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Abstract: There are many uses for approximation using
neural networks including astronomy, image processing
and robots, this is due to its ease of use in approximation.

INTRODUCTION

In recent years, many researchers have studied the
issue of approximation using neural networks. There have
been many research papers on the possibility of
approximation using neural networks which we call
density problem. For more you can read[1-7]. All
researchers in this research focused on estimating the
degree of approximation of neural networks. The more
complex issue is complexity problem how to determine
the number of neurons necessary for the appropriate
approximation. Research has been conducted to study the
relationship between the degree of approximation and the
counting of neurons in the hidden layer of the neural
network. From this study, article[8] which developed a
work of[2] and gave a way to find a neural network with a
single hidden layer using the step function in the neurons
and presented a direct theorem about the error of the best
approximation. By[9] studied approximation using neural
networks in sigmoidal activation function where he
presented a direct theorem for approximation using neural

networks whose inputs were real numbers using step
functions. There have recently presented important facts
about the Lp, p<1 approximation for more read[10-15], they
studied the approximation using neural networks of
functions in smooth classes and of error rate c/n where the
number of neurons in the hidden layer.

In   this   study,   we   presented   direct   estimates 
of the upper bound for the degree of approximation using
feed forward neural networks with one hidden layer and
linear output. That is we have studied the complex
problem of neural networks approximation which made us
present a upper bound approximation method and
identified the number of neurons  in  the  hidden  layer
and that in terms of the first order modulus of smoothness
for functions in the Lp spaces, it mean, we present a  kind
of Jackson’s approximation-theorem. The rth symmetric
difference of f along direction h is given by Johnen and
Scherer[16].
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In terms of the r-th modulus of smoothness of  f isr
hf (.)

defined by Johnen and Scherer[16]:

  ( r )
r h0 h tp p

f , t sup f (.)   
║
║

The main results: In this section, we introduce our main
results begin with:

Theorem 2.1: Let i is bounded, monotone and odd
trigonometric real function. If f0Lp[a, b] then for any
natural number n0ù there exists one hidden layer neural
network satisfies:

       n pp
N x f x c p f ,   

 Proof: Define Nn: [a, b]6ú, as:

   
n

n o i i i
i 1

N x c + c w x


   

where parameters ci’s and wi’s are define as following:

   n

o i i ii 1
c f a c w a+ . For 1 i n, we get
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Define a partion for [a,b] consists of  notes of length b-a/n
as:
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According to the choice of co we have Nn(a) = f(a).
Also, we have -m#i(x)#m, for any real number x, we fix
m. For any x0[a, b] there exists j0ù and 0<j#n, such that
x0[xj-1, xj] that note that:

   
n

n o i i i
i 1

N x c + c w x+
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N x f a c w a+ c w x+
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Suppose Ei(x) = i(wix+θi) then:
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For  i>j,  we  have  x#xj#xi-1.  So,  the  properties  of
i give 0<Ei(x)-Ei(a)#Ei(xj)-Ei(a)#Ei(xi-1)-Ei(a)#Ei(xi-1)-m
= i(wixi-1+θi)+m = i(-dn)+m = -i(i-1(m-m/2n)) = m/2n.
So, 
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For 1#i<j, we have xi#xj-1#x and so, 2m$Ei(x)-
Ei(a)>Ei(xi)-Ei(xi-1) = i(dn)-i(-dn) = 2m-m/n which
implies ||Ei(x)-Ei(a)-2m||p#m/n. So:
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Consequently,
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Using the direct theorem:
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We have:
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Theorem 2.2: Let i is bounded, monotone and odd
trigonometric real function. f0Lip(α), α0(0, 1) if and only
if there is one hidden layer neural network Nn, satisfying:

       n p
N x f x c p

  

where, .
b-a

n
 

Proof: Define Nn:[a, b]6ú, as:

   
n

n 0 i i i
i 1

N x c + c w x


   

where parameters ci’s and wi’s are define as following:

   n

o i i ii 1
c f a - c w x


   

For 1#i#n, we get:

      n n
i i i 1 i i i i 1

1 2nd nd
c f x -f x , w , - x +x

2m b-a b-a    

Let m = supx0úi(x) and dn =  i-1(m-m/2n).

Since, f0Lip(α)k then ω(f, δ)p = O(δ)α      n p
N x -f x o  

Let f0Lp
2π, 0<p<1, then        n p

N x -f x c p .
 

We must prove that fi0Lip(α)k. Now, 5ENλ[fi]-fi

5p#c(p)(δα) and by using Theorem 2.1:

       n p
N x -f x c p f ,  

Then:

       p
c cf , pp  

   p
f , 0    

Therefore, the definition of Lipschitian function is
conclude we get.

Examples 3: In this section let us demonstrate our
theorems.

Example 3.1; Cao et al.[15]: Let f(x) =sin x, x0[0, π].
Choose i(x) = 2/π tan-1x, x0ú. It is clear f0Lip1(1) and
also we have f (a) = f(0) = f(b) = 0. Using the properties
of the tan-1x, if m = 1, i-1(x) = tan(π/2) x and dn = tan
(π/2(1-1/2n)). So, 

    i i i 1

1
c f x -f x

2m 

 
i

i-11 i
c sin -sin

2 n n
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n
i

2nd 2n 2
w tan 1-

b-a 2 2n
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   n
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i-11 i 2 1
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2 n n 2 2n

             


So, we can define the following neural network having
one hidden layer and n neural:

     
n

n o i i i
i 1

N x c + c w x+ , x 0,


    

From Theorem 2.2, we get: 

   n p
N x -sin x c p

n

   
 

Example  3.2:  If  our  target  function  is  f(x) = cos x,
x0[0, π] we choose the sigmoidal activation function i(x)
= 2/π tan-1x, x0ú. And f(a) = cos (0)= f(b) = cos(π) = 1, m
= supi-1(x) = tan (π/2)x:
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So, we can define the neural network approximate as:

     
n

n o i i i
i 1

N x c c w x , x 0, .


      

From Theorem 2.2. we get:

   n p
N x cos x c p ( )a

n


 

CONCLUSION

The main aim of this study is to introduce a
saturation  problem  for  the  approximation  of  function
in  quasi normed spaces using neural networkpL , p 1

with trigonometric activation function, in a constructive
approach.
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