Journal of Engineering and Applied Sciences 15 (6): 1451-1461, 2020

ISSN: 1816-949X
© Medwell Journals, 2020

Calibration of Industrial Robot Kinematics Based on Results of
Interpolating Error by Shape Function
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Abstract: The initial accuracy of a robot arm depends not only on the hardware’s manufacturing and assembly
quality but also on control strategies. During assembly or regular maintenance, the kinematic accuracy of a
robot arm needs to be verified and calibrated to maintain the desired quality. In this study, we present a method
to determine and correct the robot kinematic error based on the shape function interpolation technique.
Experimental research was applied to aABB robot with six degrees of freedom to verify the correctness of the
method. The results indicated that the position errors of the end-effector were significantly reduced. The
effectiveness of the proposed interpolation method and combined error compensation algorithm demonstrated

that practical application is feasible.

Key words: Calibration, error kinematics, interpolation, shape function, industrial robot, application

INTRODUCTION

Today, robotic arms play an important role in
industrial applications. The accuracy of these
manipulators should be maintained over time to ensure
product quality. As such, many studies have been
conducted to improve the calibration and maintain the
desired accuracy of robot grippers. These studies are
classified into two methods: model-based and modeless.
The classical model-based method for robot calibration
involves setting up a kinematic model for the robot,
measuring positions and orientations of the robot
end-effector, identifying its kinematic parameters and
compensating its pose errors by modifying its joint angles
(Mooring et al., 1991). The advantage of model-based
calibration is that a large workspace can be calibrated
accurately and all pose errors within the calibrated
workspace can be compensated by joint angles (Bai and
Wang, 2006). Therefore, a significant amount of research
has been performed in this direction. Several recently
published studies-such as that by Wang et al. (2012) used
genetic algorithms to build mathematically calibrated
equations to compensate the kinematic errors
cylindrical-coordinate-based manipulator with three
Degrees of Freedom (DOF). Ma et al. (2018) conducted
modelling and calibration of high-order joint-dependent
kinematic errors for industrial robots. The process was
performed using high-order Chebyshev polynomials to
represent individual error terms and a laser tracker system
to acquire the measured data. Laser tracker systems are
often used in studies of kinematic error calibration of

series and parallel robots (Abderrahim et al., 2006;
Kamali et al., 2016; Sun et al., 2016). Yu and Xi (2018)
presented a self-calibration method based on measuring
the centers of four spherical calibration targets located
around the inspecting system. Their global kinematic
model was developed based on a Modified
Denavit-Hartenberg (MDH) Model without separating the
hand-eye and robot exterior models. The MDH method
and Hayati convention were also used by Kong et al.
(2018) to calibrate the kinematics and enhance the
accuracy of a 3-PRRU parallel manipulator through the
effect of error of its universal joints. However, the
disadvantage of the model-based method is that an
understanding of modelling and identification processes
requires advanced knowledge of robot kinematics.

In the modeless method, kinematic modelling and
identification steps are not required. The disadvantage is
that the accuracy depends on the number of grid points.
However because of its simplicity and efficiency, the
modeless technique is widely applied in industrial fields.
Several researchers have conducted error calibration of
robotic arms through this interpolation technique.
Liuetal. (2018) proposed a trajectory planning technique
to minimise the synthetic error of the end-effectors of
industrial robots. Kinematic and dynamic models were
built using screw theory and Kane equations and
subsequently, the end-effector synthesis error was
modelled by considering the effect of interpolated
algorithms and the flexibility of all joints. The septic
polynomial was used to interpolate the via. points in joint
space and the PSO algorithm was applied to find the
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minimum synthesis error. In Bai and Wang (2016), used
an Interval Type-2 Fuzzy Error Interpolation method
(IT2FEI) to compensate the calibration accuracy of a
robot in a 3D workspace. Theirs was compared to other
nominal interpolation methods: type-1 fuzzy, trilinear and
cubic spline. Meanwhile, Borrmann and Wollnack (2014)
used a laser tracker to measure the position and
direction of the linear axis. B-spline interpolation was
used to model the external axis which allowed for
prediction of the linear axis pose. Bai and Wang (2006,
20033, b, 2004), Bai and Zhuang (2004, 2005), Bai et al.
(2008), presented a modeless technique in combination
with an online fuzzy interpolation method to calibrate
the accuracy of a serial and parallel (Stewart Platform)
robot.

MATERIALS AND METHODS

In this study, the researchers present a procedure for
determining errors according to the modeless method with
shape function interpolation techniques. Calibration is
then performed to minimise the kinematic errors of the
end-effector of a robot. The general process is described
in Fig. 1.

RESULTS AND DISCUSSION

The rest of this study is organized as follows: first,
the determination of a robot’s end-effector error is
presented as two primary steps: measure the errors at
certain poses in the survey space by an experimental
measuring system and from those sample poses, establish
the shape function interpolation to compute the errors of
the entire survey area. The second section, errors. In the
third section, the effectiveness of the proposed method is
verified on a ABB robot with six DOF (6DOF).The final
section outlines the conclusions.

Determining kinematic errors of robot end-effector
Basis of determining end-effector errors of robot at
sample poses in the workspace: To predict the errors of
the robot end-effector in the workspace, several sample
poses need to be measured experimentally to find the
actual errors. These errors are used as input to construct
interpolation functions for predicting the deviations of the
gripper at other poses in the survey space.

Manipulators always face objective obstacles such as
link parameter errors, clearances in the mechanism’s

connections, wear, thermal effects, flexibility of the links
and gear train, gear backlash, encoder resolution errors,
errors associated with relating the theoretical robot
coordinate frame to the world coordinate frame and
control errors (Hayati et al., 1988). Therefore, when
controlled to reach the desired pose P (P,, P,, P,), the tip
of the robot will reach the pose with the real
coordinate P’ (p,%d,, p,d,, p,+9,) in which at various
poses throughout the workspace and even at the same
pose, the errors (3,, o, o, are different. The
manufacturer’s published value for these errors is
statistically significant. The errors will increase with the
service time of the robot. In performing the study, we
used a robot with a software interface designed to be able
to read both the coordinates of pose P (P,, P,, P,) and the
corresponding generalized coordinates P (qy, ...., (,)-

In Fig. 2, the coordinate origin O, of the robot is
determined as the center of the top face of a cylindrical
cotter pin located in the robot body. When the cylindrical
pin is placed in the base of the manipulator, its center is
on the first axis of rotation. Therefore, in the kinematic
model, the robot arm is at coordinate origin O,,.

The purpose of setting this pin is to transfer the
virtual origin O, into a real one, thereby allowing the
camera see and determine its location. Subsequently, the
camera software determines the conversion of the
coordinate system to convert all observed data through
this origin point O, of the robot.

The two pins are set in a high-precision jig at a
distance of d from one another, as shown in Fig. 3. The
position and direction relations between them are
determined by the transfer matrix:

0, *Ag. = O 1

Where, O is the origin of the reference system
attached to the camera.

At this time, there are two independent observation
channels:

+ Coordinate P (P,, P,, P,) is the desired pose. It is
determined based on the encoders e, e,,..., €, as
shown in Fig. 3 and displayed on the interface of the
robot

* Real coordinate P’ (p3,, p+d, p,%5,) is that
determined independently by the camera and
transferred to an origin O, relation according to
Eq.1
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Fig. 1: Outline of the proposed method

Calibrating error

1452



J. Eng. Applied Sci., 15 (6): 1451-1461, 2020

T \YU
A

Fig. 2: Position of basic reference coordinate system on
cylindrical cotter pin and position of the pin in the

manipulator
83
€,

Z, \\\P

e
0, Yo ﬁ1 O,
A 72 77777777

"< >

Fig. 3: Camera and robot arranged on a specific jig to
identify the origin point O,

Comparing these two coordinates will produce the
absolute error of the robot end-effector in pose
P (3, 3y, 3,).

Error prediction with shape function: Data obtained by
direct measurement of the entire workspace have a high
time cost and are not suitable for industrial production
conditions. As such, we replaced the measured data
with interpolated data before error compensation.
Accordingly, the error calibration process was
accelerated.

In the workspace, a group of sample points are used
to form the survey space. These points are referred to as
nodes and are associated with other individual points.
Once the errors corresponding to each node have been
determined through direct measurement, errors at
arbitrary positions in the survey space can be interpolated
by introducing a suitable interpolation scheme. For this,
three-dimensional interpolation is implemented with
shape functions.

If there are n nodes, n shape functions will be
defined. With the determination of the end-effector
error of the robot consisting of six components

E

A

Fig. 4. Influence of sampling points on a survey point
through shape function

(three orientation and three position components), to
compute the coefficients of the shape functions, the
survey space is selected to include six nodes. In this case,
the researchers selected the survey space as a triangular
prism; i.e., six sampled points will form a six-node brick
element.

Suppose the error at survey pose P; consists of six
components as follows:

R TN T T
8P, = (3 8y 87, g Sgy 3p7) )

Consider the survey space as shown in Fig. 4. In this
field, the errors are measured at the vertices of the prism
with each vertex corresponding to the six components in
Eq. 2.

At pose P; in the triangular prism, the following
relationships are established:

0 A) (B) () ©
892 = NAaez + NBSGZ +..+ NFSGZ

X
component errors at pose P;.

Na Ng, Ng, Np, N and N are the stationary
coefficients of the shape functions that affect the error at
pose P; from the six corresponding nodes and are the

A A A A A A) (F F F F F F
o260 o9 00 .3 4D 7.4 50 1.

are the actual component error values for position and
direction (directly measured) of the six corresponding
A...F vertices.

From Eq. 3, the stationary coefficients of the shape
function can then be found by:

Where, S(i),sg,i),69),89@,869),699) are the six
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where in the right-hand side of the equation, the square
matrix is the measured error yalues of the vertices A, ...,
F and the matrix [55('),,,5((;) }is the measured error values

z
at the survey pose P, in the prism, [N, ... NF]Z) is the
stationary values of six shape functions impacting the
errors at pose P;.
After n survey poses, the result is a set of n

sets of stationary values of six shape functions, as
follows:

Na Na Na -

N Ne | N
Flw F ) F )
Thus, the regression law allows for the determination
of the experimental shape function at vertex k as

follows:

N O Ny S y2)
(k=A,B,C,D,E,F) ®

At this time, according to Eq. 3, it is possible to
calculate explicitly the error at pose P; having arbitrary
coordinates in the survey prism. Subsequently, the
interpolated errors at this pose are determined by the
shape functions. This procedure greatly reduces the
complexity and computational burden associated with
direct evaluation of the errors and as will be demonstrated
can result in remarkable prediction accuracy (Wang etal.,
2002).

Compensation of end-effector error based on results
interpolation: As kinematic error is the primary source of
inaccuracy in arobot end-effector Weill and Shani (1991)
Conrad et al. (2000), it must be sufficiently compensated.
The basis of the proposed error compensation method is
to control the robot to an alternate pose instead of the
desired pose.

The basis of the error compensation method herein is
to control the robot to an alternate pose instead of the
desired pose. This alternative point is proposed to
compensate for kinematic errors that appear when the
robot gripper is controlled straight to the desired
destination.

Let:
Pi (Xi’ yi , Zi y eg(l) , 93) y eg))
and

0] (i) ) 50 s @
0 ’

-t Xi18X ,yiiﬁy ,Ziiﬁz ,ex +3 X

00 250,00 55,0

Be the desired coordinate of the manipulator and the
actual coordinate recorded by interpolation using the
shape function, respectively for the same survey pose (Pi)
(Fig. 5). Thus, there exists a deviation of six components
between them:

R S B B B
8Py = (£8y, £ 8y, £87, % 8y + 8y, £ 3p7)

To reduce this error, we propose to replace posep;
when solving the inverse kinematic problem with pose P;,
which is determined from the desired coordinate and its
errors as follows:

P xi.it‘)g),_yi J_r_s(i),zi_iag),eg)1599), ™
H o s ® o0, 5 @
y =%y Yz =z

After resolving the inverse kinematic problem with
the destination as P; instead of P, the result will be
significantly improved accuracy (Table 1).

Ilustrative examples and experimental results:In this
section, an experimental survey is presented to verify the
proposed theories. The system consists of a 6DOF ABB
robot and Cognex 3D-A5005 area scan 3D camera. The
kinematic parameters of the robot are shown in Table 2.
The camera has an XY resolution of 44 pm, Z resolution
of 8 um and repeatability of 6 um. In this experiment, the
camera was calibrated with a Root Mean Square (RMS)
index of 0.005 mm (Fig. 6).

Table 1: D-H link parameter table

Joint i R T T, R

1 (o) d, a, 90°
2 (o) 0 a, 0

3 (o) 0 a, 90°
4 (o) d, 0 -90°
5 (0s) 0 0 90°
6 (o) ds+d 0 0

Table 2: Nominal link lengths (mm)
d, a, a, 3, d, d.+d,
335 75 270 90 295 80
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Fig. 6: Experimental diagram

Error interpolation by shape function: Assuming the
robot’s operational space in the experiment is a
rectangular prism (as shown in Fig. 7), construction of the
shape function is performed in each constituent triangular
prism-ABCDEF and AGCDHF to predict the end-effector
errors.

Interpolation of errors in prism 1-ABCDEF: The
survey space is a triangular prism with vertices of six
nodes: A, B, C, D, E and F. The experimental process was
conducted with 54 grid points in this space. Two data
points describing the pose at these points are
recorded independently: the nominal pose displayed
on the robot controller and the actual one

E

Fig. 7: Survey prism for predicting end-effector errors

recorded by the 3D camera. Thesevalues are then
compared to acquire the errors at point P;.

Table 3 shows the nominal and real position values
and errors. In the table, a5, a,, and a,, represent 3 values
about the orientation cos (X, Zzg), cos (Y, Zs) and
Cos (Xo, Ys) and ay,, a,, and ag, are the positions p,, p, and
p,, respectively.

The set of error values of the six nodes and 54 grid
points is used as input to construct the shape functions for
predicting the end-effector errors as described in section
2.2. The shape functions in the survey space are
determined by an experimental regression in Minitab
Software, as follows:

N, = -18.48+0.0675*X+0.0318*Y+0.0219*Z
+0.000005*X*X+0.000090*Y*Y+0.000049*Z2*Z
-0.000145*X*Y-0.000100*X*Z-0.000094*Y*Z

Ng = 10.08-0.0307*X-0.0123*Y-0.01576*Z+
0.000016*X*X-0.000091*Y*Y-0.000021*Z*Z
+0.000081*X*Y-0.000000*X*Z+0.000095*Y*Z

N¢ = 12.59-0.0404*X-0.0178*Y-0.02115*Z
-0.000025*X*X-0.000015*Y*Y-0.000017*Z*Z
+0.000083*X*Y+0.000099*X*Z-0.000002*Y*Z

Np = 13.64-0.0526*X-0.0258*Y-0.02876*Z
+0.000009*X*X-0.000053*Y*Y-0.000037*Z2*Z
+0.000101*X*Y+0.000101*X*Z+0.000097*Y*Z

Ng = -7.76+0.0332*X-0.0000*Y +0.02115*Z
-0.000030*X*X+0.000085*Y*Y+0.000011*Z*Z
-0.000065*X*Y-0.000000*X*Z-0.000096*Y*Z

N = -8.94+0.02182*X+0.02405*Y +0.02343*Z
+0.000024*X*X-0.000020*Y*Y+0.000014*Z*Z
-0.000050*X*Y-0.000100*Y*Z-0.000000*Y*Z
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Table 3: Nominal and real pose values at survey points
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Desired position

Measured pose

Measured pose errors

Point X Y Z a3 s a;, A, EM W dan, 0 Ay, 53, 5a;, Oay § Ay,

A 300 275 200 -0.001 0.000 -0.743 299.415 274955 200.357 -0.001 0.000 0.000 -0.585 -0.045 0.357
B 300 175 200 -0.001 0.000 -0.743 299.604 175.132 200.408 -0.001 0.000 0.000 -0.396 0.132 0.408
C 200 275 200 -0.001 -0.001 -0.743 199.602 274975 200.413 -0.001 -0.001 0.000 -0.398 -0.025 0.413
D 300 275 300 -0.001 0.000 -0.743 299.555 275.075 300.257 -0.001 0.000 0.001 -0.445 0.075 0.257
E 300 175 300 -0.001 0.000 -0.743 299.778 175223 300.356 -0.001 0.000 0.001 -0.222 0.223 0.356
F 200 275 300 -0.001 -0.001 -0.743 199.725 275130 300.368 -0.001 -0.001 0.001 -0.275 0.130 0.368
P1 240 255 210 -0.001 0.000 -0.743 239.592 255.026 210.398 -0.001 0.000 0.000 -0.408 0.026 0.398
P2 260 255 210 -0.001 0.000 -0.743 259.555 255.020 210.387 -0.001 0.000 0.000 -0.445 0.020 0.387
P3 280 255 210 -0.001 0.000 -0.743 279.514 255.015 210.374 -0.001 0.000 0.000 -0.486 0.015 0.374
P4 260 235 210 -0.001 0.000 -0.743 259.595 235.058 210.398 -0.001 0.000 0.000 -0.405 0.058 0.398
P5 280 235 210 -0.001 0.000 -0.743 279.554 235.053 210.385 -0.001 0.000 0.000 -0.446 0.053 0.385
P6 280 215 210 -0.001 0.000 -0.743 279.593 215.087 210.396 -0.001 0.000 0.000 -0.407 0.087 0.396
P7 240 255 220 -0.001 0.000 -0.743 239.608 255.042 220.392 -0.001 0.000 0.001 -0.392 0.042 0.392
P8 260 255 220 -0.001 0.000 -0.743 259.571 255.035 220.379 -0.001 0.000 0.000 -0.429 0.035 0.379
P9 280 255 220 -0.001 0.000 -0.743 279.531 255.029 220.365 -0.001 0.000 0.000 -0.469 0.029 0.365
P10 260 235 220 -0.001 0.000 -0.743 259.612 235.073 220.391 -0.001 0.000 0.001 -0.388 0.073 0.391
P11 280 235 220 -0.001 0.000 -0.743 279.571 235.067 220.377 -0.001 0.000 0.000 -0.429 0.067 0.377
P12 280 215 220 -0.001 0.000 -0.743 279.611 215.101 220.389 -0.001 0.000 0.001 -0.389 0.101 0.389
P13 240 255 230 -0.001 0.000 -0.743 239.624 255.057 230.385 -0.001 0.000 0.001 -0.376 0.057 0.385
P14 260 255 230 -0.001 0.000 -0.743 259.587 255.050 230.371 -0.001 0.000 0.001 -0.413 0.050 0.371
P15 280 255 230 -0.001 0.000 -0.743 279.547 255.043 230.356 -0.001 0.000 0.001 -0.453 0.043 0.356
P16 260 235 230 -0.001 0.000 -0.743 259.629 235.087 230.385 -0.001 0.000 0.001 -0.371 0.087 0.385
P17 280 235 230 -0.001 0.000 -0.743 279.588 235.080 230.370 -0.001 0.000 0.001 -0.412 0.080 0.370
P18 280 215 230 -0.001 0.000 -0.743 279.629 215.113 230.383 -0.001 0.000 0.001 -0.371 0.113 0.383
P19 240 255 240 -0.001 0.000 -0.743 239.639 255.072 240.380 -0.001 0.000 0.001 -0.361 0.072 0.380
P20 260 255 240 -0.001 0.000 -0.743 259.602 255.064 240.365 -0.001 0.000 0.001 -0.398 0.064 0.365
P21 280 255 240 -0.001 0.000 -0.743 279.562 255.056 240.348 -0.001 0.000 0.001 -0.438 0.056 0.348
P22 260 235 240 -0.001 0.000 -0.743 259.645 235.101 240.379 -0.001 0.000 0.001 -0.355 0.101 0.379
P23 280 235 240 -0.001 0.000 -0.743 279.604 235.092 240.363 -0.001 0.000 0.001 -0.396 0.092 0.363
P24 280 215 240 -0.001 0.000 -0.743 279.646 215.126 240.377 -0.001 0.000 0.001 -0.354 0.126 0.377
P25 240 255 250 -0.001 0.000 -0.743 239.653 255.086 250.375 -0.001 0.000 0.001 -0.347 0.086 0.375
P26 260 255 250 -0.001 0.000 -0.743 259.617 255.077 250.358 -0.001 0.000 0.001 -0.383 0.077 0.358
P27 280 255 250 -0.001 0.000 -0.743 279.577 255.068 250.340 -0.001 0.000 0.001 -0.423 0.068 0.340
P28 260 235 250 -0.001 0.000 -0.743 259.660 235.114 250.374 -0.001 0.000 0.001 -0.340 0.114 0.374
P29 280 235 250 -0.001 0.000 -0.743 279.620 235.105 250.356 -0.001 0.000 0.001 -0.380 0.105 0.356
P30 280 215 250 -0.001 0.000 -0.743 279.663 215.137 250.371 -0.001 0.000 0.001 -0.337 0.137 0.371
P31 240 255 260 -0.001 0.000 -0.743 239.667 255.100 260.370 -0.001 0.000 0.001 -0.333 0.100 0.370
P32 260 255 260 -0.001 0.000 -0.743 259.631 255.090 260.352 -0.001 0.000 0.001 -0.369 0.090 0.352
P33 280 255 260 -0.001 0.000 -0.743 279.591 255.080 260.333 -0.001 0.000 0.001 -0.409 0.080 0.333
P34 260 235 260 -0.001 0.000 -0.743 259.675 235.126 260.369 -0.001 0.000 0.001 -0.325 0.126 0.369
P35 280 235 260 -0.001 0.000 -0.743 279.635 235116 260.350 -0.001 0.000 0.001 -0.365 0.116 0.350
P36 280 215 260 -0.001 0.000 -0.743 279.678 215.148 260.366 -0.001 0.000 0.001 -0.322 0.148 0.366
P37 240 255 270 -0.001 0.000 -0.743 239.680 255.112 270.365 -0.001 0.000 0.001 -0.320 0.112 0.365
P38 260 255 270 -0.001 0.000 -0.743 259.644 255.102 270.346 -0.001 0.000 0.001 -0.356 0.102 0.346
P39 280 255 270 -0.001 0.000 -0.743 279.605 255.092 270.326 -0.001 0.000 0.001 -0.395 0.092 0.326
P40 260 235 270 -0.001 0.000 -0.743 259.689 235.137 270.364 -0.001 0.000 0.001 -0.311 0.137 0.364
P41 280 235 270 -0.001 0.000 -0.743 279.649 235.127 270.344 -0.001 0.000 0.001 -0.351 0.127 0.344
P42 280 215 270 -0.001 0.000 -0.743 279.693 215.158 270.361 -0.001 0.000 0.001 -0.307 0.158 0.361
P43 240 255 280 -0.001 0.000 -0.743 239.692 255.124 280.360 -0.001 0.000 0.001 -0.308 0.124 0.360
P44 260 255 280 -0.001 0.000 -0.743 259.657 255.113 280.340 -0.001 0.000 0.001 -0.343 0.113 0.340
P45 280 255 280 -0.001 0.000 -0.743 279.618 255.102 280.318 -0.001 0.000 0.001 -0.382 0.102 0.318
P46 260 235 280 -0.001 0.000 -0.743 259.703 235.148 280.360 -0.001 0.000 0.001 -0.297 0.148 0.360
P47 280 235 280 -0.001 0.000 -0.743 279.663 235.137 280.338 -0.001 0.000 0.001 -0.337 0.137 0.338
P48 280 215 280 -0.001 0.000 -0.743 279.708 215.168 280.356 -0.001 0.000 0.001 -0.292 0.168 0.356
P49 240 255 290 -0.001 0.000 -0.743 239.704 255.135 290.356 -0.001 0.000 0.001 -0.296 0.135 0.356
P50 260 255 290 -0.001 0.000 -0.743 259.669 255.124 290.334 -0.001 0.000 0.001 -0.331 0.124 0.334
P51 280 255 290 -0.001 0.000 -0.743 279.630 255.113 290.311 -0.001 0.000 0.001 -0.370 0.113 0.311
P52 260 235 290 -0.001 0.000 -0.743 259.715 235.158 290.355 -0.001 0.000 0.001 -0.285 0.158 0.355
P53 280 235 290 -0.001 0.000 -0.743 279.675 235.147 290.332 -0.001 0.000 0.001 -0.325 0.147 0.332
P54 280 215 290 -0.001 0.000 -0.743 279.721 215.177 290.351 -0.001 0.000 0.001 -0.279 0.177 0.351
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Where, N,, Ng, N¢, Np, Ne and N; are the shape
functions describing the error influence from nodes A, B,
C, D, E and F, respectively on point Pi with coordinates
X, Y, 2).

Interpolation of errorsin prism 2-AGCDHF: The same
process is followed for the second prism to produce the
following regression:

N, = 118.1+0.649*X+0.285*Y-1.873*Z
-0.001090*X*X-0.000363*Y*Y+0.003799*Z*Z
-0.000605*X*Y+0.000004*X*Z-0.000010*Y*Z

Ng =-67.8-0.401*X-0.172*Y+1.1179*Z
+0.000692*X*X+0.000165*Y*Y-0.002284*Z*Z
+0.000392*X*Y-0.000044*X*Z+0.000067*Y*Z

N¢ =-55.1-0.311*X-0.144*Y+0.8996*Z
+0.000492*X*X+0.000223*Y*Y-0.001836*Z2*Z
+0.000294*X*Y+0.000047*X*Z-0.000048*Y*Z

Np =-111.7-0.646*X-0.280*Y+1.830*Z
+0.001055*X*X+0.000317*Y*Y-0.003708*Z*Z
+0.000636*X*Y-0.000007*X*Z+0.000007*Y*Z

N, = 67.6+0.434*X+0.167*Y-1.1496*Z
-0.000725*X*X-0.000139*Y*Y+0.002350*Z*Z
-0.000428*X*Y+0.000042*X*Z-0.000069*Y*Z

Ng = 49.4+0.2696*X+0.1407*Y-0.8120*Z
-0.000417*X*X-0.000204*Y*Y+0.001653*Z*Z
-0.000280*X*Y-0.000043*X*Z+0.000053*Y*Z

This result is used to predict the end-effector error at
any position in the survey space. Because the
interpolation is based on directly measured errors, it

Table 4: Verifying end-effector errors at certain poses

includes all component error sources. Hence, the
interpolated error values are implicitly the synthesis
errors.

Verification survey: To verify whether the shape
function has been met, we compared the errors at
10 random points in the survey space. Errors were taken
from two separate sources: those directly measured and
those predicted from shape functions. The deviations are
shown in Table 4.

The graph in Fig. 8 shows the correlation between the
position deviation of the end-effector measured
experimentally and that determined by the shape function
in the X, Y and Z directions. In the graphs, the red line
represents the error measured experimentally and the blue
represents the error interpolated from the shape function.

The charts show that the robot end-effector error
interpolated from the shape function has a deviation from
the experimental measurement in the range from
0-0.035 mm. Thus, the interpolation result can be used to
replace the direct measurement results. This saves
considerable time and cost for designing, calibrating and
determining robot error.

Compensation of end-effector error based on
interpolation results: Using the compensatory solutions
proposed in section 3, the research team conducted a
survey at 15 random poses in the prism. The calculation
position for compensation was taken from a comparison
between two values: the position after being predicted by
the shape function and the nominal one. The inverse
kinematic problem is then solved to acquire the set of
joint variables for the actual control process. Data
collected with the ABB robot before and after
compensation is summarized in Table 5.

Nominal coordinates

End-effector errors from direct measurements

End-effector errors from interpolating shape function

Pose X Y Z da, da, da, 44y,

0a,, 0 8y da, da, da, 6ay, 0a,, 0 8y

P55 250 255 215 -0.001 0.000 0.000 -0.418
P56 260 255 215 -0.001 0.000 0.000 -0.437
P57 280 245 218 -0.001 0.000 0.000 -0.452
P58 260 235 218 -0.001 0.000 0.001 -0.392
P59 280 235 223 -0.001 0.000 0.001 -0.424
P60 270 215 223 -0.001 0.000 0.001 -0.362
P61 240 255 234 -0.001 0.000 0.001 -0.370
P62 260 253 234 -0.001 0.000 0.001 -0.403
P63 272 255 246 -0.001 0.000 0.001 -0.413
P64 260 240 246 -0.001 0.000 0.001 -0.357
P65 280 235 248 -0.001 0.000 0.001 -0.383
P66 282 215 248 -0.001 0.000 0.001 -0.345
P67 240 249 252 -0.001 0.000 0.001 -0.331
P68 265 255 252 -0.001 0.000 0.001 -0.390
P69 280 240 265 -0.001 0.000 0.001 -0.369
P70 270 235 265 -0.001 0.000 0.001 -0.337
P71 280 235 277 -0.001 0.000 0.001 -0.341
P72 274 215 277 -0.001 0.000 0.001
P73 240 245 288 -0.001 0.000 0.001 -0.275
P74 257 253 288 -0.001 0.000 0.001 -0.323

0.031 0.389 -0.001 0.000 0.000 -0.399 0.023 0.357
0.028 0.383 -0.001 0.000 0.000 -0.416 0.021 0.349
0.046 0.373 -0.001 0.000 0.000 -0.429 0.039 0.338
0.070 0.393 -0.001 0.000 0.000 -0.371 0.065 0.363
0.071 0.375 -0.001 0.000 0.000 -0.402 0.066 0.343
0.108 0.394 -0.001 0.000 0.000 -0.342 0.106 0.366
0.063 0.383 -0.001 0.000 0.000 -0.354 0.056 0.354
0.059 0370 -0.001 0.000 0.000 -0.384 0.053 0.339
0.067 0.350 -0.001 0.000 0.000 -0.393 0.061 0.318
0.100 0372 -0.001 0.000 0.001 -0.340 0.095 0.344
0.102 0.358 -0.001 0.000 0.000 -0.364 0.099 0.327
0.134 0370 -0.001 0.000 0.001 -0.327 0.133 0.342
0.100 0379 -0.001 0.000 0.001 -0.318 0.094 0.352
0.077 0.352 -0.001 0.000 0.001 -0.373 0.072 0.321
0.113 0.343 -0.001 0.000 0.001 -0.352 0.110 0.312
0.126 0.357 -0.001 0.000 0.001 -0.322 0.124 0.328
0.134 0.340 -0.001 0.000 0001 -0.326 0.132 0.311
0.168 0.364 -0.001 0.000 0.001 -0.271 0.169 0.338
0.151 0.368 -0.001 0.000 0.001 -0.267 0.147 0.343
0.127 0.340 -0.001 0.000 0001 -0.313 0.123 0.314
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Fig. 8(a-c): Position errors of the end-effector measured experimentally and determined by the shape function in the

X, Y and Z directions
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Fig. 9: Comparison of end-effector errors before (red)
and after (blue) calibration

The graph in Fig. 9 shows the position error values of
the robotin the workspace before and after compensation.
In the figure, the red line represents the errors without
calibration andthe blue represents those with calibration.

With the calibration of the joint variable, the
end-effector position accuracy was significantly improved
(the average error decreased from 0.936-0.302 mm). This
demonstrates the correctness and efficiency of the
proposed method.

CONCLUSION

To calibrate the kinematics of robots after regular or
extended periods of service, we proposed a method
consisting of three steps: measurement of errors at sample
poses, interpolation of errors in the survey space and
compensation of errors. Interpolation of shape functions
reduced the time requirement while the accuracy through
tests was found to be within permitted limits. The
proposed error compensation method was proven
reasonable when the results after calibration showed a
clear improvement in accuracy. This strategy can be
applied practically in workshop conditions because it does
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not affect the robot, nor require a significant amount of
time to implement. The method can also be applied to
many different types of robots, regardless of the number
of DOF or type of workspace.
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