
Journal of Engineering and Applied Sciences 14 (Special Issue 7): 9989-9994, 2019
ISSN: 1816-949X
© Medwell Journals, 2019

Study the Energy Level and Branching  Ratios of
144Ba, 144Ce, 144Nd Isotones using IBM-1

Ali Y. Ghawi and Mohammed A. Al-Shareefi
Department of Physics, College of Science, University of Babylon, Hillah, Iraq

Abstract: In this study, the most appropriate Hamiltoni an has been determined, that is needed for the present
calculations  of  energy  levels  and  B(E2)  values  of  even-even Ba, Ce, Nd nuclei using the Interacting Boson
Model (IBM-1). The results have been compared with a recent experimental data, it was observed that they are
in good agreement. Also, the branching ratios (R, R' and R'') have been calculated and the importance of
studying the branching ratios is to locate the position of the isotopes relative to the dynamical symmetries U(5),
SU(3) and O(6). The results of the present study have showed that the isotopes under investigation lies in the 
different  transition  regions,  the  results  appear  that  Ba  isotone  lies  in  the  transition  region  SU(3)-O(6)
and the Ce, Gd, Dy isotones lies in the transition region of O(6)-U(5) and the Nd, Sm isotones lies  in U(5)
limit.

Key words: Determined, investigation, agreement, experimental data, dynamical symmetries, region

INTRODUCTION

The nuclei can be well described by the presence of
a  number  of  multi  nuclear  models,  among  these
models that have proven widely successful is interacting
boson  approximation  model  which  has  been  proposed
by  Arima  and  Iachello  (1987)  IBA  or  IBM  (Cook,
2005).

The Interacting Boson Model (IBM) is mainly rooted
in the shell model which has proved to be an excellent
instrument for light nuclei (up to 50 nucleons). The larger
the number of nucleons becomes the more shells have to
be taken into account and the number of nuclear states
soon becomes, so, colossal that the shell model will be
intractable. A model of the atomic nucleus has to be able
to describe nuclear properties such as spins and energies
of the lowest levels, decay probabilities for the emission
of gamma quantas, probabilities (spectroscopic factors) of
transfer reactions, multipole moments and so forth. The
interacting boson model (sometimes named Interacting
Boson Approximation IBA) reduces the number of states
heavily.  It  constitutes  only  26  configurations  for  the
2+ state mentioned above (Casten, 1990).

A model of the atomic nucleus has to be able to
describe nuclear properties such as spins and energies of
the lowest levels, decay probabilities for the emission of
gamma quantas, probabilities (spectroscopic factors) of
transfer reactions, multipole moments and so forth
(Pfeifer, 1998).

The numbers of bosons are strictly conserved, the
number of protons and neutrons bosons are Nπ and Nν,

respectively. Therefore, the total number of bosons (Nρ)
in the system is equal to the sum of both Nπ and Nν

(Madhi, 1984). These bosons are combine to produce
boson  with  angular  momentum  L = 0  which  is  called
(s- bosons) or to produce boson with angular momentum
L = 2 which is called (d-bosons).

The basis  for this model is a first version of
Interacting Boson Model (IBM-1) which does not
distinguish between the wave functions for protons and
neutrons but deals with bosons on the basis of one type,
all of which are symmetrical while the second version
(IBM-2) makes distinction between the wave function for
proton and neutron bosons through introducing the
concept of degrees of freedom.

The models IBM-1 and IBM-2 are restricted to nuclei
with even numbers of protons and neutrons. So as to fix
the number of  bosons one takes into account that both
types of nucleons frame closed shells with particle
numbers 2, 8, 20, 28, 50, 82 and 126 (magic numbers).
Provided that the protons fill less than half of the furthest
shell the number of the corresponding active protons has
to be divided by two that obtain the boson number (Np)
attributed to protons. If more than half of the shell is
occupied the boson number reads (Np = (number of holes
for protons)/2). By treating the neutrons in an analogous
way, one obtains their number of bosons (Nn). In the
IBM-1, the boson number (N) is calculated by adding the
partial numbers, i.e., (N = Np+Nn). Electromagnetic
transitions do not change the boson number but transfers
of two identical nucleons lift or lower it by one (Pfeifer,
1998).
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MATERIALS AND METHODS

Interacting Boson Model (IBM): Arima and Iachello in
1974 suggested the nuclear model to describe the
collective nuclear structure for medium and heavy nuclei
called interacting boson approximation model (IBA or
IBM) (Abdul Hussein, 2009). This model used to study
the low lying collective states in even-even nuclei through
a combination of nucleons resulting from coupling two
fermion outside of the closed shell with angular
momentum  L = 0  and  is  called  s  boson  and  coupled
with  angular  momentum  L = 2  and  is  called  d  boson.
The Hamiltonian operator for the system consist of s and
d  bosons  describe  by  the  six  dimensions  in  Hilbert
space which is formed from one dimension for s boson
and five dimensions for d boson, (µ = 0, ±2), so is
described  by  group  theory  U(6)  (Shuaib,  2012).  The
first version of the Interacting Boson Model (IBM-1) is
considered  the  fundamental  basis  for  other  versions
and it does not distinguish between proton bosons and
neutron bosons and it considers all bosons are
symmetrical (Hussein, 2011). The Interacting Boson
Model (IBM), advanced by Arima and Iachello is a
nuclear pattern precedent for the characterization of
collective structures. It can fit out theoretical level
energies and transition ability while including
anharmonicities from residual interactions (Arima and
Iachello, 1987).

The  spectroscopy  of  medium  mass  and  heavy
even-even nuclei is characterized by the occurrence of
low-lying collective states. The study of the nuclear
collective motion is one of the most interesting topics in
nuclear physics. The basis for this was laid by Rainwater
(1950).

Hamiltonian of the IBM-1: The interaction of  s-bosons
and d-bosons in the IBM is used to explain the collective
properties of even-even nuclei (Hossain et al., 2015). In
IBM chara-cterizes a six-dimensional Hilbert space and is
given by linear combinations of the creation and
annihilation operators: s, s†, d and d†.

The allowed combinations are defined by the
conservation of the finite number of bosons, N (1/2 the
number of valence nucleons) as well as having up to only
2-body interactions. Therefore, terms must contain a
creation and Annihilation operator and terms involving
three or more operators are not allowed (Arima and
Iachello, 1987).

IBM Hamiltonians have been used to suitable the
experimental energy spectra and the electromagnetic
transition probabilities, Casten triangle can be used to
classify the experimental spectra which provides insight
in terms of limiting symmetries as well as indicating
phase transitions (Casten, 2006). One of the most general
forms of the IBM-1 Hamiltonian is given by Eq. 1
(Abrahams et al., 1981):
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where  and  are the creation and annihilation †s s   †d .d

operators for s and d bosons, respectively (Casten and
Warner,  1988).  Two  terms  of  one  body  interactions
(gs  and  gd)  and  seven  terms  of  two-body  interactions
[CL(L = 0, 2, 4), υL (L = 0,2), uL (L = 0, 2)] in this
Hamiltonian where the single-boson energies are (gs) and
(gd) and the two-boson interactions had been described by
(CL), (νL) and (uL), so on, it shows that for a fixed boson
number (N), only one of the one-body term and five of the
two body terms are independent. It can be seen by noting
(N = ns+nd). Yet, it is more common to write the
Hamiltonian of the IBM-1 as a multipole expansion, 
grouped into different boson-boson interactions Eq. 2
(Casten, 1990):
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The operators are defined by the following Eq. 3:
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where, χ is the quadrupole structure parameter and take
the  values  0   and  ±%7/2  (Casten  and  Warner,  1988;
Arima and Iachello, 1987).

g = gd-gs : The boson energy
: Operator gives the number of (d) bosons dn̂

: The pairing operator forthe s and d bosons P̂

: The angular momentum operator L̂
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: The quadrupole operator Q̂
: The octupole and hexadecapole operators,   3 4

ˆ ˆT and T
respectively

The operators have (Δnd = 0) while d 3 4
ˆ ˆ ˆn̂ , L, T and T

has (Δnd = 0, ±2) and  has (Δnd = 0, ±1, ±2). †ˆ ˆP P   Q Q

The  parameters  a0,  a1,  a2,  a3  and a4  designated  the
strength of the pairing, angular momentum, quadrupole,
octoupole and hexadecapole interaction between the
bosons.

The IBM Hamiltonian has exact solutions in three
dynamical  symmetry  limits  (U(5),  O(6)  and  SU(3))
which are geometrically similar to the an harmonic
vibrator, axial rotor and γ-unstable rotor, respectively.
More generally, the Hamiltonian can be expressed in
terms of an invariant operator of that chain of symmetries
and a shape phase transition between the dynamical
symmetry limits results (Iachello, 2001; Cejnar et al.,
2010).

Electromagnetic transitions: The construction of
operators for the various nuclear structure observables of
interest is again straightforward, given the fact that they
must be built from the basic elements (s, s†, d, d†). Only
the lowest-order contributions to these operators have
been included. Electromagnetic transition rates had been
characterized by IBM as well, besides agitation energy
spectra. One has to specify the transition operators in
conditions  of  the  boson  operators  in  order  to  do  so,
(Sethi et al., 1991). Another important attribute that can
be deduced and calculated by using the IBM-1 called the
reduced electric transition probability B(E2).

The general form of the electromagnetic transition
rates operators can be written as  following (Arima and
Iachello, 1987):

(4)       

0 0
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† † † †

m 2 L2 L 0 L mm m
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where,  L = 0, 1, 2, 3, 4, …,;  m  =  0, 1, 2, 3, 4,  … and 
αL,  βL,  γ0  represent  free  parameters,  furthermore,
equation gives transition operator for transition (E0, M1,
E2, M3, E4, …). Therefore, the electric quadrupole
transition operators can be written as (Arima and Iachello,
1987):
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† † †
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As for the magnetic dipole transition operator can be
defined  in  terms  of  nuclear  gyromagnetic  factor  (gβ)
units nuclear magneton (µN) and angular momentum
(Arima and Iachello, 1987):

(6)   M1 3
T g L
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Therefore, the magnetic dipole transition operator for
d-bosons is given in the following Eq. 7:

(7)    M1 1†
1 m

T d d    


From Eq. 6 and 7 the nuclear gyromagnetic factor
(gβ) can be defined as follow:

(8)1 4
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Generally, a nuclear geometric factor can be expressed by
magnetic momentum (µ):
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The general formula of the reduced transition
probability for electric and magnetic transitions B(EL),
B(ML) are known by the following expression (Kazem, 
2010):
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where,  is the matrix element of (E2) L

i f| I || T || I | 
transition.

RESULTS AND DISCUSSION

The interacting boson approximation version one
(IBM-1) has been utilized in the present work to study the
several properties of the nuclear structure for even-even
(Ba, Ce, Nd) (A = 144 for all) isotones by studying the
low-lying positive parity states, dynamic symmetries,
reduced electric transition probabilities B(E2), the electric
Quadrupole moment  values, ratios B(E2),  potential 

12
Q 

energy surface. These nuclei expand from SU(3) to U(5)
limits. The closed shell is adopted to be (50-82) in the
calculation of number of proton boson (Nπ) and neutron
boson (Nν) for every nucleus and the total number of
bosons Nare shown in Table 1.

Energy levels: The checking of the experimental energy
levels for the even nuclei  Ba, Ce, Nd shows that they are
belong to rotational limit SU(3), γ-unstable limit O(6) and 
its belong to vibrational limit U(5), then the Hamiltonian
of the rotational, γ-unstable and vibrational been
employed in the calculation by using the program PHINT.
The best fit for the Hamiltonian parameters Eq. 2 utilized
in the present work which gives best agreement between
the calculated energy levels in the present work and their
corresponding experimental data taken from Anonymous
(2015) as shown in Table 1.
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Table 1: The Hamiltonian parameters used in the IBM-code (PHINT)  for even-even isotones
A N EPS (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) CHI SO6 P P  L L  Q Q  

33T T  
4 4T T

144Ba 6 0.0000 0.1097 0.0148 -0.0422 0.0000 0.0000 -1.3228 1.0000
144Ce 6 0.1970 0.0010 0.0250 0.0000 0.0246 0.0000 -1.3228 1.0000
144Nd 6 0.6249 0.0000 0.0019 0.0000 0.0006 0.0071 0.0000 1.0000

Fig. 1: Comparison IBM-1 calculations with the experimental data for 144Ba isoton

Fig. 2: Comparison IBM-1 calculations with the experimental data for 144Ce isoton

A comparison between theoretical and experimental
energy levels taken from Anonymous (2015) are shown in
Fig. 1-3. In these figures, we observe that a very good
agreement between our calculation for the g-band in
comparison with the experimental data for all nuclei under
study and a reasonable agreements for the other bands.

The B(E2) branching ratios: The B(E2) branching ratios
(R, R' and R'') were calculated in the present work for 
even-even (Ba, Ce, Nd) and it is known as the ratio
between two reduced electric quadrupole transitions. The
significance of studying the branching ratios is to study

the shape of the nucleus and it’s dynamical symmetries
and    to    determine    which    dynamical    symmetries:
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Table 2: The comparison experimental and calculated branching ratios and the typical values for the three limits
B(E2) ratios 144Ba 144Ce 144Nd SU(5) limit SU(3) limit O(6) limit
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Fig. 3: Comparison IBM-1 calculations with the experimental data for 144Nd isoton

Fig. 4: Comparison between the experimental and
calculated B(E2) branching ratios for even-even
isotones with the typical values of SU(3) U(5) and
O(6) limits

Branching type: For

(14) R R R 2 N 1 / N 2, ..., SU(5)       
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   N 1 2N 510
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7 N 2N 3

 
   



(16)
   

   N 1 N+510
R R ' 1.4, R " 0, ..., O 6

7 N N+4


   

The calculated branching ratios and their equivalent
experimental values are presented in Table 2. The
comparison experimental and calculated branching ratios
and the typical values for the three limits are shown in
Fig. 4.

CONCLUSION

The general behavior of even-even 144Ba SU(3)- O(6).
The Hamiltonian parameter has a large descent. This
makes 144Ba more nearby to rotational limit. The structure
of beta and gamma bands is display up obviously and
fully reproduced.

The studied structure bands of nuclei 144Ce where in
the transitional region O(6)-U(5). The calculated state up
for L = 8 is higher than the experimental data. The level
interval in beta and gamma  is greater than that in the
ground band point a great moment of inertia for the beta
band.

The energy spectra and the spacing of these nuclei
were found to fit good with experimental data. From these
figures, we can see that very good reasonable agreement
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between the values of energy ground state (g-band) of
sequence and their experimental state best 1 1 10 , 2 , 4 , ...  

than other bands.
The isotopes 144Nd don’t have experimental B(E2)

values, so, calculate them by using equations and
compared them with theoretical calculations, it found a
good agreement.

The  ratios  of  the  reduced  transition  probabilities
R, R' and R'' have been found in agreement both
experimentally and theoretically also with in consistence
with their ideal corresponding limits.
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