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Abstract: In the present investigation, we introduce and study a certain subclass for higher-order derivatives
of multivalent analytic functions defined on complex Hilbert space. We determine some properties of this class,
like, coefficient estimates, radii of starlikeness and convexity and convex combination. Also, we give an
applications of the fractional calculus techniques.
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INTRODUCTION

Let  indicate the family of all functions f of them
pA

form:

(1)
 

  

p n
n

n = m

f z = z + a z

p<m, p, m N = 1, 2, ...







Which   are   analytic  and   multivalent   in   the 

open unit disk . Let  denote the U = z C: |z|<1 m
pK

subclass of  consisting of functions of the form:m
pA

(2)
 

  

p n
n

n = m

n

f z = z - a z

a 0, p<m, p, m N = 1, 2, ...



 



Upon   differentiating   both   sides   of   (1.2)   α
times   with   respect to   z,   we   obtain   (Chen    et   al.,
1995):

       

  

p- n-
n

n = m

0

f z = p, z + n, a z

p, m N; N = N 0 ; p>


     

   



Where:

 
 

 
   

p!
p, = =

p- !

1 = 0

p p-1 p- +1 ( 0)

 



    

Several researchers have investigated higher-order
derivatives of multivalent functions, see for example
(Altıntas, 2007; Irmak and Cho, 2007; Wanas, 2015;

Wanas, 2017 and Wanas and Majeed, 2018). A function m
pf A

is said to be multivalent starlike of order γ (0#γ<p) ifit
satisfies the condition:

 
 

 zf' z
Re > z U

f z

     
  

And is said to be multivalent convex of order γ
(0#γ<p) if it satisfies the condition:

 
   zf'' z

Re 1+ > z U
f' z

     
  

Denote by  and Cm (p, γ) the classes of *
mS p, 

multivalent starlike and multivalent convex functions of
γ order, respectively which were introduced by Owa
(1992). It is known that (Goodman, 1983) and (Owa,
1985):
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     *
m m

zf' z
f C p, if andonlyif S p,

p
   

The classes = S* (p, γ) and C1 (p, γ) = C (p, γ)*
mS

were  studied  by  Owa  (1985).  Let  H  be  a  complex
Hilbert space and T be a bounded linear operator on H.
For  a  complex  analytic  function  f  on  the  Unit  disk
U, we denoted f (T), the operator on H defined by the
usual Riesz-Dunford integral (Dunford and Schwarz,
1988):

     -1

C

1
f T = f z zI-T dz

2 i 
Where:
I = The Identity operator on H, C is a positively

oriented simple closed rectifiable contour lying in
U = Containing the spectrum σ (T)
T = Interior domain (Fan, 1978)

Also f (T) can be defined by the following series:

 
   n

n

n = 0

f 0
f T = T

n!





Which converges in the norm topology (Fan, 1979).

Definition 1.1 (Selvaraj et al., 2009): The fractional
integral operator of order λ (λ>0) is defined by:

   
 

 

1
-
T 1-

0

T f tT1
D f T = dt

1+t




  

where, f is analytic function in a simple connected region
of z-plane containing the origin.

Definition 1.2 (Selvaraj et al., 2009): The fractional
derivative  for  operator  of  order  λ  (0#λ<1)  is  defined
by:

   
 

 

1-1

T

0

T f tT1 d
D f T = dt

1- dT 1-t




  

where,  f  is  analytic  in  a  simply  connected  region  of

the z-plane containing the origin. For , fromm
pf K

definitions 1.1 and 1.2 by applying a simple calculation,
we get:

(3)   
 

 
 

- p+ n+
T n

n=m

p+1 n+1
D f T = T - a T

p+ +1 n+ +1


   

   

And:

(4)

   
 

 
 

p-
T

n-
n

n = m

p 1
D f T = T -

p- +1

n+1
a T

n- +1

 




 
 


 

Definition 1.3: A function  is said to be in the classm
pf K

(α, β, δ, T) if satisfies the inequality:m
pAK

(5)
     

 
       + p- !

T f T - f T < f T
p- - !

    


 

where, p N, α, β N0 = N c {0}, α+β<p, δ C\{0}\and  

for all operator T with ||T||<1, T…Ø (Ø denote the zero
operator on H).

MATERIALS AND METHODS

Coefficient  estimates:  In  this  study,  we  derive
coefficient  estimates  for  the  function  f  to  be  in  the

class . m
pAK , , , T  

Theorem 2.1: Let  be defined by (1.2). Thenm
pf K

 (α, β, δ, T) for all T…Ø if and only if:m
pf AK

(6)
 

 
 

 
 

 

n
n = m

n- ! p- !n!
- +| | a | |

n- ! n- - ! p- - !

p!

p- !

   
   

      





where, p N, α, β N0 = Nc{0}, α+β<p, δ C\{0}. The   

result is sharp for the function f given by:

(7)

   

 

 
 
 
 

 p n| | p! n- !
f z = z - z , n m

n- !
-

n- - !
n! p- !

p- !
+| |

p- - !

 


 
      
   

Proof: Assume that the inequality (2.1) holds. Then, we
get:

9967



J. Eng. Applied Sci., 14 (Special Issue 7): 9966-9972, 2019

     
 

       

 
 
 

 
     

 
 
 

 
     

+

n- p- n-
n n

n = m n = m

n- p- n
n n

n = m n = m

p- !
T f T - f T -|| f T ||=

p- - !

n- ! p- !n! p! n!
- a T - T - a T

n- ! n- - ! p- - ! p- ! n- !

n- ! p- !n! p! n!
- a ||T|| -| | ||T|| +| | a ||T||

n- ! n- - ! p- - ! p- ! n- !

   

 
  

 
 




 

  
  

        

  
   

        

 

 

 
 
 

 
   

-

n
n = m

n- ! p- !n! p!
- +| | a -| | 0

n- ! n- - ! p- - ! p- !



   
    

       


Therefore, . To show the converse, m
pf AK , , , T   

let . Then: m
pf AK , , , T   

     
 

       + p- !
T f T - f T < f T

p- - !
    


 

Simple calculations gives:

 
 
 

 
 

   

n-
n

n = m

p- n-
n

n = m

n- ! p- !n!
- a T <

n- ! n- - ! p- - !

p! n!
T - a T

p- ! n- !





 

  
 

      

 
 





Taking T = γl (0<γ<1) in the above inequality, we
have:

(8)
 

 
 

 
 

   

n-
n

n = m

p- n-
n = m n

n- ! p- !n!
- a

n- ! n- - ! p- - !
<1

p! n!
| | - | | a

p- ! n- !




  

  
 

      

   
 





Upon clearing denominator in (2.3) and letting γv1,
we obtain:

 
 
 

 
 

   

n = m

n n
n = m

n- ! p- !n!
-

n- ! n- - ! p- - !

p! n!
a <| | - | | a

p- ! n- !





  
 

      

 
 





Or:

 
 
 

 
 

 

n = m

n

n- ! p- !n!
- +| |

n- ! n- - ! p- - !

p!
a | |

p- !

   
 

      

 




This completes the proof of the theorem.

Corollary 2.1: If  then: m
pf AK , , , T   

 

   
 

 
 

 n

| |p! n- !
a , n m

n- ! p- !
n! p- ! - +| |

n- - ! p- - !

 
 

  
  

     
(9)

Radii of starlikeness and convexity

Theorem   3.1:   If      then   f   will   be  m
pf AK , , , T   

p-valently starlike of order γ (0#γ<p) in the disk |z|<γ1

where:

     
 

 
 

   

 

1

n-p

inf
1 n

n- ! p- !
n! p- ! p- - +| |

n- - ! p- - !
= ,

| |p! n- ! n-

n m

   
    

           
 
 



The result is sharp for the function f given by (2.2).

Proof: It is enough to show that:

(10)
 
 

Tf' T
-p p-

f T
 

We have:
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  n-p
n

n = m

n-p
n

n = m

n-p a ||T||
Tf' T

-p
f T

1- a ||T||








Hence, (3.1) will be satisfied if:

(11)
n-p

n
n = m

n-
a ||T|| 1

p-

  
  



In view of theorem 2.1, if  then: m
pf AK , , , T   

(12)
   

 
 
 

  n
n = m

n- ! p- !
n! p- ! - +| |

n- - ! p- - !
a 1

| | p! n- !



  
  

      
 

By making use of (3.3) we observe that (3.2) holds true
if:

   
 

 
 

 
n-p

n- ! p- !
n! p- ! - +| |

n- - ! p- - !n-
||T||

p- | | p! n- !

  
  

      
  

Or equivalently:

     
 

 
 

   

1

n-pn- ! p- !
n! p- ! p- - +| |

n- - ! p- - !
||T||

| | p! n- ! n-

   
    

           
 
 

This gives the desired result.

Theorem   3.2:   If      then   f   will   be m
pf AK , , , T   

p-valently convex of order γ (0#γ<p) in the disk |z|<γ2

where:

     
 

 
 

   

 

1

n-p

inf
2 n

n- ! p- !
pn! p- ! p- - +| |

n- - ! p- - !
= ,

n| |p! n- ! n-

n m

   
    

           
 
 



The result is sharp for the function f given by (2.2).

Proof: It is enough to show that:

 
 

Tf" T
+1-p p-

f' T
 

The result follows by application of arguments similar
to the proof of theorem 3.1.

RESULTS AND DISCUSSION

Convex combination

Theorem 4.1: The class  is closed under m
pAK , , , T  

convex combinations.

Proof: For j = 1, 2, ..., let  where fj is m
j pf AK , , , T   

given by:

  p n
j n j

n = m

f T = T - a , T




Then by (2.1), we obtain:

(13)
 

 
 

 
 

 

n = m

n, j

n- ! p- !n!
- +| |

n- ! n- - ! p- - !

p!
a | |

p- !

   
 

      

 




For μj = 1, 0#μj#1, the convex combination ofj = 1


fj may be written as:

  p n
j j j n, j

j = 1 n = m j = 1

f T = T - ( a )T
  

   

It follows from (4.1) that:

 
 
 

 
 

 
 
 

 
 

   

j n, j
n = m j = 1

j n, j
j = 1 n = m

j
j = 1

n- ! p- !n!
- +| | a =

n- ! n- - ! p- - !

n- ! p- !n!
- +| | a

n- ! n- - ! p- - !

p! p!
| | = | |

p- ! p- !

 

 



    
             

   
            

  
 

 

 



Thus:
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   m
j j p

j = 1

f T AK , , , T


    

Corollary 4.1: The class  is a convex set. m
pAK , , , T  

Applications of the fractional calculus

Theorem 5.1: If  then: m
pf AK , , , T   

   
 

     

 

 
 
 
 

 

- p+
T

m-p

p+1
D f T ||T|| ×

p+ +1

| |p! m- ! m+1 p+ +1
1+ ||T||

m- !
-

m- - ! m+
m! p- ! p+1

+1p- !
+| |

p- - !

 

 

 
 
 
 
 
     
 

  
                
     

(14)
And:

   
 

     

 

 
 
 
 

 

- p+
T

m-p

p+1
D f T ||T|| ×

p+ +1

| |p! m- ! m+1 p+ +1
1- ||T||

m- !
-

m- - ! m+
m! p- ! p+1

+1p- !
+| |

p- - !

 

 

 
 
 
 
 
     
 

  
                
     

(15)
The result is sharp for the function f given by:

   

   
 

 
 

 

p

m

| | p! m- !
f z = z -

m- ! p- !
m! p- ! - +| |

m- - ! p- - !

z , p, m N

 
  

  
     



(16)

Proof: Let . By (1.3), we deduce m
pf AK , , , T   

that:

 
   

   
   

- - p
T

n
n

n = m

p+ +1
T D f T = T -

p+1

n+1 p+ +1
a T

p+1 n+ +1

 



 


  
  

Putting:

     
     n+1 p+ +1

n, = n m, p, m N
p+1 n+ +1

  
   

  

Then, we obtain:

 
     - - p n

T n
n = m

p+ +1
T D f T = T - n, a T

p+1


  

 
 

Since, for n$m, ψ is a decreasing function of n then we
get:

(17)       
   
m+1 p+ +1

0< n, m, =
p+1 m+ +1

  
    

  

Now, by the application of theorem 2.1 and using (5.4)
we find that:

 
 

   

 

     

 

 
 
 
 

   

- - p
T

n = m

n p m p
n n

n = m

m

p+ +1
T D f T ||T|| + n,

p+1

a ||T|| ||T|| + m, ||T|| a ||T|| +

| |p! m- ! m+1 p+ +1
||T||

m- !
-

m- - !
m! p- ! p+1 m+ +1

p- !
+ | |

p- - !


 



 
  



   

    
 

       
 

   





Which gives (5.1), we also have:

 
     

 

     

 

 
 
 
 

   

p+ +1 p- -T D f T ||T|| - n,
Tp+1 n = m

p pn ma ||T|| ||T|| - m, ||T|| a ||T|| -
n n

n = m

| |p! m- ! m+1 p+ +1 m||T||
m- !

-
m- - !

m! p- ! p+1 m+ +1
p- !

+| |
p- - !

      



   

    
 

        
   

Which gives (5.2). By taking λ = 1 in theorem 5.1, we
conclude the following corollary:
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Corollary 5.1: If  then: m
pf f AK , , , T    

 

   

     
 

 
 

p+11

0

m-p

||T||
Tf tT dt

p+1

p+1 | |p! m- !
1+

m- ! p- !
m+1 m! p- ! - +| |

m- - ! p- - !

||T||



  
             
  



And:

 

   

     
 

 
 

p+11

0

m-p

||T||
Tf tT dt

p+1

p+1 | |p! m- !
1-

m- ! p- !
m+1 m! p- ! - +| |

m- - ! p- - !

||T||



  
             
  



Proof: By definition 1.1 and theorem 5.1 for λ = 1, we

have dt, the result is true.   - 1
T 0D f T = f tT 

Theorem 5.2: If  then: m
pf AK , , , T   

   
 

     

 

 
 
 
 

 

p-
T

m-p

p+1
D f T ||T|| ×

p- +1

| |p! m- ! m+1 p- +1
1+ ||T||

m- !
-

m- - ! m-
m! p- ! p+1

+1p- !
+| |

p- - !

 

 

 
 
 
 
 
     
 

  
                
     

(18)

And

:

   
 

     

 

 
 
 
 

 

p-
T

m-p

p+1
D f T ||T|| ×

p- +1

| |p! m- ! m+1 p- +1
1- ||T||

m- !
-

m- - ! m-
m! p- ! p+1

+1p- !
+| |

p- - !

 

 

 
 
 
 
 
     
 

  
                
     (19)

The result is sharp for the function f given by (5.3).

Proof: Let . By (1.4), we deduce: m
pf AK , , , T   

 
       

   

 

p
T

n = m

n p n
n n

n = m

p- +1 n+1 p- +1
T D f T = T -

p+1 p+1 n- +1

a T = T - n, a T


 



    
   

 





Where:

     
   
n+1 p- +1

n, = (n m,p,m N)
p+1 n- +1

  
   

  

Since, for n$m, k is a decreasing function of n, thus we
have:

       
   
m+1 p- +1

0< n, m, =
p+1 m- +1

  
    

  

Also, by using theorem 2.1,we obtain:

 

   
 

 
 

n
n = m

| |p! m- !
a

m- ! p- !
m! p- ! - +| |

m- - ! p- - !

  


  
  

     



Thus:

 
           

 

 
 
 
 

 

p m p m
T n

n = m

p- +1 | |p! m- ! m+1 p- +1
T D f T ||T|| + m, ||T|| a ||T|| + ||T||

p+1 m- !
-

m- - ! m-
m! p- ! p+1

+1p- !
+| |

p- - !
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Then:

   
 

     

   
 

 
   

p- m-p
T

p+1 | |p! m- ! m+1 p- +1
D f T ||T|| × 1+ ||T||

p- +1 m-m- ! p- !
m! p- ! - +| | p+1

+1m- - ! p- - !

 

 
 

                               

And by the same way, we conclude that:

   
 

     

   
 

 
   

p- m-p
T

p+1 | |p! m- ! m+1 p- +1
D f T ||T|| × 1- ||T||

p- +1 m-m- ! p- !
m! p- ! - +| | p+1

+1m- - ! p- - !

 

 
 

                               

CONCLUSION

The operators on Hilbert space were considered
recently by Xiaopei (1994), Joshi (1998), Chrakim et al.
(1998), Ghanim and Darus (2008), Selvaraj et al. (2009)
and Wanas and Jebur (2018).
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