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EEG Signal Processing Model for Eye Blink Detection
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Abstract: Electroencephalography devices such as the OpenBCI Cyton Biosensing board create a noninvasive
and inexpensive way of acquiring signals generated by the brain. These signals are influenced by different types
of brain stimuli such as eye blinks but they are also includes a large amount of noise, e.g., generated by the
board. However, the noise can be removed with the help of proven filters. In this aspect, the intention of this
work is to demonstrate how using different type of filters, it is possible to clean the noise from the brain signals
acquired using an encephalography devices (such as Cytonbiosensing board) which are generated when a user
blinks his/her eyes and classify them in different type of blinks. We have chosen the study of eye blink brain
signals, since, they present a wide range of real-life applications. Our model includes a simple algorithm that
classifies user-generated eye blinks into short intended blinks and long composed blinks. Experimental results
of the proposed model show an accuracy of 96% which enables the development of real-life applications that
do not require real-time control such as IoT devices.

Key words: OpenBCI, eye blink detection, digital signal processing, electroencephalography, EEG, feature
extraction, eyelids, signal analysis

INTRODUCTION

Noninvasive Electroencephalography (EEG) devices
such as the Muse Headband, Emotiv Epoc, NeuroSky
TGAT1/TGAM1  and  Cyton  Biosensing  board
(OpenBCI V3) acquire electrical signals generated by the
brain while the user is performing any type of actions
such as blinking, meditating or even staring at a lights
with different frequencies. However, those signals are raw
data that include a considerable amount of noise produced
by the amplifier of EEG devices or external factors. In
this sense, in order to use the signals gathered by the EEG
device in real-life applications, the use of different filters
is needed to clean the data.

In this situation, this research looks for applying
different filters models, i.e., high-pass, band-pass and
band-stop   filters   to   clean   the   signals   gathered   by
the OpenBCI V3 when the user make voluntary blinks
and classifying those signals into two different groups,
i.e., short intended blinks and long composed blinks.

We have chosen the study of eye blink brain signals,
since, they can be used in different real life applications.
For example, Dhanush et al. (2018) have determined a
person’s  response  credibility  based  in  eye-blinking
count (Jamil et al., 2016) has proposed an automobile
accident prevention  using  eye  blinking  detection, 
additionally (Rani and Mansor, 2009; Sourab et al., 2014;
Zavala et al., 2018) have proposed home automation

solutions using Internet of Thing (IoT) devices controlled 
by eye blinks and Hori et al. (2004) have proposed
communicating devices for disabled individuals
controlled by voluntary eye blinking.

Background: The offset produced by the DC amplifier is
also known as Slow Cortical Potentials (SCP) an it is
described by Birbaumer (1999). SCPs are positive or
negative changes in an EEG that can last from 300 msec
to some seconds. Negative changes are a threshold
regulation mechanism for local excitatory mobilization
while positive changes show inhibition of cortical
networks. This compensation generates Event-Related
Potentials (ERP) that include Contingent Negative
Variation CNV), Motion-Related Potentials (MRP), P300
and N400 Stern et al. (2001). The SCPs takes importance
in this research, since, the oscillations in cortical networks
are affected by events that disturb vision in specific
frequency ranges (Freeman and van Dijk, 1987).

Since, Brain-Computer Interfaces (BCI) work with
signals emitted by the brain, it’s critical to not only
acquire these signals (e.g., through nodes to read
neuroelectric signals like EEG) but improve the quality of
them by reducing noise and artifacts (Nam et al., 2018).
This improvement can be achieved by processing the
signal using a series of filters. In this situation, the signal
processing in BCI has become a very important field in
BCI  researches  and  it  has  resulted  in  the 
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development of different types of tools. For example,
SciPy is a Python-based open-source software for
mathematics,   science   and   engineering   which   has
signal  processing  libraries  with  useful  filtering
functions.

Digital Signal Processing (DSP) refers to the  process
of analyzing and modifying a signal to optimize or
improve its efficiency or performance (Meddins, 2000).
Generally, a DSP system has an analog-to-digital
converter (previously described), a digital processor that
modifies the digital values from the previous module
according to the required processing (e.g., amplification,
rectification, filtering) and a digital-to-analog converter
that output the reconstituted analog signal.

Filtering is one the main applications of DSP in the
BCI   research   field.   A   filter   can   be   classified  into
4 types: high-pass, low-pass, band-stop or band-pass. The
high-pass  filter  is  a filter designed by starting with a
low-pass filter and then converting it into the desired
response (Christiano and Fitzgerald, 2003). It is
commonly used  to  remove  low-frequency  offsets  from 
a signal. A band-stop filter is a spectral filter that
attenuates or rejects frequencies between two cut-off
frequencies. A band-pass filter allows the transition of a
certain range of frequencies of a signal, filtering low and
high frequencies at the same time and attenuating the rest.
In simpler terms, it’s the application of a high-pass and a
low-pass filter (Christiano and Fitzgerald, 2003). And all
those digital filters can be implemented as an Infinite
Impulse Response (IIR) or a Finite Impulse Response
(FIR) system (Meddins, 2000). The main difference is
that FIR filters just apply the mathematical definition of
the filter with all the input values while IIR filters use
previous outputs as feedback for the system too. This
small difference makes IIR have a recursive behavior, so,
a simple impulse can emit values  infinitely, making it
faster, computational simpler but unstable.

All the digital filters mentioned above are
implemented in SciPy through the Butterworth digital
filter which needs the order of the filter and the values of
the cut-off frequencies. In order to be implemented with
SciPy, the cut-off frequencies must be relative to the
Nyquist frequency which is achieved through the
following formula:

cutoff _ Hz
Wn

nyq _ fs _ Hz


Where:
Wn : The digital cutoff frequency
cutoff_Hz : The cut-off frequency
nyq_fs_Hz : The Nyquist frequency which is half the

sampling frequency

MATERIALS AND METHODS

Implementation: The purpose of this research to present
a way to detect user-generated blinks using the Cyton
Biosensing board (OpenBCI V3). This board is composed
of several important    pieces    that    together    make   
possible access  to  human  brain  waves.  One  of  those
components is the Texas Instruments ADS1299 24-bit
electroencephalography  which has an eight-channel
delta-sigma analog-to-digital converter (ADS1299, 2017).
This chip is used in the OpenBCI V3 to acquire and
digitize biopotential signals OpenBCI-Open Source
Biosensing Tools (Anonymous, 2019) and has other
capabilities  such  as  the  generation  of  internal  signals
for testing and calibration and lead-off detection for
ensuring that the electrodes are in contact with the
subject.

The ADS1299 chip has a built-in amplifier used to
increase   signals.   In   other   words,   this   chip   is   a
Direct-Coupled amplifier (DC Amplifier). In this type of
amplifier, the output of the first stage is connected
directly as the input of the next stage without any
coupling device (Kumar and Jain, 2007) allowing the
amplification of signals with very low frequency.
However, it presents a significant offset that can be
positive or negative over time. This situation can cause
problems in the process of analyzing the acquired signals
and the problem includes the process of detecting
eyeblinks. Luckily the use of proven filters can help clean
the  signals.  A  high  pass  filter  can  help  remove  the
offsets caused by the DC amplifier while band-pass and
band-stop or band-rejection filters are usually used to
remove noises and power-line data from gathered signals
(Nam et al., 2018). The order in which these filters are
applied does not matter.

Taking this into account, we have proposed the model
shown in Fig. 1 to detect user generated blinks which will
be classified later into short intended blinks and long
composed blinks. We have chosen these two types  of 
blinking  taking  into  consideration  that  the EEG device
will be worn by the user constantly and the system must
not consider the involuntary blinks performed by the user
in his/her normal activities.

The raw signals for the experiments of the proposed
model were acquired using the Cyton Biosensing board
(OpenBCI V3) with one active reusable flat snap
electrode (TDE-202) located on the surface of the scalp
(FP1 or FP2), according to the extended 10-20 system
indicated by Klem et al. (1999) and the sampling
frequency was set to 250 Hz considering that the ADS
1299 presents a small offset over time (we have removed
this using a high-pass filter at 0.5 Hz). In order to remove
the highest noise inside the signals, two band-stop filters 
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Fig. 1: Complete diagram of the system

Fig. 2(a-d): Signal transition between each filter

where  used.  The  first  stop-band frequencies were set at
57-63 Hz and the second one was set at 117-123 Hz.
Then, a band-pass filter was used between 1 and 25 Hz to

generate a more accurate signal and remove unwanted
noise and artifacts. Figure 2 shows how the signal
changes after each filter.
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Fig. 3: Short intended blink

Fig. 4: Long composed blink

Once the signals are processed using the
aforementioned filters, they enter to the proposed Blink
Detection Algorithm (BDA). In this algorithm, the signals
are classified into short intended blinks and long
composed blinks. A short-intended blink is detected when
the signal drops below -125±15 uV, then rises above
125±15  uV  and  then  goes  in  a  state  of  normality
(between  -45  and  45  uV)  in  a  window  of   2.5  sec
(as shown in Fig. 3). A long composed blink is detected
when the user closes their eyes for 2±0.3 sec, opens them
and then blinks quickly again; all of these steps are
executedina time frame of  2.5 sec. When this happens,
the  signals  drops  below  -125±15  uV,  rises  above
125±15 uV, enters a state of normality, then rises above
125±15 uV and then drops below -125±15 uV again;
similar to short intended blinks, all the steps are done in
a window of 2.5 sec (Fig. 4).

RESULTS AND DISCUSSION

Experimentation: To verify the effectivity of blink
detection, seventeen 21-24 years old healthy participants
performed two tasks. First, each experiment subject
performed a total of 40 short intended blinks and then,
they performed 40 long composed blinks. In total, data of
1360 blinks were acquired. After the treatment of the raw
data, among the 1360 blinks, only 35 short blinks and 49
long composed blinks were misclassified. This tells us
that the model showed a 97.426% success rate in
classifying short intended blinks and 96.397% in
classifying long composed blinks.

CONCLUSION

Through the performed research and experimentation,
it was possible to detect two different types of blinks
(short intended  blinks and long composed blinks) made
by a person. With a   performance of 97.426 and 96.397%
 for classifying short intended blinks and long composed
blinks, respectively. We believe that these values are
acceptable  considering  that  the  process  is  done  in
real-time. Each of the filters maintains its own relevance
when processing the data, this implies that if a filter is
deleted, the desired results will not be obtained. One
limitation  of  the  present  model  is  that  the  user  has 
a 2.5 sec window to complete the short intended blinks
and long composed blinks which means that they must
wait 2.5 sec between each blink. However, applications
that do not require high-speed control could be developed
using the proposed eye blink detection model (e.g., the
control of IoT devices such as televisions or light bulbs).
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