
=90% conversion at 300 rpm stiming. Operations with and
without ultrasonic wave was compared. Tt shows that
ultrasonic wave did not give much different in term of
yield but was helpful i term of reaction rate. The last
point about enhancing mass transfer rate, we can
conclude that if stirring speed is not large enough to get
good oil-bubbles distribution it is difficult to get high
productivity.
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