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Abstract: Energy efficiency in data centers is a very mmportant issue and getting growing attention from
researchers. One approach to reduce energy consumption 1s to allocate tasks to Virtual Machines (VMs) created
in Physical Machines (PMs) in such a way that the number of idle PMs is maximized. Approaches of this kind
are called VM consolidation methods. Idle PMs can be put into an energy-saving sleep mode in which PMs
consume significantly lower energy than in the normal operation mode. But if too many VMs are packed into
a single PM, the performance mterference among VMs can cause sigmficant slowdown to jobs. When a new
job arrives at a cloud, the tasks of the job should be allocated to idle VMs. If there are enough number of idle
VMs, we should decide to which idle VMs those tasks should be assigned. If there are not enough idle VMs,
we should create necessary number of 1dle VMs on proper PMs before allocating the tasks to idle VMs. This
problem 15 called the static VM consolidation problem. In this study, we propose four algorithms for this static
VM consolidation problem. When we propose algorithms, we take following issues into considerations:
imperfect performance isolation of virtualization technology, flexible and efficient proactive VM creation policy,
PMs consisting of multiple CPUs each of which consists of multiple cores and VMs which are created
with pre-defined machine types. Further, we assume that we do not have the knowledge of the completion time
of a job, although, its resource requirements can be known a priori. We analyze the proposed algorithms
through simulation with synthetic workloads obtained by analyzing the characteristics of workloads in real data
centers. We measure following three metrics and suggest the best algorithm: ratio of idle PMs, service level
agreement violation ratio and the total energy consumption in a cloud.

Key words: Cloud-based data centers, energy-efficiency, inter-VM performance interference, SLA violations,
static VM consolidation algorithm, resource requirement

INTRODUCTION

Since, the emergence of the concept of cloud
computing, it 1s getting more widely adopted and
deployed 1n the IT mdustry sector and receiving more
attention from computer scientists and engineers. NIST
defines cloud computing to be a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction
(Mell and Grance, 2011, Singh and Chana, 201 6). From a
hardware provisioning and pricing point of view, a
cloud computing environment has advantages as follow
(Armbrust ef al., 2010).

The appearance of mfimte computing resources
available on demand, quickly enough to follow load
surges, thereby eliminating the need for cloud computing
users to plan far ahead for provisioning. The elimination

of an up-front commitment by cloud users, thereby
allowing companies to start small and increase hardware
resources only when there is an increase in their
needs.

The ability to pay for use of computing resources on
a short-term basis as needed (for example, processors by
the hour and storage by the day) and release them as
needed, thereby rewarding conservation by letting
machines and storage go when they are no longer useful.
Examples of well-known cloud computing systems include
Amazon EC2, Microsoft Azure and Google Compute
Engine (L1 et al., 2010; Lu and Zeng, 2014).

Virtualization 1s an essential mechanism in providing
the computing as a service vision of cloud-based data
centers. By providing physical resource sharing, fault
1solation, security 1solation and live muigration,
virtualization allows diverse applications to run in isolated
environments through creating multiple Virtual Machines
(VMs) on shared hardware platforms (Pu et al., 2012).
When a user rents VMs to run an application on them, he
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specifies the amount of resources allocated to each VM
by stating required CPU cycles, memory and disk. VM
Momnitor (VMM) or hypervisor manages and multiplexes
access to the physical resources, maintaming isolation
between VMs at all times. As the physical resources are
virtualized, several VMs, each of which 1s self-contained
with its own operating system can be executed on a
Physical Machine (PM) (Mishra et al., 2012).

Scheduling in a cloud-based data center is a two
stage mapping problem: first on which PMs VMs should
be created and then which VMs the tasks of an mcoming
job should be assigned to. Vs can be created before a
job arrives and this strategy is called the proactive VM
creation or VM precreation. On the other hand when a
new job arrives, VMs needed to run this job are created
and this VM management policy 1s called the reactive VM
creation. Tt is well known that creating a new VM takes
several hundred seconds and therefore is a very costly
process for short-runming jobs (Mann, 2015). When a job
15 allocated to a set of VMs, each task of that job is
assigned to one VM and this VM should have enough
resources to run the assigned task. Tt is also mandatory
that the resources needed by all VMs runmng on a PM
should not exceed the capacity of that PM, so that,
the PM may not be overloaded. We do not consider
over-provisioning in this study.

Another important issue in the scheduling problem
15 the mimmization of the energy consumed in the
cloud-based data center. The mapping should be
performed in such a way that the total amount of energy
consumed by all the PMs which run all the VMs should
be mimmized. It is reported that worldwide, the data
centers use about 30 billion kilowatts of electricity,
roughly equivalent to the output of 30 nuclear power
plants (Glanz, 2012). And this number is expected to grow
12% a year. This excessive use of energy mn data centers
not only raises the operation cost of data centers
heavily but also creates environmental issues such as air
pollution. Therefore, mimmizing energy consumption in
data centers 1s becoming a more and more important 1ssue.
In many literatures, the power consumption of a server is
modeled in its simplest form as follow:

P(u)=P,, +(P,.-P..) 0

min min

Where:
u = The CPU utilization
P_. = The Power consumed when the server 1s 1dle

min

P.. = The Power consumed when the server is fully
utilized

In this study we use two termmologies, PMs and
servers, interchangeably. For most of all the servers

available in the current market, it is well-known that P, is
almost 50% or more of P, (Barroso and Holzle, 2007). We
can think of turming off a server when it becomes 1dle. But
the procedure of turmng off and then on a server takes
too much time and therefore cannot be thought of as a
practical solution. But some researchers developed a
power-saving mechamsm in which an idle server can be
rapidly put into a sleep mode and consume just 10% of
P.in When ajob arrives at a server, it can be put back into
the normal operation mode rapidly (Meisner et al., 2009).
With this kind of power saving mechanism, a server
consumes power with the above power model when it has
one or more tasks to run but can consume very little
power when 1t has no tasks.

With the above observation, if we run all the VMs on
the smallest number of PMs and therefore, maximize the
number of idle PMs, we can greatly reduce the amount of
energy consumed m data centers. This feature of
scheduling, packing VMs mto a small number of PMs 15
called VM consolidation. Tt is known that VM
consolidations are classified into:

. Static consolidation
. Semi-static consolidation
¢ Dynamic consolidation (Verma et al., 2014)

In static consolidation the sizing and placement of
VMs on PMs 18 determined statically when a job arrives
and does not change over a period of time. Semi-static
consolidation attempts to take advantage of medium to
long term workload variations by periodically re-sizing
workloads and relocating them on target PMs. Semi-static
consolidation typically takes advantage of intra-week
variaions or mtra-month  variations.  Semi-static
consolidation 13 performed by re-sizing and relocating
workloads once a week or once a month. Dynamic VM
consolidation

consolidation even further by consolidating workloads

extends the idea of semi-static
daily or multiple times on the same day. Consolidations on
such a frequent basis camnot be performed using VM
relocation due to downtime required for VM relocation
and therefore, need live VM re-sizing and live VM
migration. While semi-static consolidation 1s suitable for
very long jobs runmng for several weeks or months and
dynamic consolidation is suitable for long jobs running
for several days, static consolidation will be suitable for
relatively short jobs runnming for a couple of hours or
days.

In this study, we consider an energy-efficient job
scheduling problem

in data centers as a static

consolidation problem. The static consolidation problem
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has been studied extensively by many researchers as will
be described m the next section on related works. But
most of their works have the followmg problems.

They assume that the performance of a VM is not
affected by other VMs running on the same PM. But
recent research results which will be summarized in the
next section, show that current virtualization technology
does not provide perfect performance isolation. This
unperfect performance isolation will have the effect of
making job completion time longer than calculated
assuming perfect performance 1solation and in some cases
can cause Service Level Agreement (SLA) violations for
some jobs.

Many researchers assume that when a job arrives, it
will find VMs whose resource capacities are just right for
the job if the data center has enough resources for the
job. In case of the reactive VM creation policy, the job
should wait several hundred seconds before the required
VMs are created and therefore this assumption is not
valid. But with the proactive VM creation policy, this
assumption can be valid as long as the data center has
enough resources to run the submitted job. But the
decision of how many VMs should be created and
maintained proactively and where they should be located
must be handled very carefully because the over-creation
of VMs will reduce the number of idle PMs and therefore,
decrease the energy-efficiency of the whole data center
while under-creation of VMs may cause the delay when
starting the job execution.

Many researchers assume that a server consists of
just one very powerful core to make the problem simple.
But in reality a server can have multiple CPUs and each
CPU has multiple cores. This makes the problem of
analyzing the performance interference among VMs
runmng on a server very complicated because the
performance of a VM will be affected by three different
types of VMSs on the same server: VMs runming on the
same core, VMs running on the different cores of the
same CPU and VMs running on the different CPUs in the
same server. This results from the difference in the
amount of shared hardware resources among VMSs in the
above three cases.

Many  energy-efficient  static  consolidation
algorithms assume that we have the knowledge of both
the completion time of a job and its resource requirements.
But the job completion time varies significantly depending
upen the amount of inputs and 1s hard to predict while
approximate resource requirements of a job can be
predicted relatively easily. In this study we present and
analyze several static VM consolidation algorithms
considering:

s Tmperfect performance isolation of virtualization
technology

»  Flexible and efficient proactive VM creation policy

»  Servers consisting of multiple CPUs, each of which
consists of multiple cores

*  VMs which are created with pre-defined machine
types (Anonymous, 201 9a-c)

Although, we assume that we have approximate
knowledge of resource requirements of jobs, we do not
require that we know the completion time of jobs a priori.
Modeling the static VM consolidation problem as a bin
packing problem as will be explained in the next section,
we introduce 4 static VM consolidation algorithms:

*»  Bestfit

s Upper-bounded best fit

»  Upper-bounded load-balancing

»  Upper-bounded and lower-bounded load-balancing

When a new job arrives, the data center first tries to
find and assign a set of idle VMs for the job from the idle
VM pool of the proper machine type. If the data center
cannot find such a set, 1t imtiates the creation of
necessary idle VMs. During this process the above
algorithms are applied to:

»  Select idle VMs for the newly submitted job
¢+ Decide on which PM a new idle VMs should be
created if necessary

In the simulation-based analysis of the above 4
algorithms, we use a proactive VM creation policy which
1s efficient in reducing both job execution time and energy
usage mn the whole data center. The proposed VM
creation policy tries to reduce the possibility that a newly
arriving job may not find a proper set of 1dle VMs and at
the same to maintain the number of idle VMs as low as
possible mn order to mimmize energy consumption
required to maintain idle VMs. Through simulation using
realistic server hardware modeling and synthetic workload
based upon statistics derived from real data center
workloads, we measure values of three metrics for each
algorithm: the idle PM ratio, the SLA violation ratio and
the total amount of energy consumed in the data center
while varying the workload level on the data center.

Literature review: The VM consolidation problem 1s
often formulated as a bin packing problem which can be
described as follows. Given n items and m bins with:

w, = weight of item j

¢ = capacity of each bin
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Assign each item to one bin, so that, the total weight
of the items in each bin does not exceed ¢ and the number
of bins used 1s mimmum (Martello and Toth, 1990). This
problem 1s known to be NP-hard and several approximate
algorithms are introduced:

+  First-Fit (FF)

¢+ Best-Fit (BF)

¢ First-Fit Decreasing (FFD)

¢ Best-Fit Decreasing (BFD) algorithms

We assumme that items and bins are indexed. The FF
algorithm considers the items according to increasing
indices and assigns each item to the lowest indexed bin
which 1t fits. The BF algorithm is obtained from FF by
assigning the current item to the feasible bin having the
smallest residual capacity. If items are sorted in the non-
increasing order of their weight and then FF and BF
algorithms are applied, the resulting algorithms are called
FFD and BFD algorithms, respectively. Making an item,
w;, a bin and ¢ correspond to a VM, the resource
requirements of VM, a PM and the resource capacity of
a PM, respectively, the static VM conseclidation problem
exactly becomes a bin packing problem. When a job, each
of which requires several VMs of the same resource
requirements, arrives one at a time, either FF or BF
algorithms are used. If many jobs should be scheduled
simultaneously and resource requirements of tasks of a
job may be different from resource requirements of tasks
of other tasks, FF, BF, FFD or BFD algorithms can be
applied. In this study we address the situation where jobs
arrive one at a time and are scheduled independently from
other jobs and therefore, we do not need to consider
using FED or BFD.

Eucalyptus which is open sowrce software for
building AWS-compatible clouds, provides the
following VM allocation algorithm: a greedy algorithm, a
round-robin algorithm and a power save algorithm. The
greedy algorithm 1s an FF algorithm explained above. The
round robimn algorithm mamly focuses distributing the load
equally to all the PMs. The power save algorithm
optimizes the power consumption by turning off PMs
which are not cumrently used which 1s considered
umpractical.

Lin et al. (2011) proposed a hybrid approach which
combines FF and dynamic round robin algorithms. The
dynamic round-robin algorithm uses two rules to help
consolidate VMs. The first rule 1s that if a VM has
finished and there are still other VMs hosted on the same
PM, this PM will accept no more new VMs. Such PMs are
referred to as being m the retiring state. The second rule
15 that if a PM 13 in the retiring state for a sufficiently long

period of time, instead of waiting for the residing VMs to
finish, the PM will be forced to migrate the rest of the
VMs to other PMs and be shut down after the migration
18 fimished. The hybrid approach uses the FF algorithm
during rush howrs and dynamic round-robin during
non-rush hours. This approach is a combination of static
and dynamic VM consolidation methods.

Lee and Zomaya (2012) describes two energy saving
static VM consolidation algorithms: ECRC and MaxTTtil.
When a new job which is to be run on a new VM arrives,
a cost function 1s computed for each PM and the PM
which has the lowest cost 15 selected to run the VM.
Beloglazov et al. (2012) introduces a modified BFD
algorithm which allocates each VM to a PM that provides
the least mcrease of power consumption due to this
allocation. The algorithm 1s used to allocate multiple VMs
for multiple jobs simultaneously. The algorithms by Lee
and Zomaya (2012) and Beloglazov et al. (2012) assume
that the exact completion time of a job 1s known a prion
and 18 not affected by other VMs collocated on the same
PM.

Although, none of the works that, we described
above consider the performance interference among VMs
runming on the same PM, many researchers have studied
this performance interference issues. Koh et al. (2007),
Govindan et al. (2011) and Oh et al. (2011) studied this
1ssue by measuring how much performance degradation
a VM would cause to other VM being executed on the
same PM. But all of them focus on performance impact
between only two VMs in a PM and their results do not
generalize to the case of many VMs running
simultaneously on one PM.

Lin et al. (2016) propose an energy-efficient task
scheduling algorithm m a data center. They introduce a
mathematical model for inter-VM performance interference
which can be used even when more than two VMs are
running in a PM. But their scheduling algorithm is based
on the assumption that a priori execution time of a task is
known.

There are works on characterizing workloads on
cloud systems (Mishra et al., 2010; Reiss et al., 2012]. We
utilize these results to generate cloud workloads for our
simulation-based analysis.

MATERIALS AND METHODS

Proposed algorithms for static VM consolidation: In this
study, we describe characteristics for data center
workloads, a VM pre-creation policy and 4 algorithms for
static VM consolidation.

The data center workload consists of jobs submitted
to the data center. A job 1s characterized by the triple
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(duration, resource requirements of a task, number of
tasks). The duration represents how long the job will run
without interference from other jobs. From the Google
computer cluster workload trace analysis, Mishra et al.
(2010) finds that job durations are bimodal, meaning that
somewhat <30 mimn or larger than 18 h. Mishra et ol (2010)
also observes that a majority of jobs last for only minutes
while some jobs run for very long time from the similar
trace analysis. We classify the jobs into two classes
according to the duration: short and long. The resource
requirements of a task show how much vCPU (virtual
CPUs) and memory a task requires and by this amount
tasks are classified into three classes: small, medium and
large. The number of tasks means how many tasks a job
consists of. Trace analyses show that the number of jobs
decreases exponentially as the number of constituent
tasks increases (Reiss, 2012). The total amount of
resources for a job 1s calculated by multiplying the
resource requirements of a task by the number of tasks.
Mishra et al. (2010) shows that jobs shorter than two
hours account for <<10% of the overall resource utilization
even though they represent more than 95% of the job
counts. From these observations we infer that a very large
number of short-runming jobs require a small amount of
resources and consist of a few tasks while a small number
of long-running jobs require medium to large amount of
resources and consist of medium to large number of
tasks.

In most cases VMs are created with a predefined
machine type which specifies a particular collection of
virtualized hardware resources available to a VM
(Anonymous, 2019a-c). The specification 1s made n terms
of the number of vCPUs and the memory size. Like the
task classification explained above, we define three
machine types for VMs:

. Small
+  Medium
¢« Large

Each task will be executed on a distinct VM with a
matching machine type. So when a job arrives, it should
receive a proper collection of idle VMs before it can start.
A proper collection of 1dle VMs means that there should
be enough number of VMs of the matching machine type.
Otherwise the job should wait until such a proper
collection becomes available. It is well known that the
creation of a new VM 1s time consuming process taking
several hundred seconds. This VM creation time will
cause serious performance degradation especially to the
short jobs whose number dominates in the data center
workload. To avoid this undesirable situation, it 1s
necessary to maintain a sufficient number of idle VMs for

each machine type or equally for each task type. From the
statistics of the data center workloads we can predict how
many idle VMs will be needed for each machine type, to
execute the jobs that will arrive during the average VM
creation time. The VM precreation policy tries to maintain
this number of 1dle VMs for each machine type. Our VM
precreation policy is based upon this statistics-based
prediction and tries to maintain this number of 1dle VMs
for each machine type. When a new job is allocated to
VMs of a proper type, the number of 1dle VMs of this type
decreases and therefore additional idle VMs are created as
necessary. When a job 1s completed, the number of 1dle
VMs of the machine type proper for the job ncreases and
therefore excessive VMs are deleted. With the above
mentioned VM precreation policy, the skeleton of the
overall scheduler looks as follow:

scheduler(eventType) {
if (eventType is jobArrival) {
/* we assume that tasks of the new job is assigned to the smallest VIMs
whose resource capacity */
/* is not smaller than the resource requirement of the task */
if (there are enough number of idle WVMs for tasks of this new job)
assign each task of the job to an idle VIM;
else /* there are not enough number of idle VMs */
create necessary number of VMs for the tasks of this new job;
/* tasks will be assigned to VMs when all the requested VMs are
created */
calculate the number of idle VMs to satisfy the VM precreation policy
and
create idle VM to satisfy that number;
1 else /* eventType is jobTermination */ {
return the VMs, that were assigned to the terminated job, to the idle
VM pool;
calculate the number of idle VMs to satisfy the VM precreation policy
and
destroy idle VMs exceeding that number;
}
}

The above scheduler requires four functions as
follow:

Assign tasks to VMs: There are enough number of VMs
for tasks of a new job. Select a proper set of VMs required
to run the tasks of this new job.

Create VMs for tasks: There has been an unexpected
surge of creation of jobs requiring VMs of the same type,
so there are not enough number of VMs for a new job. It
1s required to create the deficient mumber of VMs. If there
are N tasks and M idle Vs s.t N=>M, first select M tasks
and assign them to the M 1dle VMs. Then create N-M
VMs and assign remaining N-M tasks to them.

Create Idle VM: Some 1dle VMs were assigned to a new
job, so, it 1s necessary to create new idle VMs to satisfy
the VM precreation policy. If N new idle VMs are required,
this funection 1s called N times.
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Destroy idle VM: A job was terminated and the VMs
assigned to that job were returned to the idle VM pool
and therefore, there may be more 1dle VMs than the VM
precreation policy demands. These overflow VMs are
terminated. If N idle VMs are to be destroyed, this
function is called N times. For the implementation of the
above four functions, m this study we consider the
following four policies:

*  BestFit (BF)

*  Upper-Bounded Best Fit (UBBF)

*  Upper-Bounded Load-Balancing (UBLB)

*  Upper-Bounded and Lower-Bounded
Balancing (UBLBLB)

Load

Now, we explamn the above policies. In the discussion
we use the following terminologies. If a PM have M VMs
then it can execute N tasks such that M>N. The capacity
of a VM 1s the maximum workload that it can
accormmodate. The sum of the capacity of M VMs in a PM
is called the possible workload of the PM and the sum of
workload of N tasks in that PM is the actual workload of
the PM. We assume that a new job to be scheduled
consists of N tasks and each task has workload p. A task
is assigned to an idle VM of the machine type that has the
smallest capacity A such that p<2.

The purpose of the best fit policy 13 to maximize the
number of idle PMs m the cloud. To achieve its goal it
assigns a task to the idle VM in the PM with the highest
actual worlkload, creates a new VM in the PM with the
highest actual workload and deletes VM from the PM with
the lowest actual workload. The algorithms for these

functions are as follow:
assignTasksToVMs (Task set, pool of idle VMs of proper machine type)

/* if there are N tasks and M idle VMs in the cloud such that N<M, this
function is called, */
/* and task assignment is completed */
while (Task set is not empty) {
retrieve one task from the task set
sort idle VMSs in such a way that the actual workload of PM rurming the
WM is in decreasing order
assign the task to the first VM in the pool and remove the VM from the
pool
increase the actual workload of the selected PM by the load of the task
P
}
}
createVMsForTasks (Task set) {
/* if there are N tasks and M idle VMs in the cloud such that N=>M, this
function is called */
select M tasks from the Task set and assign them to M idle VMs using
the above function;
put remaining N-M tasks into the unassigned task set
/* Unassigned task set has N-M tasks */
While (Unassigned task set is not empty) {
retrieve one task from the unassigned task set
select only those non-idle PMs whose possible workload can accept the
workload A

and sort them in the decreasing order of actual workload
if (there is no PM in the PM list)
select any idle PM and put it into the PM list
retrieve the first PM, create a new VM in that PM and assign the task to
that VM
increase the possible workload of the selected PM by A
increase the actual workload of the selected PM by p

}
createldleVM (VM type) {
/* create a VM with the capacity A */
select only those non-idle PMs whose possible workload can accept the
new workload A
put them into the selected PM list
and sort themn in the decreasing order of actual workload
if (selected PM list is not empty)
select the PM with the highest actual workload
else
select any idle PM
create a new VM in the selected PM
increase the possible workload of the selected PM by A

¥
destroyIdle VM (VM type) {
select only those PMs which has an idle VM of the specified type

sort PMs in the increasing order of actual workload
destray the idle VM of the specified type from the selected PM
decrease the possible workload of the selected PM by A
if (the possible workload of the selected PM becomes ()
make the PM an idle PM
}

The best fit policy tries to put more work on the PM
with the highest actual workload The problem with this
policy is that as the workload of a PM increases, the
performance interference among tasks running in that PM
increases and therefore, the completion time of those
tasks will be delayed. If the workload becomes too much
high, the tasks in that PM can experience excessive delay
resulting in the SLA violation for the jobs which have
these tasks as their component tasks. To avoid this
undesirable situation, the upper-bounded best fit policy
sets the upper bound on the actual workload on PMs, so
that, the actual workload of a PM camnot exceed this
upper bound. With this policy although there are N tasks
and M idle machines such that N<M, we do not know
whether tasks can be assigned to idle VMs without
violating the upper bound on the actual workload.
Therefore, when tasks are assigned to VMs, regardless
of whether there are enough number of idle VMs or not,
the assign tasks to VMs function which is modified as
follow 1s applied first:

assignTasksToVMs (Task set, pool of idle VMs of proper type) {
/* a PM has an upper bound UB on its actual workload */
remove from the idle VM pool those VIMs whose PM has the actual
workload > UB-p
while ((Tasks set is not empty) and (idle VM pool is not empty ) {
retrieve a task from the task set
gort idle WMs in such a way that the actual workload of PM minning the
VM is in decreasing order
assign the task to the first VM in the VM pool and remove that VM
from the pool
increase the actual workload of the selected PM by p
if’ the actual workload of that PM exceeds UB-p, remove all the VMs
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running in that PM from
the idle VM pool

}
if (Task set is empty)
task allocation is cormpleted
else
the task set becomes the unassigned task set and the following function
is called
}
createVMsForTasks (Unassigned task set) {
/* 1. tasks have been assigned to idle VIMs using the above algorithm. *
/* The unassigned task set has N-L tasks */
select only those non-idle PMs whose possible workload can accept the
workload A
and has actual workload<UB-p
put those PMs in the PM pool
while (Unassigned task set is not empty) {
if (PM pool is empty)
select any idle PM and put it into PM pool
sort PMs in the decreasing order of actual workload
select PM with the highest actual workload, create a new VM in that PM
and assign the task to that VM
increase the possible workload of the selected PM by A
increase the actual workload of the selected PM by p
if ((the actual workload of the selected PM >UB-p) or
(the selected PM cannot accept ary more VM with the capacity 1))
remove that PM from the PM pool
)
}

Two functions, createldle VM and destoryldle VM are
the same as in the case of the best fit policy. The third
policy, upper-bounded load-balancing, tries to distribute
workload on as many PMs as possible to mimmize the
performance mterference among tasks runmng in the same
PM. At the same time this policy avoids the situation
such that a PM’s actual workload exceeds an upper
bound as 1n the upper-bounded best fit policy. Although,
1t may be able to reduce the job completion time, it may
reduce the number of idle PMs seriously. To avoid this
undesirable situation, we try to use idle PMs in only
unavoidable cases. An idle PM is used when none of the
non-idle PMs can accept a task or an idle VM. As in the
case of the upper-bounded best fit policy, although, there
are N tasks and M idle machines such that N<M, we do
not know whether tasks can be assigned to idle VMs
without violating the upper bound on the actual workload.
Therefore when tasks are assigned to VMs, regardless of
whether there are enough number of idle VMs or not, the
assignTasksToVMs function which 1s modified as follow
1s applied first.

assignTasksToVMs(Task set, pool of idle VMs of proper type) {
/* a PM has an upper bound UB on its actual workload */
remove from the idle VM pool those Vs whose PM has the actual
workload =UB-p
while ((Task set is not empty) and (idle VM pool is not ermpty)) {
retrieve a task from the task set
sort idle VIMs in such a way that the actual workload of PM ninning the
VM is in increasing order
assign the task to the first VM in the pool and remove the VM firom the
pool

increase the actual workload of the selected PM by p
if (the actual workload of that PM exceeds UB-g)
remove all the Vs ninning in that PM fiom the idle VM pool

}
if (Task set is empty)
task allocation is completed and
else
the task set becomes unassigned task set and the following function is
called
}
createVIMsForTasks(Unassigned task set) {
/* L. tasks have been assigned to idle VMs using the above algorithm. */
/* the unassigned task set has N-L tasks */
select only those non-idle PMs whose possible workload can accept the
workload A
and has actual workload <UB-p
put those PMs in the PM pool
while (Unassigned task set is not empty) {
retrieve a task from the Unassigned task set
if (PM pool is empty)
select any idle PM and put it into PM pool
sort PMs in the increasing order of actual workload
select PM with lowest actual workload, create a new VM in that PM and
assign the task to that VM
increase the possible workload of the selected PM by A
increase the actual workload of the selected PM by p
if’ ((the actual workload of the selected PM >UB-g) or
(the selected PM cannot accept any more VM with the capacity 1))
remove that PM from the PM pool
}
}
createldleVM (VM type) {
/* creates a VM with the capacity A */
select only non-idle PMs whose possible workload can accept the new
workload A
and soit them in the increasing order of actual workload
if (selected PM list is not empty)
select the PM with the lowest actual workload
else
select amy idle PM
create a new VM in the selected PM
increase the possible workload of the selected PM by A
}
destroyIdle WV (VM type) {
select only those PMs which has idle VMs of the specified type
sort PMs in the increasing order of actual workload
destroy the idle VM of the specified type from the PM with the lowest
actual workload
decrease the possible workload of the selected PM by A
if (the possible workload of the selected PM becomes ()
make the PM an idle PM

}

As an effort to increase an idle PMs in the
upper-bounded load-balancing policy, the upper-bounded
and lower-bounded load balancing policy sets a lower
bound, LB, on the actual workload on PMs, so that, new
tasks are assigned or new idle VMs are created on PMs
whose actual workload 1s not lower than the lower bound
if possible. Those PMs with actual workload lower than
the lower bound will gradually lose active tasks and idle
VMs and finally become an idle PM. With this policy the
functions mn the upper-bounded load balancing policy 1s
modified as follow:
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assignT asksT oV Ms(Task set, the pool of idle VIMs of proper type) {
/* a PM has an upper bound UB and a lower bound LB on its actual
workload */
remove from the idle VM pool those VMs whose PM has the actual
workload <LB or
has the actual workload =UB-p
while ((Tasks set is not empty) and (idle VM pool is not empty)) {
retrieve a task from the task set
gort idle Vs in such a way that the actual workload of PMs running the
VM is in increasing order
assign the task to the first VM in the VM pool and remove that VM
from the pool
increase the actual workload of the selected PM by p
if (the actual workload of that PM exceeds UB-p)
remove all the Vs running in that PM from the idle VM pool

}
it (Task set is empty)
task allocation is completed and retum
/* Now try to allocate tasks to PMs whose actual workload is lower than
LB #
from the non-idle PMs whose actual workload is lower than LB collect all
the proper VMs
and put thern into idle VM pool
while ((Task set is not empty) and (idle VM pool is not empty))
retrieve a task from the task set
sort idle VMs in such a way that the actual workload of PMs running the
WM is in decreasing order
assign the task to the first VM in the VM pool and remove that VM
from the pool
/* among the PMs with actual workload < LB, a VM in the PM with
the highest actual workload *?
* is selected */
increase the actual workload of the selected PM by p
if (the actual workload of that PM exceeds UB-p)
remove all the Vs running in that PM from the idle VM pool

}
it (Task set is empty)
task allocation is completed and return
else
task set becomes Unassigned task set and the following function is called
}
createVMsForTasks(Unassigned task set) {
/* L. tasks have been assigned to idle VMs using the above algorithm */
/* the unassigned task set has N-L tasks */
collect only those non-idle PMs whose possible workload can accept the
workload A
and has actual workload<UBp and >LB
put those PMs in the PM pool
while ((Unassigned task set is not empty) and (PM pool is not empty))
{
retrieve a task fiom the Unassigned task set
sort PMs in the increasing order of actual workload
select PM with lowest actual workload, create a new VM in that PM and
assign the task to that VM
increase the possible workload of the selected PM by A
increase the actual workload of the selected PM by p
if ((the actual workload of the selected PM>UB-p) or
(the selected PM cannot accept ary more VM with the capacity 1))
remove that PM from the PM pool

it (Unassigned task set is ernpty)
task allocation is completed and return
/* Now try to allocate tasks to PMs whose actual workload is lower than
LB */
collect non-idle PMs whose possible workload can accept the workload
A
and has actual workload < LB
put those PMs in the PM pool
while (Unassigned task set is not empty) {
if (PM pool is empty)

select any idle PM and put it into PM pool
sort PMs in the decreasing order of actal workload
select the first PM, create a new VM in that PM and assign the task to
that VM
increase the possible workload of the selected PM by A
increase the actual workload of the selected PM by p
if' ((the actual workload of the selected PM>UB-p) or
(the selected PM cannot accept any more VM with the capacity 1))
remove that PM from the PM pool
}
}
createldleVM (VM type) {
/* create an idle VM with the capacity A%
collect non-idle PMs which can accept a new idle VM with capacity A and
whose actual capacity lies between LB and UB-A
if (found) {
select the PM with the lowest actual workload
create a new idle VM on that PM
increase the possible workload of the PM by A
retum

}
collect non-idle PMs which can accept a new idle VM with capacity A and
whose actual capacity is lower than LB
if (found) {
select the PM with the highest actual workload
create a new idle VM on that PM
increase the possible workload of the PM by A
return

}

select any idle PM

create a new idle VM on the selected idle PM
increase the possible workload of the PM by A

¥
destoryIdle VM (VM type) {
collect non-idle PMs whose actual workload is lower than LB and have
the idle VM of
the given machine type
if (found) {
select the PM with the lowest actual workload
destroy idle VM from that PM
decrease the possible workload of that PM by A
it (the possible workload of the selected PM becomes 0)
make the PM an idle PM
return

collect non-idle PMs which have the idle VM of the given machine type
if (found) {
select the PM with the lowest actual workload
destroy idle VM from that PM
decrease the possible workload of that PM by A
it (the possible workload of the selected PM becomes 0)
make the PM an idle PM
}
}

RESULTS AND DISCUSSION

Simulation results: In this study, we first explain
simulation environments for analyzing the performance of
proposed algorithms. Then we present the experimental
results for the 4 algorithms explained in the previous
study.

For simulation we consider a data center consisting
of 64 homogeneous Pms. Each PM has 2 CPUs, each
CPU has 16 cores and each core i1s enabled with
hyper-threading. VMs are created in one of three
predefined machine types:
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. Small
+  Medium
* Large

A small VM has one vCPU(virtual CPU), a medium
VM has four vCPUs and a large VM has sixteen vCPUs.
A virtual CPU 1s implemented as a single hardware
hyper-thread Tobs are characterized by their resource
requirements and duration and they are classified into
6 categories:

¢  Short-small

*  Short-medium
*  Short-large

* Long-small

*  Long-medum
*  Long-large

A small job consists of small number of small tasks,
amedium job consists of medium number of small tasks or
small number of medium tasks and a large job consists of
medium number of medium tasks or small number of large
tasks. A small task is assigned to a small VM, a medium
task is assigned to a medium VM and a large task is
assigned to a large VM. A job inter-arrival time is
determined in such a way that small jobs comprise 80% of
the total job mumbers while they consume 10% of total
resources, medium jobs comprise 10% of the job numbers
while they consume 10% of total resources and large jobs
comprise 10% of the job number while they consume 80%
of total resources.

If a task is sharing a PM with other tasks, its
performance will be degraded, meaning that its execution
time will get longer, due to the interference from other
tasks. To formulate this performance interference, we
borrow equation for performance interference by Lin et al.
(2016) and slightly modify it. Let T be the execution time
of a task without any performance mterference. If this task
15 executed with other tasks m the same PM and the
workload due to other tasks 1s u, then the execution time
of the task with performance mterference, 1°, 1s formulated
as follow:

T =T/(1-u")

where, [} is the high-load penalty factor and B (0, 1). Note
that the load u does not mclude the load of the task
whose execution time 15 calculated. If u mcludes the
workload of all the tasks in a PM, then the equation will
derive an erroneous result that even though there are no
other interfering tasks, a task’s performance is interfered
by itself.

To calculate the energy consumed in a PM, we use
equation for the energy consumption model stated in
section 1. We let P, = 05xP_ . and the energy
consumption model becomes as follows:

P(u) = 0.5 x{ut1)xP,_,

where, u 1s the actual workload of a PM. If there 1s at least
one task and/or 1dle VM m a PM, the energy consumption
in the PM 1s defined as above. When a PM 1s 1idle,
meaning that it does not have neither a task nor an idle
VM, we assume that it is put into a sleep mode quickly
and consumes as low as 10% of P, or 5% of P,,.. When
a VM is created on this PM, the PM can quickly return to
the normal operation mode as suggested by Mesiner.

For the simulation we vary the load level of a data
center. The load level 1s calculated as follow. For each
workload class, we calculate the workload due to the
workload class as follow:

(Workload due to a job)»( Average No. of jobs per sec)

where the average number of jobs per sec correspond to
the inverse of the inter-job arrival time. Then, we sum up
all the workloads for 6 workload classes and then divide
this number by the number of PMs. In this study, we
consider four load levels: 0.25, 0.375, 0.5 and 0.625. The
load level 0.25 means that the data center is lightly loaded
while 0.625 means that the data center is heavily loaded.
From the simulation we measure three metrics:

*  The ratio of idle PMs

+  The ratio of SLA violations

»  The total amount of energy consumed in the data
center during the simulation

The ratio of idle PMs 1s obtamed as follows. First the
total idle time of each PM during the simulation is
calculated and this per-PM idle time is summed up for all
the PMs. Then this sum is divided by the number
(simulation time)*(total No. of PMs). The ratio of idle PMs
is a rough indicator of the energy efficiency of the
simulated algorithm and takes the value from 0-1. The
larger this ratio gets, the more idle PMs there are in the
data center during the simulation and therefore, less
energy consumption.

The actual completion time of a job during the
simulation 1s defined to be the tine between the arrival
time of the job and the finish time of the job. If a job 1s
allocated to VMs as soon as it arrives, the actual
completion time of the job consists of only its actual
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Table 1: The ratio of idle PMs (%)

Parameters 0.25 0.375 0.5 0.675
BF 62.5 45.4 27.2 10.1
UBBF 59.3 43.7 25.1 88
UBLB 55.0 39.2 21.9 5.2
UBLELB 580 42.1 24.7 8.6

Table 2: The ratio for violation (%)

Parameters 0.25 0.375 0.5 0.675
BF 54 9.5 15.4 22.3
UBBF 32 4.9 7.2 10.4
UBLB 29 3.7 4.6 5.2
UBLBLB 3.0 4.1 5.1 5.7

Table 3: Total energy consumption

Parameters 0.25 0.375 0.5 0.675
BF 25984 34841 45238 54272
UBBF 26273 35024 45714 53941
UBLB 26984 36137 46382 54726
UBLBLB 26041 34905 45103 53176

execution time. But if a job has to wait m the job queue for
a proper collection of 1dle VMs, the actual completion time
consists of the waiting time and the actual execution time.
As already explained earlier, the execution time can
become longer than its ideal execution time due to the
performance interference from other tasks runmng in the
same PMs. The slowdown of a job 13 defined to be the
ratio of the actual completion time to the ideal execution
time. The slowdown has a value =1. If the slowdown
value gets higher than some threshold, we say that the
SLA of the job is violated. In this study, we choose
1.25 for the threshold. To calculate the ratio of SLA
violation, we count the nmumber of completed jobs whose
SLA has been violated and then divide this number by the
total number of completed jobs during the simulation. The
SLA violation ratio gets value from 0 to 1. The smaller this
ratio gets, the more reliable the consolidation algorithm
becomes.

Each run of the simulation is terminated when
50,000 jobs are completed. Table 1-3 show the simulation
results. In tables, columns represent load levels and rows
represent the consolidation algorithms as follows:

+  BF (Best Fit)

*  UBBF (Upper-Bounded Best Fit)

+  UBLB (Upper-Bounded Load Balancing)

¢+  UBLBLB (Upper-Bounded and Lower-Bounded Load
Balancing)

Table 1 shows the 1dle PM ratio (%) of the proposed
VM consolidation algorithms under varying load levels.
BF algorithm has the highest idle PM ratio, UBBF and
URLBLB algorithms have almost similar results which are
slightly worse than the BF algorithm and UBLB has the
worst result. BF and UBBF algorithms try to allocate a
new task and/or new 1dle VM to already packed PM and
try to maximize the number of idle PMs. UBBF algorithm

has slightly lower idle PM ratio than BF algorithm because
UBBF algorithm does not allocate a new task and/or new
idle VM on PMs whose actual workload exceeds the
upper bound on the actual workload to avoid the situation
where tasks which are allocated to a PM with excessively
high workload, suffer from too much performance
interference and therefore, experience too much delay in
their completion time. UBLB and UBLBLB algorithms try
to allocate a new task and/or new idle VM to lightly
loaded non-idle PM. But they do not allocate a new task
or idle VM to highly-loaded PMs. Moreover, they try to
utilize non-idle PM as much as possible and therefore,
their ratios of idle PMs do not drop drastically. We see
the UBLB algorithm has the worst result but UBLBLB
algonithm has results very similar to the UBBF algorithm.
This 1s because the UBLBLB algorithm tries to avoid
allocate a new task and/or idle VM on PMs with the actual
workload lower than lower bound and also tries to destroy
idle VMs on the non-idle PMs with the actual workload
lower than the lower bound.

Table 2 presents the SLA violation ratio (%)
of 4 consolidation algorithms under varying load levels.
We see that the SLA violation ratio mcreases as the load
level increases m all the algorithms. Table 2 shows that BF
algorithm exhibits the worst violation ratio. This result 1s
quite obvious because the BF algorithm tries to allocate
a new task and/or i1dle VM to already packed PMs and
tasks allocated on these packed PMs suffer from serious
performance interference. The UBBF algorithm improves
the SLA violation ratio drastically because it avoids to
allocate a new task and/or idle VM to too lughly loaded
PMs. The UBLB and UBLBLB algorithms show much
lower SLA violation ratio than UBBF because new tasks
and/or 1dle VMs tend to be allocated to non-idle PMs with
lower actual workloads. UBLB and UBLBLE algorithms
achieve the goal of evenly distributing workloads among
non-idle PMs and therefore, the workload of these non-
idle PMs mcreases almost at the same rate and the
chances that a certain PM 1s highly loaded are delayed as
much as possible. The UBLBLB algorithm has slightly
higher violation ratio than the UBLB algorithm because i1t
tends to use less PMs.

Table 3 shows the total energy consumption of the
algorithms under varying load levels. The unit of the
consumed energy 1s P_.. as explained before. From
Table 1 and 3, we see that as the 1dle PM ratio rises, the
consumed energy falls. Under low workload the BF
algorithm consumes least energy because it uses least
number of PMs but under very high workload it consumes
more energy than UBBF and UBLBLB algorithins because
those tasks allocated on lughly loaded PMs suffer from
serious performance mnterference and thewr completion
time 1s delayed seriously. Therefore, these lughly loaded
PMs are utilized for longer time and the consumed energy
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in these PMs increases. The UUBLB algorithm consumes
more energy than other algorithms under any level of
workload because thus algorithm uses much more PMs
than other algorithms. The UBBF and UBLBLB algorithims
consume slightly higher amount of energy than the BF
algorithm under low workload. But they consume similar
or lower amount of energy than the BF algorithm under
high workload level. It 1s because although, they utilize
slightly more PMs than the BF algorithm but the chances
that tasks are delayed excessively is much lower than in
the BF algorithm. Between UBBF and UBLBLB algorithms
the UBLBLE algorithm consumes less energy. It is
because both algorithms use similar number of PMs but
the chances that some tasks are seriously delayed due to
performance mterference 1s much lower in the UBLBLB
algorithm than the UBBF algorithm.

We want to minimize the energy consumption in a
data center but at the same time we do not want the job
completion time to become excessively longer. From
simulation results in Table 1-3, we conclude that the
UBLBLB algorithm consumes low amount of energy
almost comparable to the BF algorithm, its SLA violation
ratio is much better than the BF and UBBF algorithms and
almost similar to the UBLB algorithm.

CONCLUSION

In this study, we approached the scheduling problem
in a data center as solving a static VM consolidation
problem which was then modeled as a bin packing
problem. The consolidation algorithm should try to
minimize not only the total energy consumption in the
data center but also the SLA violation ratio of submitted
jobs. Moreover, we must consider more realistic situations
when we deal with the consolidation algorithm as follow:

¢ The performance of a VM is affected by other VMs
running 1n the same PM

* A PM can consist of multiple CPUs, each of wlich
can have multiple cores with hyper-threading
enabled

¢+ VMs are created with pre-defined machine types

To enhance the performance further, a proper number
of idle VMs are created for each machine type and this
VM precreation 1s based upon the statistics of jobs
including both inter-job arrival time and resource
requirements of new jobs. With this idle VM precreation
policy, there can be two situations when a new job
arrives. The first case 13 when there are enough number of
1dle VMs of the proper machine type. In this case the VM
consolidation problem becomes to which idle VMs the
tasks of the new job should be allocated. The second case
is when there not enough number of idle VMs and in this

case the VM consolidation problem becomes on which
PMs a necessary number of idle VMs should be created,
so that, all the tasks of the new job can be assigned to
VMs. The idle VM precreation policy brings about other
issues and solved these issues too:

¢ After a new job is assigned to idle VMs, more idle
VMs may need to be created to satisfy the idle VM
precreation policy

»  After ajob is terminated, there may be more 1dle VMs
than necessary and therefore, some of them need to
be destroyed

In this study, we proposed four static VM
consolidation algorithms considering all the 1ssues
explained:

¢ The best fit algorithm

¢ The upper-bounded best fit algorithm

»  The upper-bounded load-balancing algorithm

» The upper-bounded and lower-bounded
balancing algorithm

load-

Basically each algorithm consists of three functions:

»  Allocating tasks of a job to idle VMs
»  Creating a new idle VM
»  Destroying an unnecessary idle VMs

The performance of proposed algorithms are
evaluated through simulation with synthetic workloads
obtained by analyzing the characteristics of workloads in
real data centers. We measured following three metrics:

»  Ratio of idle PMs
»  Service level agreement violation ratio
s The total energy consumption in a cloud

Analyzing collected measurement data, we conclude
that the upper-bound and lower-bounded load-balancing
algorithm achieves the low service level agreement
violation ratio with the high ratio of idle PMs and the low
amount of energy consumed.
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