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Approximation of Fractal Interpolation using Artificial Neural Network
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Abstract: A new fractal interpolation method called NNA (Neural Network Algorithm) based on IFS is
proposed to interpolate the self-affine signals with the expected interpolation error. Experiments on the
theoretical data and real field seismic data show that the proposed interpolation schemes can not only get the
expected point’s value but also get a great accuracy in reconstruction of the seismic profile, leading to a
significant improvement over other trace interpolation methods.
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INTRODUCTION

The approximation of natural complex shapes
constitutes an important research area for reconstruction
and representation of problems in several application
domains (medical imaging (Zair and Tosan, 1996),
multimedia  data  representation  (Zair  and  Tosan,
1997a, b), computer assisted design). In fractal theory, the
determination of an Iterated Function System (IFS) Model
for approximating natural data, is called “the inverse
problem” (Wang, 2000). The fractal image coding
techniques first introduced by Jacquin (1992) constitute
an efficient example for this approach. Fractal
approximation technique, although, it has the advantage
of describing self-similar objects, suffer from an
important drawback consisting in a lack of control on the
fractal figures to be described.

This is essentially due to the use of the contraction
affine operators defined in a reduced space, i.e., for
images. In contrast, free form approximation methods
allow to control the objects with high flexibility via. a set
of control points. But only smooth objects can be
reconstructed.

Guerin  et  al.  (2000)  used  the  concept  of  control
point for approximation fractal interpolation function.
Cocharan et al., introduced approximated method based
on a Hough transform of fractal function transformation
parameters. Cheng and Zhu, constituted a multiresolution
approximation on an alternative multiresolution
approximation to the wavelets and a theoretical basis for
the successful applications of the fractal transform
algorithm in signal/image compression. In this study,
approximation of fractal interpolation functions is
introduced by using artificial neural network.

Iterated function systems: Following Barnsley (1986)
and Gayatri (2006), under fractals, we mean compact
subsets of a complete metric space.

An Iterated Function System (IFS), Gayatri (2006) is
a structure (X, F) = {f1, f2, ..., fN}) consisting of
continuous function fi: X6X, i = 1, 2, ..., N, acting from a
complete metric space (X, d) with metric d, into the space
itself. In the case when functions fi are contractions, there
is a set  AfX, such that fi(A)fA, œi0{1, 2, ..., N} which
is called the attractor of the IFS.

The induced operator  acts on anotherN
i 1 iF f 

metric space H(X) of compact subsets of X, (H(X), h)
being complete with respect to the Hausdorff metric h,
F:H(X)6H(X). Associated with every IFS F is a unique
compact set AF, the attractor of IFS:

 F F FA H X : A F(A )  

The Hausdorff metric is defined as follows:

        s sh A, B max d A,B , d B, A , A, B H X 

Where:
    s x A y Bd A, B max min d x,y 

We are dealing here with hyperbolic IFSs with all fi

affine transforations. To build the fractal described by and
IFS F, we take an initial A00H(X) and define An+1 =
F(An), n = 0, 1, ..., 4.

The sequence converges to AF in the n n 0
A





Hausdorff metric. After the great enough number N of
iterations, we have FN(A0)–AF.

Definition (Barnsley 86): Let (M, d) be a metric space
and let F be the family of all closed subsets of M. For r>0
and A in F, let Vr(A) = {m: d(m, F)<r} and definite for
members A and B of F, d’ (A, B) = inf {r: AdVr(B) and
BdVr(A). Here, d' is the well-known Hausdorff metric.

Let M be a compact metric space and H be the set of
all nonempty closed subsets of M. Then, H is a compact
metric space with the Hausdörff metric.
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Let wn = M6M for n0{1, 2, ..., N} be continuous. {M, wn:
n = 1, 2, .., N} is called an Iterated Function System
(IFS). 

Consider wn(A) = wn(x), x0A. Define W:H6H by
W(A) = ^nwn(A) for A0H. Any set GdH such that W(G)
= G is called an attractor for the IFS. An IFS is called
hyperbolic if, for some s, 0#s<1 and n0{1, 2, ..., N},
d(wn(x), wn(y))#s.d(x, y)œx, y0M. In this case W is a
contraction mapping which obeys h(W(A), W(B))#s.h(A,
B), œA, B0H.

Also, W admits a unique attractor. Barnsley (1986)
explains how to find this unique attractor.

Iterated function systems describe fractal
interpolation functions: Let us give a set {xi, f(xi)| i = 0,
1, 2, ..., N} of data points and we have to find a
continuous function S:[x0, xN]6R which interpolates the
data, i.e., S(xi) = f(xi), i = 1, ..., N.

In contrast to the ordinary case where we look for a
smooth interpolation function, here, we are interested in
finding a fractal interpolation function S. In the special
case when an IFS F = {R2; f1, f2, ..., fN}  consists  of  the
so-called shear transformations (Zair and Tosan, 1997a,
b), F describes a fractal interpolation function F in the
sense that its attractor AF is the graph of the function F. A
shear transformation is an affine transformation of the
special form:

ii
i

i i i

ea 0x x
f

c dy y f

     
       

      

constrained by the data according to:

 
0 Ni 1 i

i i
0 i 1 N i

x xx x
f , f

f x f (x ) f (x ) f (x )




      
              

for i = 1, 2, ..., N. It maps lines parallel to the Y-axis into
lines parallel to the Y-axis. Parameter di serves as the
vertical scaling factor. Parameters {di|i = 1, 2, ..., N}
determine the fractal dimension of the attractor AF of the
IFS F.

Basic concepts of artificial neural network: Neural
networks are typically organized in layers. Layers are
made up of a number of interconnected ‘nodes’ which
contain an ‘activation function’. Patterns are presented to
the network via. the ‘input layer’ which communicates to
one or more ‘hidden layers’ where the actual processing
is done via. a system of weighted ‘connections’. The
hidden layers then link to an ‘output layer’ where the
answer is output as shown in Fig. 1.

Most ANNs contain some form of ‘learning rule’
which modifies the weights of the connections according
to the input patterns that it is presented with. In a sense,
ANNs learn by example as do their biological
counterparts (Bressloff and Stark, 1991).

Fig. 1: Neural network

Although, there are many different kinds of learning
rules used by neural networks, this demonstration is
concerned only with one; the delta rule. The delta rule is
often  utilized  by  the  most  common  class  of  ANNs
called ‘Backpropagational Neural Networks’ (BPNNs).
Backpropagation is an abbreviation for the backwards
propagation of error.

With the delta rule as with other types of
backpropagation, ‘learning’ is a supervised process that
occurs with each cycle or ‘epoch’ (i.e., each time the
network is presented with a new input pattern) through a
forward activation flow of outputs and the backwards
error propagation of weight adjustments. Once a neural
network is ‘trained’ to a satisfactory level it may be used
as an analytical tool on other data.

In comparison, ANNs are not sequential or
necessarily deterministic. Neural networks are universal
approximators and they work best if the system you are
using them to model has a high tolerance to error. 

Depending on the nature of the application and the
strength of the internal data patterns you can generally
expect a network to train quite well. This applies to
problems where the relationships may be quite dynamic
or non-linear. ANNs provide an analytical alternative to
conventional  techniques  which  are  often  limited  by
strict assumptions of normality, linearity, variable
independence, etc.

Iterated function systems describe neural networks:
The base element of a neural network model, a Formal
Neuron (Jacquin, 1992), computes y(x, w) = g(x. w) the
inner product of its input vector x = (x0, x1, ..., xn)

T and its
synaptic weight elector w = (w0, w1, ..., wn)T which then
goes through activation function   to yield neuron’s
output. The input x0 = 1 and the corresponding synaptic
weight w0 is called the threshold of the neuron. As
activation function g, either Heaviside (step) function or
a sigmoid function is commonly used (Fig. 2).

In mathematics, interpolation process is the
computation of values between the ones that are known or
tabulated using the surrounding points or values (Gayatri, 
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Fig. 2: Sigmoid function

Fig. 3: Snowflake

2006). According to Springer online reference works,
“Interpolation is a process of obtaining a sequence of
interpolation functions {fn(z)} for some indefinitely
growing number of interpolation conditions. The aim of
the interpolation process is to approximate by means of
interpolation functions {fn(z)} n of an initial function f(z)
about  which  there  is  incomplete  information  or  which
is  complicated  to  deal  with  directly.  Some  of  the
famous interpolation processes are Newton’s divided
difference interpolation, Aitken’s interpolation, Lagrange
interpolating polynomial, Bessel’s interpolating formula
and Gauss’s interpolating formula. Computing the
parameters of each transformations g1 and g2 if δ#a for
small real number a.

A neural network model (Bressloff and Stark, 1991)
is an interconnection of neurons. IFSs describe recurrent
models. To be more precise, they describe binary
recurrent asymmetric neural networks.

Koch snowflake is one of the earliest mathematical
fractal curves introduced by Helge von Koch in 1904
(Barnsley, 1986). The curve is constructed in this way
(Fig. 3):

MATERIALS AND METHODS

The proposed technique for approximation neural
curve use the artificial neural network can be introduce as
the flowing: for the two affine transformation:

11 1
1

1 1 1

22 2
2

2 2 2

ea bx x
f

c dy y f

ea bx x
f

c dy y f

       
        

       
       

        
       

Reading three points from the original curve denoted
by  p1, p2 and p3. For flexibility one can put p1 as the
original point. Letting g1(p1) = p1 and g2(p1) = p2, Then:

1 2 2

1 2 2

e e x0
,

f 0 f y

      
       
      

Taking g1(p3) = p2 and g2(p3) = p3, Then:

1 2 2

1 2 2

e e x0
,

f 0 f y

      
       
      

then:

3 3 321 1 2 2

1 1 2 23 2 3 3

x x xxa b a b
,

c d c dy y y y

         
          

         

Therefore:

1 3 1 3 2

1 3 1 3 2

2 3 2 3 2 3

2 3 2 3 2 3

a x b y x

c x d y y

a x b y x x

c x d y y y

 
 
  
  

Transforming the system into the artificial neural network
diagram, n = 2 and m = 4 (Fig. 4 and 5). Letting b1 = 0
and b2 = 0, then, n = 2, m = 2 and:

2 3 2
1 2

3 3

x x x
a , a

x x


 

And then, we have four unknown variables and two

equations. If we take  to be the original data and  N

i i i 1
x , y

  
i i

N' '

i 1
x , y



to be the approximation data, so the total error δ is given
by Fig. 6:
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Fig. 4: Neural network for fractal interpolation

Fig. 5: Neural network

Fig. 6: Fractal interpolation

CONCLUSION

In this study, we have presented a new artificial
neural  network  method  to  finding  the  parameters  of
fractal interpolation functions. For approximation fractal

interpolation functions in two dimension, an artificial
neural  network  technique  was  used  and  represented,
the results illustrate that the proposed interpolation
algorithm yields a more significant improvement in
precision than the methods in the previous literature.
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