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Vibration Analysis of Elastically Supported Plates using
Differential Quadrature Techniques
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Abstract: Different schemes are examined for vibration analysis of elastically supported composite plate
problems. Formulation of the problem is based on a first order transverse shear theory. Investigations are made
over Winkler-Pasternak foundation model. Examined schemes are based on polynomial sinc discrete singular
convolution differential quadrature methods. Numerical analysis is implemented to explore influence of
different computational characteristics on convergence and accuracy of the obtained results. Further, a
parametric study is introduced to investigate the influence of elastic and geometric characteristics of the
vibrated plate on results.
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INTRODUCTION

Elastically supported plates have found significant
applications in several engineering fields such as building
infrastructures, tanks or silos foundations and aerospace
engineering. Vibration analysis for like plates is very
important for design, maintenance and structural health
monitoring purposes. Due to its wide range of
applications, there exists a lot of researches concerning
with the research topic. The first studies were based on
classical plate theory while the modern was based on
transverse shear theories. These studies ranged from
analytical to numerical treatments. Due to the difficulty of
the problem, only few cases can be solved analytically
(Akhavan  et  al.,  2009;  Wen,  2008;  Kai  et  al.,  2014;
Li et al., 2009). So, approximate techniques such as Ritz
method, finite difference, finite element, point collocation,
boundary element and spectral element methods have
been widely applied for such problems (Karasin et al.,
2016; Bahmyari and Khedmati, 2017; Chakraverty and
Pradhan, 2014; Moradi-dastjerdi et al., 2017; Tan and
Zhang, 2013; Gupta et al., 2016; Karasin, 2016). The
main disadvantage of these methods is their need for large
number of grid points as well as a large computer capacity
to attain a considerable  accuracy  (Karasin  et  al.,  2016; 
Bahmyari  and Khedmati, 2017; Chakraverty and
Pradhan, 2014; Moradi-dastjerdi et al., 2017; Tan and
Zhang, 2013; Gupta et al., 2016; Karasin, 2016). Further,
computational ill-conditioning will be expected for such
eigen-value problems.

Differential Quadrature Method (DQM) is an
alternative technique for the numerical solution of

differential and integral equations. Like some other
approximate methods, DQM discretizes the spatial
derivatives and therefore, reduces the governing equations
into a standard eigenvalue problem. According to the
selection of basis functions and influence domain for each
point, there are more than versions of DQM. Polynomial
based  Differential  Quadrature  Method  (PDQM)
(Dehghan and Baradaran, 2011; Hsu, 2006; Wang and
Wu, 2013), Sinc Differential Quadrature Method (SDQM)
(Korkmaz and Dag, 2011; Secer, 2013; Trif, 2002) and
Discrete Singular Convolution Differential Quadrature 
Method  (DSCDQM)  (Ng  et  al.,  2004; Civalek and
Kiracioglu, 2007; Civalek and Gurses, 2009; Civalek and
Oeztuerk, 2008) are the most reliable versions.

The present work examines different schemes 
(PDQM, SDQM and DSCDQM) to solve vibration
problems of composite plates. The plates are rested on
linear elastic foundation of Winkler-Pasternak Model. The
governing equations are formulated according to a first
order transverse shear theory. The unknown field
quantities and their derivatives are approximated using
DQ approximations. The reduced eigen-value problem is
solved using MATLAB. The angular frequencies and
mode shapes are obtained and compared with the existing
previous results. Numerical analysis is implemented to
investigate convergence and efficiency of each scheme.
Further a parametric study is introduced to investigate the
influence of elastic and geometric characteristics of the
vibrated plate on results.

Formulation of the problem: Consider a composite
consisting of n plates interfacialy bonded and resting on
linear  elastic  foundation  of  Winkler-Pasternak  type  as
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Fig. 1: Composite plate resting on Winkler-Pasternak foundation

shown in Fig. 1. Each plate occupies (0#x#a, bi-1#y#bi,
0#z#hi, i = 1, n) where hi is the thickness of ith plate. b
and a are width and length of the composite. Based on a
first-order shear deformation theory, the equations of
motion for each plate can be written as (Panc, 1975):
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Where:
Mxx, Myy and : The bending and twisting moment
Mxy  resultants
Qx and Qy : The shearing force resultants
IO and I1 : Mass moment of inertias (Reddy, 1997):
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Where:
ρ : The plate mass density
K1 and K2 : Normal and shear modulus of foundation

reaction
t : Time

The transverse deflection w(x, y, t) and the normal
strain rotations Φx(x, y, t), Φy(x, y, t) are related to the
moment and shear resultants through the following
constitutive relations (Reddy, 1999):
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Where D = E hi
3/[12(1-v2)] is the flexural rigidity of

the plate. G, E and v are shear modulus, Young’s modulus
and Poisson’s ratio of the plate. k is the shear correction
factor (Liew et al., 2002, 2003) which is to be taken 5/6.
Assuming harmonic behavior of the problem, the field
quantities can be written as:

(7)j t j t j t
x x y y(x, y, t) e , (x,y, t) e , w(x,y, t) We        

where, ω is the natural frequency of the plate and j -1
nx, ny, W are the amplitudes for Φx, Φy and w,
respectively. Substituting from Eq. 5-7 into (Eq. 1-4), one
can reduce the problem to:
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According to the supporting type, the boundary
conditions can be expressed as follows: simply supporting
of the first kind: SS1:

(11)nn nsW 0, M 0, M 0  

Simply Supporting of the second kind: SS2:

(12)nnsW 0, 0, M 0   

Clamped edge:

(13)s nW 0, 0, 0      

Free edge:

(14)nn nsnQ 0, M 0, M 0  
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Where:
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nx and ny are the directional cosines at a point on the
boundary edge.  denote thexx yy yxy xM , M , M , Q  andQ

amplitudes of normal bending moments, twisting moment
and shearing forces on the plate edge. Along the interface
between ith plate and (i+1)th one, the continuity boundary
conditions can be described as:
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Solution of the problem: Three different differential
quadrature techniques are applied to reduce the governing
equations into an eigenvalue problem as follows
(Dehghan and Baradaran, 2011; Hsu, 2006; Wang and
Wu, 2013; Korkmaz and Dag, 2011; Secer, 2013; Trif,
2002; Ng et al., 2004; Civalek and Kiracioglu, 2007;
Civalek and Gurses, 2009; Civalek and Oeztuerk, 2008):

Polynomial based Differential Quadrature Method
(PDQM): In this technique, Lagrange interpolation
polynomial is employed as a shape function such that the
unknown u and its derivatives can be approximated as a
weighted linear sum of nodal values, ui, (i = 1, N) as
follows  (Dehghan  and  Baradaran,  2011;  Hsu,  2006;
Wang and Wu, 2013):
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Where:
u : Terms to nx, ny and W
N : The number of grid points

The weighting coefficients  be determined byx xx
ij ijC ,C

differentiating (Eq. 16) as (Dehghan and Baradaran, 2011;
Hsu, 2006; Wang and Wu, 2013):
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Similarly, one can approximate higher order
derivatives.

Sinc Differential Quadrature Method (SDQM): In this
technique, sine cardinal function is employed as a shape
function such that the unknown u and its derivatives can
be approximated as a weighted linear sum of nodal
values, ui , (i = -N, N), as follows (Korkmaz and Dag,
2011; Secer, 2013; Trif, 2002):
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where, hx is the step size.  Derivatives of u can be
approximated as a weighted linear sum of ui (I = -N, N)
such as (Korkmaz and Dag, 2011; Secer, 2013; Trif,
2002):
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Discrete Singular Convolution Differential
Quadrature Method (DSCDQM): In this technique,
Regularized Shannon Kernel (RSK) may be used as a
shape function such that the unknown u(x) and its
derivatives can be approximated over a narrow bandwidth
(x-xM, x+xM) as (Ng et al., 2004; Civalek and Kiracioglu,
2007; Civalek and Gurses, 2009; Civalek and  Oeztuerk,
2008):
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Where:
hx : The step size
2M+1: The effective computational band width
σ : Regularization parameter, σ = r hx

r : A computational  parameter

Derivatives of u can be approximated as a weighted
linear  sum  of  ui(i  =  -N,  N)  as  (Ng  et  al.,  2004;
Civalek and Kiracioglu, 2007; Civalek and Gurses, 2009;
Civalek and Oeztuerk, 2008):
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As well as Delta Lagrange Kernel (DLK) can be
applied as a shape function such that the unknown u(x)
and its derivatives can be approximated as (Ng et al.,
2004; Civalek and Kiracioglu, 2007; Civalek and Gurses,
2009; Civalek and  Oeztuerk, 2008):
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Derivatives of u can be approximated as a weighted
linear  sum  of  ui(i  =  -N,  N)  as  (Ng  et  al.,  2004;
Civalek and Kiracioglu, 2007; Civalek and Gurses, 2009;
Civalek and Oeztuerk, 2008):
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Similarly, one can approximate uy, uyy and calculated 
.  On   suitable  substitution  from Eq.  16-30  intoy yy

ij ijC , C
(Eq. 8-10), the problem can be reduced to the following
eigenvalue problem: 
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The boundary conditions (Eq. 11-14) can also be
approximated using DQMs as: simply supporting of the
first kind: SS1:
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Simply supporting of the second kind: SS2:
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Clamped edge:
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Free edge:
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RESULTS AND DISCUSSION

Numerical results: This section presents numerical
results that demonstrate convergence and efficiency of
each one of the proposed schemes for vibration analysis
of elastically supported composite plate. For all results,
the boundary conditions (Eq. 34-37) are augmented in the
governing (Eq. 31-33). The computational characteristics
of each scheme are adapted to reach accurate results with
error  of   order   #10G8.   The   obtained   frequencies   are

normalized such as:  where Ω0 is the0( I)   
fundamental frequency of isotropic squared plate. For
PDQM the problem is solved over a non-uniform grids
with Gauss-Chebyshev-Lobatto discretizations such as
(Dehghan and Baradaran, 2011; Hsu, 2006; Wang and
Wu, 2013):

(38)i

1 i-1
x 1-cos( ) , (i 1,N)

2 N-1
     

Where the dimensions of the grid (N*N) ranges from
7*7-25*25. The obtained results agreed with previous
analytical ones (Lam et al., 2000; Yang and Shen, 2001)
over 18*18 grid size as shown in Table 1.

For SincDQ scheme, the problem is solved over a
regular grids ranging from 5*5-25*25. Table 2 shows
convergence of the obtained results. They agreed with
exact ones (Lam et al., 2000; Yang and Shen, 2001) over
grid size $18*18. Also, this table shows that execution
time of SincDQ scheme is less than that of PDQM.
Therefor, it is more efficient than PDQM for vibration
analysis of elastically supported plates.

For DSCDQ scheme based on  delta Lagrange kernel,
the problem is also solved over a uniform grids ranging
from 5*5-25*25. The bandwidth 2M+1 ranges from 3-17.
Table 3 shows convergence of the obtained fundamental
frequency which agreed with exact ones (Lam et al.,
2000; Yang and Shen, 2001) over grid size 17*17 and
bandwidth. Table 4 shows that the obtained results are
more accurate than that were obtained using finite
element method (Omurtag et al., 1997). The table also
shows  that  execution  time  of  DSCDQM-DLK  is  less
than  that  of  PDQM  but  it  is  greater  than  that  of
SincDQM.

Table 1: Comparison between the obtained normalized frequencies, due to PDQM and the previous exact and numerical ones, for various grid sizes:
simply supported plate, K1 = K2 = 0

Normalized frequencies/Grid size Ω1 Ω2 Ω3 Ω4

11×11 19.1921 49.0983 49.0983 78.6932
13×13 19.5467 49.17948 49.17948 78.7856
15×15 19.7349 49.3387 49.3387 78.9546
18×18 19.7361 49.3480 49.3480 78.9568
21×21 19.7361 49.3480 49.3480 78.9568
Exact results (Lam et al., 2000; Yang and Shen, 2001) 19.7361 49.3480 49.3480 78.9568
Finite element results (Omurtag et al., 1997) 19·911 50.112 50.112 80.090
Execution time (sec) 3.704655 -- over 18*18 non-uniform grid

Table 2: Comparison between the obtained normalized frequencies, due to SincDQM and the previous exact and numerical ones, for various grid sizes:
simply supported plate, K1 = K2 = 0

Normalized frequencies/Grid size Ω1 Ω2 Ω3 Ω4

11×11 19.2825 49.12568 49.12568 78.77975
13×13 19.6479 49.27635 49.27635 78.8539
15×15 19.7357 49.3478 49.3478 78.9553
18×18 19.7361 49.3480 49.3480 78.9568
21×21 19.7361 49.3480 49.3480 78.9568
Exact results (Lam et al., 2000; Yang and Shen, 2001) 19.7361 49.3480 49.3480 78.9568
Finite element results (Omurtag et al., 1997) 19·911 50.112 50.112 80.090
Execution time (sec) 2.425466 -- over 18*18 uniform grid
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Further, it records the least excutsion time among the
examined DQ schemes. Therefore, DSCDQM-RSK
scheme is the best choise for vibration analysis of
elastically supported plates. 

For DSCDQ scheme based on Regularized Shannon
Kernel (RSK), the problem is also solved over a uniform
grids ranging from 5*5-25*25. The bandwidth 2M+1
ranges from 3-17 and the regularization parameter σ = r hx 
ranges   from   1.8   hx   to   3   hx   where   hx   =   1/N-1. 
Figure 2 shows convergence of the obtained fundamental 

frequency to the exact ones (Lam et al., 2000; Yang and
Shen, 2001) over grid size 15*15, bandwidth   and 
regulization parameter  σ  = 2.86 hx. Table 4 and 5 also
ensures that the obtained results from DQ schemes are
more accurate than that of finite element methods.
Further, execution time of this scheme is the least.
Therefore, DSCDQM-RSK scheme is the best choice
among the examined quadrature schemes for vibration
analysis of elastically supported plates. Also, for different
boundary  conditions  and  sub-grade  reactions,  Table  6 

Table 3: Variation of the fundamental frequency with bandwidth and grid size for a simply supported plate by using DSCDQM based on  delta
Lagrange kernel

Bandwidth/Grid size M = 1 M = 2 M = 4 M = 5 M = 6 M = 8
5×5 7.32010 8.89900 8.89900
7×7 7.85320 9.43850 13.1225 13.1225 13.1225
9×9 9.01750 11.9113 16.5983 16.5983 16.5983 16.5983
11×11 10.5489 13.3475 17.7605 18.6565 18.6565 18.6565
13×13 11.9631 13.7948 17.9836 18.9969 19.17948 19.17948
15×15 13.9512 14.3387 18.1041 19.2346 19.7349 19.7352
17×17 14.5120 15.7238 18.2283 19.2723 19.7361 19.7361
19×19 14.9846 16.3479 18.4663 19.3365 19.7361 19.7361
21×21 15.4190 16.9482 18.7568 19.4931 19.7361 19.7361
23×23 15.7889 17.3184 18.9210 19.5604 19.7361 19.7361
25×25 16.4974 17.7605 19.3276 19.5822 19.7361 19.7361

Table 4: Comparison between the obtained normalized frequencies, due to DSCDQM-DLK and  the previous exact and numerical ones, for various
grid sizes: bandwidth=13; simply supported plate, K1 = K2 = 0

Normalized frequencies/Grid size Ω1 Ω2 Ω3 Ω4

15×15 19.7349 49.3412 49.3412 78.9501
17×17 19.7361 49.3480 49.3480 78.9568
23×23 19.7361 49.3480 49.3480 78.9568
Exact results (Lam et al., 2000; Yang and Shen, 2001) 19.7361 49.3480 49.3480 78.9568
Finite element results (Omurtag et al., 1997) 19.911 50.112 50.112 80.090
Execution time (sec) 3.221545 --over 17*17 uniform grid and M = 6

Table 5: Comparison between the obtained normalized frequencies, due to DSCDQM-RSK and  the previous exact and numerical ones, for various
grid sizes: bandwidth = 13; σ = 2.86 hx, simply supported plate, K1 = K2 = 0

Normalized frequencies/Grid size Ω1 Ω2 Ω3 Ω4

9×9 18.2759 48.9731 48.9731 77.2551
13×13 19.7357 49.3462 49.3462 78.9533
15×15 19.7361 49.3480 49.3480 78.9568
19×19 19.7361 49.3480 49.3480 78.9568
Exact results (Lam et al., 2000; Yang and Shen, 2001) 19.7361 49.3480 49.3480 78.9568
Finite element results (Omurtag et al., 1997) 19.911 50.112 50.112 80.090
Execution time (sec) 1.556069 --over 15*15uniform grid

Table 6: Comparison between the obtained fundamental natural frequenciesdue to DSCDQM –RSKand the previousresults for different boundary
conditions and modulus of subgrade reactions

Subgrade reaction/Boundary condition CSCS CSSS
---------------------------------------------- ---------------------------------------------------------- ----------------------------------------------------------

Element free Exact results Element free Exact results 
Galerkin (Lam et al., 2000; Galerkin (Lam et al., 
(Bahmyari et al., Yang and (Bahmyari 2000; Yang and

K1 K2 2013) Obtained results Shen, 2001) et al., 2013) Obtained results Shen, 2001)
0 0 29.0033 28.95 28.95 23.6649 23.65 23.65

100 54.7225 54.68 54.68 51.3359 51.32 51.32
1000 - 146.73 146.73 - 144.24 144.24

100 0 - 60.63 60.63 - 25.67 25.67
100 55.6285 55.59 55.59 52.3006 52.29 52.29
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Table 6: Continue
Subgrade reaction/Boundary condition CSCS CSSS
---------------------------------------------- ---------------------------------------------------------- ----------------------------------------------------------

Element free Exact results Element free Exact results 
Galerkin (Lam et al., 2000; Galerkin (Lam et al., 
(Bahmyari et al., Yang and (Bahmyari 2000; Yang and

K1 K2 2013) Obtained results Shen, 2001) et al., 2013) Obtained results Shen, 2001)
1000 - 147.13 147.13 - 144.61 144.61

1000 0 42.9070 42.87 42.87 39.4949 39.49 39.49
100 - 63.17 63.17 - 60.28 60.28
1000 - 150.12 150.12 - 147.62 147.62

Subgrade reaction/Boundarycondition SSSS SFSF
0 0 19.7421 19.7361 19.7361 9.6356 9.63 9.63

100 48.6146 48.62 48.62 32.9047 32.90 32.90
1000 - 141.87 141.87 - 99.83 99.83

100 0 22.1299 22.13 22.13 13.8866 13.88 13.88
100 49.6323 49.63 49.63 34.3905 34.39 34.39
1000 - 142.20 142.20 - 100.33 100.33

1000 0 37.2771 37.28 37.28 33.0570 31.62 31.62
100 - 58.00 58.00 - 45.64 45.64
1000 - 145.36 145.36 - 104.72 104.72

Table 7: Comparison between the obtained natural frequencies  due to DSCDQM-RSK and the previous results for simply supported plate: h/a = 0.01,
K2 = 10

K1 = 100 K1 = 500
------------------------------------------------------------ -------------------------------------------------------------------

Subgrade reaction/Results     ω1 ω2 ω3 ω4     ω1 ω2 ω3 ω4

Obtained DSCDQM-RSK 26.2048 54.9915 54.9915 84.2914 32.9645 58.5139 58.5139 86.6305
Exact results (Lam et al., 2000) 26.2048 54.9915 54.9915 84.2914 32.9645 58.5139 58.5139 86.6305
Element free Galerkin 26.2127 55.0714 55.0714 84.4355 32.9704 58.5889 58.5889 86.7706
 (Bahmyari et al., 2013)
Ritz method (Zhou et al., 26.2048 54.9905 54.9905 84.2923 32.9625 58.5119 58.5119 86.6305
2004)
Radial basis (Ferreira et al., 26.2127 54.9915 54.9915 84.2706 32.9704 58.5119 58.5119 86.6097
2010)

Fig. 2(a-d): Variation of the normalized fundamental frequency with the bandwidth, regularization parameter σ and grid
size for a simply supported plate by using DSCDQM-RSK
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Fig. 3(a, b): Variation of the natural frequencies with Shear and Young’s modulus gradation ratio of a squared simply
supported composite (K1 = 200, K2 = 10, h/a = 0.1, v1 = v2 = v3)

Fig. 4(a, b): Variation of the natural frequencies with thickness of a squared elastically supported  composite (K1 = 500,
K2 = 100, E1 = E2 = E3, G1 = G2 = G3, v1 = v2 = v3) (a) Simply supported plates and (b) Clamped plates 

Fig. 5(a, b): Variation of the natural frequencies with aspect ratio (a/b) for elastically supported composite (K1 = 500,
K2 = 100, E1 = E2 = E3, G1 = G2 = G3, v1 = v2 = v3, h1 = h2 = h3), (a) Simply supported plates and (b)
Clamped plates

and Table 7 also insist that DSCDQM-RSK scheme is the
best choice for vibration analysis of elastically supported
plates. Furthermore, a parametric study is introduced to
investigate the influence of elastic and geometric
characteristics of the composite on the values of natural
frequencies. Figure 3 shows that the natural frequencies
decrease with increasing Young’s modulus gradation
ratio, (E2/E1) and (E3/E1). As well as, Fig. 3-5 show that
the natural frequencies are increased with increasing shear
modulus gradation ratio (G2/G1 and G3/G1) thickness ratio

(h2/h1 and h3/h1s) and aspect ratio b/a. The case of (E1 = E2

= E3, G1 = G2 = G3 and h1 = h2 = h3) is a limiting case of
this study which was previously solved  by  Lam  et  al. 
(2000),  Bahmyari  et  al.  (2013), Zhou et al. (2004) and
Ferreira et al. (2010).

CONCLUSION

Different quadrature schemes have been successfully
applied for vibration analysis of elastically supported
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composite plates. A MATLAB program is designed for
each scheme such that the maximum error (comparing
with the previous exact results) is also execution time for
each scheme is determined. It is concluded that discrete
singular convolution differential quadrature method based
on regularized Shannon kernel (DSCDQM-RSK) with
grid size 15*15, bandwidth 2M+1 and regulization
parameter σ = 2.86 hx leads to best accurate efficient
results for the concerned problem. Based on this scheme,
a parametric study is introduced to investigate the
influence of elastic and geometric characteristics of the
vibrated  plate  on  results.  It  is  aimed  that  these 
results  may  be  useful  for  design  purposes  of
engineering fields.
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