Tournal of Engineering and Applied Sciences 14 (24): 9632-9638, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Robust Hotelling’s T* Charts with Median based Trimmed Estimators

'5.5. Syed-Yahaya, °F.5. Haddad, 'N.I. Mahat, 'A. Abdul Rahman and "H. Ali
'School of Quantitative Sciences, UUM College of Arts and Sciences, Universiti Utara Malaysia,
06010 Sintok, Kedah, Malaysia
*College of Applied Studies and Community Service, University of Dammam, Dammam, KSA
sharipah(@uum.edu.my

Abstract: It is well known that the traditional Hotelling’s T* chart is inefficient when cutliers are presented in
the data. To alleviate the problem, this study proposed three robust Hotelling’s T° control charts using trimmed
estimators to replace the usual mean vector and the covariance matrix in the traditional T chart. Trimming was
done using medified Mahalanobis distance with median as the location measure and one of the robust scale
estimators: MAD,, S, or T, as the scale measure. These modifications consequently produced three different
trimmed estimators. Investigation on the performance of the proposed robust charts, measured in terms of false
alarm and probability of detection were conducted via. simulation study. The results were compared to the
traditional chart. It was discovered that the proposed control charts performed moderately m terms of
controlling false alarm and excellently in terms of probability of detection, surpassing the performance of

traditional control chart regardless of conditions.
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INTRODUCTION

In  manufacturing  process, multi  quality
characteristics of a product are often observed. Thus,
multivariate control chart can be a suitable tool to momtor
the process. However, prudent care shall be exercised
in utilizing the tool. This is because along with the
mcreased number of quality characteristics to be
monitored, chances of having multiple outliers in the data
become greater. In this situation, maximal performance of
a control chart may be affected.

The most common approach to simultaneously
momtor multivariate measurements 13 through the
Hotelling’s T* statistic (Alt, 1985; Montgomery, 2005).
The Hotelling’s T* statistic is the
generalization of the student’s t-statistics. To monitor a
process over time, the Hoteling T” chartis constructed in
two phases, namely Phase I and T1. In Phase 1, the aim is
to obtain a stable historical data set. This dataset is then
used to estimate the mean vector and variance-covariance
matrix. The estimates of these parameters are used
together with the control limit to develop the control
chart. Meanwhile in Phase II, the constructed control
chart is then used to monitor the process.

The traditional Hotelling’s T? control chart is a
reliable tool when the underlying process data actually

multivariate

follow the normal distribution. However, the control chart
is no longer reliable as it will spuriously identify out of
control observations when outliers are present in the
dataset. This 1s because the maximum likelihood
estimators of the chart, namely the mean and covariance
are sensitive to the outliers. Therefore, the capability of
the traditional Hotelling’s T° control chart to monitor
future process is arguable. One of the solutions to
overcome this problem 1s to use control chart that is
robust to the presence of outliers.

To date, numerous robust control charts have been
proposed in the literatire. Alloway and Raghavachari
employed the so-called trimmed mean and trimmed
covariance matrix in place of arithmetic mean and the
covariance matrix, respectively. Alternatively, Surtihadi
(1994 used median as a robust location estimator when he
constructed robust bivariate control charts based on the
bivariate sign tests of Blumen and Hodges. In other
research, Abu-Shawiesh and Abdullah (2001) estimated
the mean vector using Hodges-Lehmann and the
varlance-covariance matrix using Shamos-Bickel-Lehman.
Meanwhile, Alfaro and Ortega (2008) proposed a new
alternative robust Hotelling’s T° control charts by
replacing the arithmetic mean with trimmed mean and
sample covariance with sample trunmed covariance.
Yanez et al. (2010) constructed the T? control chart based
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on the bi weight S estimators for location and dispersion
parameters. The proposed chart was shown to outperform
the T? chart based on Minimum Volume Ellipsoid (MVE)
for a small number of observations. Comparison between
the MVE and Minimum Covariance Determinant (MCD)
approaches in improving the T° chart performance under
non-normality was engaged by Alfaro and Ortega (2008).
For such purpose, the researchers studied the
performance of the T® chartsin Phase 1T process when
Phase I data are distributed as student’s t-distribution.
The results favoured the MCD approach when the T*
chart performance was examined under severe
non-normality situation but either approach (the MCD or
MVE) was deemed suitable under a slight deviation from
normality. The outcomes were validated based on the
percentage of out-of-control observations detected by
these charts. However, the MVE and MCD charts may
have poor control of false alarm rates. Alfaro and Ortega
(2009) and Yahayaetal (2011) for areview. In view of this
conflict, Yahaya et al. (2011) introduced the Minimum
Variance Vector (MVV) estimator in the T° chart for
monitoring the Phase II dataset. Overall, the proposed
robust chart gave a quick detection in the out-of-control
status and at the same tiume, able to control the overall
false alarm rates even as the dimensions increased. The
only drawback, however was a large Upper Control Limits
(UCLs) as compared to the traditional T? chart. An
mnproved version of the MVV chart was further
recommended by Ali et al. (2013) to obtain desired UCTs
whilst still mamntaiming its good performance in terms of
false alarm rate and probability of detection. This was
achieved by making the MVV estimators consistent at
normal distribution as well as unbiased for finite samples.
More recently, Abu-Shawiesh et al. (2014) proposed a
new bivariate control chart with the same structure as
Hotelling T? chart but using the sample median, Median
Absolute Deviation from the sample median (MAD) and
Comedian estimator (COM). This chart outperformed the
non-robust T? chart for all cases considered in that
study.

From the above-mentioned researches, it is apparent
that robust Hotelling T* chart is far more reliable than the
traditional T* chart when normality assumption cannot be
guaranteed. There 15 a wide spread choice of robust
location and scatter parameters that one may consider in
this case. Namrowing down the choices, this study
proposed to improve the performance of Hotelling’s T°
control chart by replacing the mean vector and covariance
matrix with trimmed mean vector and its corresponding
covariance matrix following Alloway and Raghavachari.
Three different trimmed means based on three different
robust scale estimators namely, MAD,, 5, and T, were
proposed.

MATERIALS AND METHODS

Multivariate control chart characteristics

Hotelling’s T control chart: Letx; = {x,,X,, X, .., X,} be
the p-variate random sample of n observations fori1=1,
2, .., n,Xis the sample mean vector and S is the pxp
sample covariance matrix. An individual Hotelling’s T*
statistic can generally be expressed as:

T (x,) = (x,%)" 8" (x,-%) (1)

The original work on T*(x) relies on maximum
likelihood estimators X and S. Nonetheless, measurements
from the X and S are inappropriate when process data are
distorted. A more appropriate way 1s to use robust
estimators in the place of sample mean vector and sample
covariance matrix.

Robust scale estimators: Dispersion of a distribution can
be explamed via. some scale measures. A fine scale
estimator 18 typically characterized by a high value of
breakdown point. Scale estimators such as MAD,, S, and
T, which are employed in this study, possess the highest
breakdown pomt and bounded mfluence function as
proven by Rousseeuw and Croux (1993). Furthermore,
they are simple and easy to compute. Let x,, x;, ..., x, be a
sample set of data and a brief explanation of the
estimators is discussed.

MAD,: MAD, 1s median absolute deviation about the
median which is given by:

MAD, =1.4826xmed[x,-med{x,.x,,....x, }

} fori=12,...n
(2)

This scale estimator is very robust with best possible
breakdown point and bounded influence function. MAD,
is the single most useful ancillary estimate of scale due to

1ts hugh breakdown property.

S, Despite all the advantages mentioned about MAD
this estimator is confined to some draw backs. Tt has low
efficiency (37%) at Gaussian distributions and it takes a
symmetric view on dispersion. Therefore, when dealing
with skewed distributions, Rousseeuw and Croux (1993)
came up with an estimator which 1s similar to MAD, but
not slanted towards symmetry. The estimator which 1s
known as S, is defined as:

S, =cxmed, {med [x x|} for i, j=12..nandi<j )

where, S, is a location free estimator which looks at typical
distance between observations. [t has an explicit formula
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which means that this formula is always uniquely defined.
A modest simulation studied by Rousseeuw and Croux
(1993) found that the correction factor ¢ = 1.1926
succeeded in making 5, unbiased for finite samples.

T,: Another promising scale estimator is T, which is
defined as:
h
T, :1.38x%§{med|xl-xj|}(k) fori, j=1,2,...,n andi #
Where: (4
h = (n/2)+
k = The No. of trimmed observations

T, has all the properties as a robust estimator needs
such as a bounded and continuous influence function
and a high breakdown point (Rousseeuw and Croux,
1993).

Trimmed mean: Trimming is a process that aims to
remove the extreme values from each tail of the ordered
statistics. Meanwhile,
computed from the trimmed data. There are suggestions
on the amount of observations to be trimmed including
20%
recommended by Rosenberger and Gasko (1983) as well as
10-15% as discussed by Othman et al. (2004). However,
their works deal with univariate data. In the multivariate
aspect, the trimming procedure is more complicated.
Alloway and Raghavachavari examined three methods of
trimming. One of the methods suggested the use of
Mahalanobis Scuared Distance (MSD) where it selects
the observations that need to be trimmed. According to
Rocke ef al. (1982) this process resulted in providing the
best percentage of the amount of trimming from each side
of any ordered statistics in range of 20-25% in symmetric
distribution. The MSD formula is given as:

trimmed mean 1s the mean

from each tail of the ordered statistics as

MSD(x)={x-%) 8" {x -X) (%)

where X and 3 depend on the original data. Alloway and
Raghavachavan selected a set of data pair of mdividual
observations to be trimmed. Similar to the traditional
Hotelling’s T° statistic, this statistic uses the mean and
covariance which are known to be sensitive to outliers
and 1t 15 unlikely to use the MSD to find outliers, since,
MSD itself 1s sensitive to outliers. For such reason, this
study modified the MSD procedure to be used as the
trimming tool by substituting theXand S with robust
location vector and scale matrix.

For the location measure, this study proposed
using the usual median while for the scale measure,

three different scale estimators from the research by
Rousseeuw and Croux (1993) namely MAD,, S, and T,
were suggested. Apart from having highest breakdown
point, these estimators performed well in controlling
type T error rates when they are integrated in various test
statistics (Haddad et al., 2013; Yahaya et al., 2004).

Let, x, = X, X, .... X, be a vector for individual data
sets where 1 = 1, 2, ..., n and p 1s the mumber of
characteristics. The computation of the proposed MSD
for individual observations is as in Algorithm 1.

Algorithm 1; Computation of the robust MSD:

Step 11 Calculate the median for each data set

Step 2: Estimate the robust covariance matrix according to the following

steps

Calculate the robust scale estimates MAD,, S, and T,, for each
pair of quality characteristics, x; and x,wherej, g=1,2, ..., p
and j=g
Compute the Spearman Rank correlation between x; and x,
denoted by comr (x;, x;) (Abdullah, 1990)
Compute the covariance between x; and x, for the three different
scale estimators using the followings:

SMADn(x],xg)=MAD“(XJ)XMADn(Xg)Xcor‘r(x],xg) (®)
SSn(xJ,xg):Sn(xJ)xSn(xg)xcorr(xj,xg) Q)]
S (xjxg ) :T“(xJ ) T, (xg )xcorr(xj,xg) ®

Step 3: Compute the robust MSD (termed as RMSD) for each observation

as below:
RMSDyyup (%, )= (X, med(x,)) Sihamy (x,-med(x, )) ®
RMSDy, (x,) = (x,-med(x,)) 1, (x,-med(x,)) (10)
RMSDy, (x,) = (x,-med{x,))" &, (x,-med(x,)) 1

Step 4: Arrange the values of each RMSD in ascending order and trim the
largest 40%% of the values following Alloway and Raghavachari
Step 5: Estimate the location and scale measures for Hotelling T? chart.
Compute the Hotelling T? statistic with trimmed means and
winsorized covariance
Determine the trimmed mean for each data set of the individual
observations by dividing the total of the remaining observations
by (m-k) where m denotes the number of individual observations
and k denotes the number of trimmed observations. The use of
different scale estimators (MAD,, S, or T,) in the computation
of covariance matrix of MSD will produce different trimmed
means represented by X, .- X and X, respectively
Create winsorized sample by replacing the trimmed observations
with the value of the largest remaining observation
Compute the covariance matrix for the Hotelling T? statistic by
adopting Eq. 12:

g L’lxs (12)
m,-1

Where 8,00 Swnispa 18 the winsorized covariance and mt is the
nurmber of trimmed observations
Calculate the inverse of the covariance matrix
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The robust control charts

The Robust Hotelling’s T* charts: All the computed
robust scale estimators and trimmed mean estimators were
used to construct the proposed Hotelling’s T? charts.
This was done by replacing the arithmetic mean vector in
the traditional Hotelling’s T° control chart (Eq. 1) with any
of the three trimmed mean vector (%,,,,,%, o %, )and its
corresponding Inverse covarlance IMatrix (Syn,.S or 57, )
Such substitutions form the three robust Hotelling’s
T? charts:

Tl\iADn (X1) = (Xi 'iMADn )T Si\;IADn (Xi 'iMADn ) (1 3)

TSZn (X1) :(Xi_ESn )T S;n (X'_XSn) (14)

1

T2, (%) = (% %r, ) 87, (%, (15)

Control limits: This study focused on independent case
of individual observations. To examine the strength and
wealkness of the proposed robust charts, the mixed normal
distributions based on the following contaminated model
was used:

(1-g)N, (1, 25 ) +eN, (1, 2)) (16)

Where:

€ = The percentage of the outliers

Ny, Z) = The distribution with the
parameters L, and X;

The out-of-control distribution with the
parameters , and %,

in-control

Np(“l: El)

For mdependent case, the contammation model of the
mixednormal distribution is:

(1-&)N, (0.1, ) +N, (.1, ) a7

According to Johnson (2007) the variance covariance
matrix Ip is a homogeneous covariance matrix where the
main diagonal 13 1 and O else where which reflects that
there 13 no correlation among the variables.

Since, the distributions of the proposed Hotelling’s
T? charts are unknown, the estimation of Upper Control
Limit (UCL) was done using simulation. First, data sets
were generated from the standard normal distribution N(O,
Tp). Then, robust estimators were computed from this
distribution. Next, a new additional observation from the
standard normal distribution was generated and robust
Hotelling™s T statistic for this new cbservation was
computed. This procedure was repeated 5000 times and
the 95th percentile of the 5000 robust Hotelling’s T°
statisticsis considered as the UCL.

Table 1: Manipulated variables in simulation study

Variables Values
No. of quality characteristics (p) 2, 5and 10
Proportion of contamination () 0.1 and 0.2

Mean shift ()
Group size (m)

0 (no shift), 3 and 5
50, 100 and 150

False alarm and probability of detection: The performance
of the control charts was measured in terms of their false
alarm rates and probability of detection. To compute these
values, 1000 data sets were generated from the standard
normal distribution N(O, I;). Then, the data sets were
contaminated with outliers and mean shift. Next, robust
estimators were obtained from these data sets. The false
alarm was computed using a new observation from the
in-control distribution whlst the probability of detection
was calculated using a new observation generated from
the out-of-control distribution.

Four variables were mampulated to mvestigate the
strengths and the weaknesses of the robust Hotelling™s T°
charts namely number of quality characteristics (p),
proportion of contamination (€), mean shift (i) and group
size (m). The setting values for the variables are listed in
Table 1 following earlier researches by Alfaro and Ortega
(2008), Vargas (2003) and Mohammadi ez al. (2011). The
manipulation of these variables generated five different
levels of contaminations which are categorized as:

s N0, I)~ideal condition (no contamination)

s (09NL0, T)H0.1)NL(3, I,)~mild contamination

o (08NL(0, IDH0.2)NL(3, I;)~moderate contamination
o (09NL0, IDHO0.1)NL(5, Iy ~moderate contamination
s (0BNLO, T)H0.2)NL(5, T, )~extreme contamination

RESULTS AND DISCUSSION

The results of the analysis on the performance of the
robust control charts in terms of the false alarm rates and
probability of detection at ¢ = 0.05 are summarized in
Table 2 and 3, respectively. The robust charts (T T,
and T?,) were compared to the traditional control chart
{T?). The shaded cells in both tables represent robust
conditions.

To measure the robustness of the control charts, we
adopt Bradley (1978) criterion of robustness mterval such
that the false alarm rates should be in between 0.025 and
0.075(2.5and 7.5%) for a chart to be considered robust at
a certain condition. Table 1 shows three robust charts that
perform as good as the traditional charts in controlling
false alarm under ideal condition (€ = 0, p = 0), regardless
of the group sizes m, € and p. However, the rates for all
charts dwindle when contamination exists. In this
situation, some of the results are below the Bradley’s
robust interval limit. At p = 2, the traditional chart fares
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Table 2: False alarm rates (%) under independent case for « = 5%

p=2 p=S5 p=10

m € L T Tane T2, T T T, T T T Ty T T
50 0.0 0 5.6 4.9 54 53 53 5.5 4.8 4.8 5.7 6.4 6.0 6.1
0.1 3 2.0 31 34 33 2.7 3.6 38 3.6 4.1 4.3 4.2 39

5 1.6 3.0 34 33 2.6 3.5 39 3.7 38 4.4 4.1 4.0

0.2 3 21 1.9 1.9 1.9 2.6 1.9 1.9 2.0 4.2 2.9 3.0 29

5 1.6 1.8 1.8 1.8 2.5 1.5 21 1.7 4.0 3.5 34 32

100 0.0 0 5.5 4.1 4.1 4.2 54 3.7 39 3.7 5.5 51 4.9 51
0.1 3 21 2.7 2.7 3.0 2.9 2.5 23 23 33 3.6 38 39

5 1.6 2.6 2.6 32 28 1.6 2.5 22 34 3.6 3.4 3.7

0.2 3 21 1.1 1.1 1.1 3.0 1.4 1.7 1.7 35 1.8 1.8 1.8

5 1.6 1.1 1.1 1.0 2.9 1.6 1.7 1.6 34 23 2.4 2.7

150 0.0 0 53 4.8 4.8 5.0 4.3 4.4 4.5 4.3 4.6 4.6 7.0 6.2
0.1 3 23 3.6 3.6 3.7 21 2.8 3.0 28 3.7 38 3.5 35

5 1.9 34 34 3.6 21 2.8 2.9 3.0 3.6 3.9 3.5 34

0.2 3 22 1.6 1.6 1.9 21 1.2 1.3 1.5 3.6 2.5 2.6 2.7

5 1.9 1.8 1.8 1.9 21 1.4 1.2 13 3.6 2.6 2.4 21

% 20.0 60.0 60.0 60.0 73.0 53.0 47.0 47.0 100 87.0 80.0 87.0

Table 3: Percentage of detecting outliers for independent case at o = 5%

p=2 p=S5 p=10
m € 13 T4 T usre T T T4 Y Ty T T4 T usre T, T
50 0.0 0 5.6 1.9 5.4 53 5.3 5.5 1.8 4.8 5.7 6.4 6.0 6.1
0.1 3 49.1 85.7 85.5 85.8 36.4 98.2 8.1 98.3 24.7 100 100 100
5 74.7 100 100 100 44.2 100 100 100 26.5 100 100 100
0.2 3 17.6 T0.6 71.7 72.4 11.9 89.7 88.8 90.1 10.6 79.8 76.9 79.0
5 17.1 100 100 100 10.9 100 100 100 10.6 100 100 100
100 0.0 0 5.5 4.1 4.3 4.2 5.4 3.7 3.9 37 5.5 5.1 4.9 5.1
0.1 3 522 88.5 88.6 88.5 41.7 9.5 9.5 99.5 294 100 100 100
5 80.6 100 100 100 50.7 100 100 100 314 100 100 100
0.2 3 17.5 754 75.4 753 11.8 93.7 94.3 9.7 10.7 841 83.3 84.7
5 17.5 100 99.9 99.9 12.0 100 100 100 10.8 100 100 100
150 0.0 0 53 4.8 4.9 5.0 4.3 4.4 4.5 4.3 4.6 4.6 7.0 6.2
0.1 3 53.7 0.9 91.2 1.3 45.5 100 99.9 99.9 320 100 100 100
5 80.4 100 100 100 54.2 100 100 100 337 100 100 100
0.2 3 183 T7.6 78 78.1 12.2 96.6 6.7 96.9 11.8 85.9 86.2 86.0
5 183 100 100 100 12.5 100 100 100 12.1 100 100 100
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Fig. 1: a-d) Percentages detection of outliers at p=2

the worst with all the contaminated conditions are on the robustness of the charts. The shift in the mean
below the Bradleys’s mterval limit. The robustness of the values on the other hand shows negative effect on
charts worsens when € increases but improves when p 1s traditional chart but no clear effect on the robust charts
large. The increase in m values has no significant impact (Fig. 1).
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Fig. 3: a-d) Percentage detection of outliers at p= 10

The performance in terms of probability of outlier’s
detection 1s recorded m Table 2. For a clearer visual and
a better comparison, we translated the values in Table 2
into Fig. 1-3 based on the values of p. Across Fig. 1-3, we
observe that for majority of the conditions, the robust
charts outperform the traditional chart by a large
difference. The robust charts under most conditions
achieved the 100% detection with the lowest rate of 70.6%
while the lowest rate for the traditional chart is below 10%.
Across different p, there is no clear pattern of changes in
performance among the charts. With regards to g, the
robust charts as well as traditional chart show decrease in
probability of detection when € increases. The shift in
mean (p) shows positive effect on the robust charts
regardless of the proportion of contamination (g).
Meanwhile, for the traditional chart, positive effect only
occurs when & = 0.1. The performance of the chart

deteriorates when € = 0.2. On a side note, the increase in
group sizes (m) brings some positive effect on the
probability of detection for all the charts.

The best performance among the robust Hotelling™s
T? charts in term of probability of detection is T 2, when
p = 2 and T%,.., when p = 5 and 10. In terms of false
alarms, the best performance for the robust charts is T?,
chart when p = 2 and 5 and T, when p = 10. Even
though T%, is not in the league of best performer, its
performance in terms of false alarm rates and probability
of detection shows not much difference from the other
two robust charts.

CONCLUSION

Three robust Hotelling T* control charts based on
trimmed means were proposed and their performance in
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terms of false alarm rates and probability of detection were
investigated. The overall finding that the
performance of the robust charts in controlling false alarm
are moderate. They are however, superior in detecting
outliers regardless of the conditions imposed in this
study. In contrast, the traditional chart which performs
moderately well m controlling false alarm has shown
mability to detect outliers. Among the proposed robust
control charts, the best performance is given by the
T?ane Since, this control chart produces good values for
both false alarm rates and probability of detection.

shows
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