
Journal of Engineering and Applied Sciences 15 (1): 252-260, 2020
ISSN: 1816-949X
© Medwell Journals, 2020

Corresponding Author: Meenakshi Sridhar, Department of Computer Science and Applications, M.D. University, Rohtak, India
252

Formal Framework for Semi-Automation of Validation of Software and its
Metrics and of Development of Relevant Knowledge-Base

Meenakshi Sridhar and Nasib Singh Gill
Department of Computer Science and Applications, M.D. University, Rohtak, India

Abstract: The task of validation of software development is quite complex and crucial one for developing
appropriate, efficient and robust software. The complexities in development of software and of its validation
arise because of various factors including the large number of stakeholders, types of software and applications,
paradigms and models and methodologies and frameworks employed for its development. Also, for proper
validation, software characteristics viz. functionality, reliability, robustness and integrity need to be considered.
In view of the fact of the task being quite complex, it is desirable that processes for validation be systematic
and be automated as far as possible. Also, validation is directly related to requirements, some of which may
change even till the final delivery. Thus, the proposed framework should be desirably flexible. In this
communication, a formal framework is proposed which semi-automates the task of validation, etc. by helping
in locating or proposing an appropriate validation method or procedure and the framework is flexible enough
to incorporate changes with minimum efforts. The framework assumes LISP-like environment and uses single
Abstract Data Type (ADT), viz. the list (or recursive list). The ADT is also basic program construct having the
advantage that even programs may be treated as data and can be given as inputs including for modification,
to any other program or to itself.

Key words: Formal methods in software engineering, automating validation, validation metrics, procedure,
program, framework

INTRODUCTION environments and for design part of software solution.

Empirical validation, whether of software metrics or solutions in such a form that it is understood and
for any other practical software concern is quite a complex executed by the machine.
task in view of various factors including large number of
types of software, number of required characteristics of Why only semi-automation and not full automation?
software, number of paradigms and models and of The pioneering theoretical computer science work, during
methodologies and frameworks used. In order to manage 1930’s by young brilliant mathematicians including
the complexity, it is highly desirable that the task of Turing, Church, Godel and post proved that algorithmic/
validation be partially or fully automated. computational approach is insufficient for solving most of

In this respect, it may be clarified in the the difficult problems which human beings encounter.
beginning itself that human capabilities/intelligence and More explicitly, it was proved that even the most
machine capabilities/intelligence are in many respects, advanced computer which will be available at any point of
complimentary and appropriate choices from the time in future will be able to solve by itself and without
two at different steps/stages may facilitate design and human intervention, only a very small fraction of the
development of software solutions. The human problems encountered ever by humanity.
intelligence is rooted in judgmental evaluation, Thus, the pioneering work established long before
commonsense, informal expression and inductive the first ever stored program computer made its first
reasoning. On the other hand, the machine intelligence is calculation the need for essential involvement of human
essentially based on formal expression, deductive intelligence for solving most of the difficult problems.
reasoning and formal rule-based evaluation, etc. Of the Later on, the pioneers including Brooks (1986), from
two, so far, the human intelligence is essentially the field of software engineering discovered, through
required for understanding the problem domains, their practical experience of developing software, that for

Also, human intelligence is needed for developing

J. Eng. Applied Sci., 15 (1): 252-260, 2020

253

solving complex problems the machine intelligence is A number of paradigms and models which include
useful mainly in the accidental repetitive tasks of problem waterfall, incremental, prototyping, spiral, cleanroom,
solving, the tasks which could be automated. These agile, etc. are available for developing software. A number
software experts discovered and emphasized the of methodologies and frameworks which include Scrum,
indispensability of human intelligence, specially, human V-Model, RAD, XP, Lean, DevOps, FDD, MDD, DSDM,
judgment, creativity and expertise for handling that part of etc. are used for developing software.
problem solving which they called the ‘Essential The choices of appropriate paradigm/model and of
tasks’. methodology/framework depend on the type of problem

Later, even the psychologists and others including and its domain for which some software solution is
Mair and Shepperd (2011) have re-emphasized that the required. Conversely, the choices determine how the
human intelligence is indispensible for many problem required software is developed. The required
solving tasks including the ones for designing software. characteristics of software which include functionality,
From the above discussion, it is irrefutably established reliability, usability, efficiency, maintainability, portability,
that man-machine combination is essential for attempting robustness and integrity need to be kept in mind and to
solutions of difficult problems. be ensured throughout the development of software. The

Even for those problems which can be fully number of types of software is quite large depending
automated, a fully automated solution for some of such upon various factors including intended usage and types
problems may have exponential complexity. However, of problem domains.
complexities of solutions of such problems may be As is required for the purpose, next, types of software
reduced to polynomial ones through human intervention are considered in some details. Each of the following
at appropriate points. classifications covers most of the available software types

Foundational concepts, issues and explanations: As
validation is the core concept for this research, the Classification 1; Based on common function, type or field
discussion in this study is initiated with a working use of software: System software which provides platform
definition for it. In brief, validation is the process of for running application software and which directly
ensuring that the right product is built where ‘Right operates the computer hardware, application software
product’ means it meets the needs and goals of various designed to help users to perform specific tasks.
stakeholders of the final software product. The needs and Computer programming tools such as compilers and
goals of the various stakeholders are collected in the form linkers which are used to translate and combine computer
of requirement specification which is desirably defined program source code and libraries into executable code
before the process of software development is initiated. other software tools which help in designing and
However, the process of defining requirement developing other software.
specification is a continual one which may continue even
almost till the final product is delivered. Classification 2: Software based on type of software

Another concept, viz. verification of software, though development and engineering involved: Software
closely related is yet a distinct concept. The distinction engineering, web engineering for designing software
between the two may be clarified by stating that involving dominantly hypertext/hypermedia and cloud
Validation is about ensuring finally right product is built, engineering for designing software for which the
whereas, verification is about ensuring that the process of configurable resources like computer networks, servers,
building the product be right. In a systematic phased storage, applications and services are assumed to be
development of software, verification is conducted in provided and managed by third party, embedded software
phased manner after each phase of development. Each engineering for developing software for controlling
phase is given relevant specification as input. Verification, processes of various devices and machines which are
at the conclusion of the phase, ensures that the output of different from computing devices. For example, aircraft
the phase meets the input specification. carrier guidance software, mobile software engineering,

Next, some facts which need to be taken into API development concerned with developing tools which
consideration while developing semi-automated solution allow software functioning across different operating
for validation of software and relevant metrics are systems on desktop, mobile and the web, software tools
discussed. development concerned with developing tools which

but from a different perspective.

J. Eng. Applied Sci., 15 (1): 252-260, 2020

254

allow other software developers to test their code, so as Ando et al. (2015), Yan et al. (2015), Bagalini and Violante
to ensure their code conforms to industry standards and (2016), Csertan et al. (2002) and Koopman (2015) discuss
is maintainable. formal models and issues related to automation of

Classification 3; Microsoft TechNet and AIS Software software including those for embedded systems, online
classification has seven major elements: Platform games and pharmaceutical applications are discussed,
and management, education and reference, home and respectively by Koopman (2015), Usai et al. (2017) and
entertainment, content and communication, operations Johanning et al. (2014).
and professional, product manufacturing and service
delivery and line of business. Another possible MATERIALS AND METHODS
categorization of software is based on copyright status.

Classification 4; Classes in software based on copyright apart from the detailed outline of the proposed approach,
status: Classification include Free Software, Open Source classification of application software, used for exemplars
Software, Copylefted Software, Non-copylefted Free in the next study is discussed in detail.
Software, Shareware, Freeware, proprietary, etc.

Each of the types within a classification scheme can Outline of the proposed approach and its advantages: The
itself be considered as consisting of (sub) classes. For proposed approach has the following major aspects;
example, System software (software which is primarily According to the proposed approach, the various
used to operate the hardware) may be further classified as activities for semi-automation including those for design
time sharing, resource sharing, client server, batch of validation task are initially expressed in some informal
processing operating system, real time operating system, natural language. The natural language expressions are
multi-processing operating system, multi-programming then translated to semi-formal/ mathematical entities in the
operating system and distributed operating system. This form of recursive lists. The translation of recursive lists,
classification of system software may be called, say, so, obtained to corresponding formal expressions of either
Scheme 1-System-Software. Also, the System Software a functional language like LISP or of a logical
may be classified as operating systems, utility programs, programming language like PROLOG is almost straight
library programs, language translators (assembler, forward.
compiler and interpreter). This classification of System The proposed approach is top-down, distributed and
Software may be called, say, Scheme 2-System-Software. flexible. The Top-down aspect of the proposed approach

Literature review: Earliest available literature on task of validation is regarding software. To begin with, the
validation (Boehm, 1976, 1984; Briand et al., 1995; Balci, totality of software may be considered as a three-element
1998) deals with general issues including guidelines and list: (Totality-of-software, classification scheme, list-of
principles of software validation. Some later similar classes-in-scheme). For example, (Totality-of-software,
literature includes (Steven, 2001; Pohl and Rupp, 2010). classification 1, (System Software, Application Software,

Earliest specific literature (Schneidewind, 1994; computer programming tools, other software tools)).
Bell and Brat, 2008; Marculescu, 2010; Anonymous, 2002) Next, each of the components, say System Software,
is about Space Exploration Software. Literature regarding can be further expanded as a list. For example, (System
Validation of component-oriented and object-oriented Software, Scheme 2-System-Software, (Operating systems,
software systems and metrics includes, respectively utility programs, library programs, language translators).
(Dolado, 2000; Skroch, 2007; Tomar and Gill, 2010; Szabo Further, language translators may be further expanded as
and Teo, 2012; Khan et al., 2013; Alshayeb and Li, 2003; a list: (Language translators, xxx, (Assembler, compiler and
Bajeh et al., 2014). Validation of Information security is interpreter)) where, ‘xxx’ may be replaced by some
covered by Fenz and Ekelhart (2011) and Michael et al. classification of language translators. However, if there is
(2010). The topic of validation of software metrics, in only one classification, ‘xxx’ may be kept blank.
general is treated by Bajeh et al. (2014), Cruickshank et al. The process may be continued as long as some
(2009), Michael et al. (2010), Canfora et al. (2005), element in the third component of the list of the
Oberkampf and Barone (2006), Liu et al. (2011), Subramani previous step can still be decomposed, e.g., (compiler,
et al. (2014), Veerappa and Harrison (2013), Jamil et al. classification-5, (Cross-compiler, source-to-source
(2010), Xargay et al. (2009), Venkitachalam et al. compiler, Incremental-compiler, Source-compiler).
(2015), Ramirez et al. (2010), Tripathi et al. (2008) and Li The approach is used not only for classification into
(2016). Further, Liu et al. (2011), Kaivola et al. (2009), subclasses. It can also be used for stating other aspects

testing and validation. Validation of some other specific

Detailed outline of the proposed approach: In this study,

may be sketched as follows: it may be recalled that the

J. Eng. Applied Sci., 15 (1): 252-260, 2020

255

like components or properties. For example, compiler may formally defined and denoted. Defining/denoting formally
be further defined in terms of its functions as (compiler, means expressing these in terms of mathematical sets,
phases-of-compiler, (lexical-analysis, syntax-analysis, relations and functions, etc.
semantic-analysis)) where, phases-of-compiler denotes
some aspect/characteristics of compiler. Step 3: Next, consider some (maximum up to, say, 7)

Further, the approach is flexible in the sense that new concepts directly definable from the fundamental
automation process is not necessarily strictly top-down. concepts and then formally define the new concepts in
For example, we may define (compiler, phases-of-compiler, terms of the already defined concepts.
(lexical-analysis, syntax-analysis, semantic-analysis, …)
even before defining language-translators for which it is Step 4: Treat some of the concepts obtained in the
to be a part of its formal definition or even before defining previous step as fundamental concepts, go to step 2.
System Software. Later on, when the term ‘Language Similarly, the dynamics with in a system may be formally
translators’ is formally defined as a recursive list, at that defined by replacing in steps 1-4 above, the term
time the definition of ‘compiler’ may be inserted as an ‘Concept’ by the term ‘Process’. The method of
element in the recursive list defining ‘Language formalization delineated above has the following
translators’. Also, if we have already defined System advantages.
Software formally in which up to a particular point of time, The 4-step iterative process discussed above may be
‘Language translators’ was not considered as one of its easily implemented in any functional language like LISP or
required constituent/attribute. But suppose later, it is a logical programming language like PROLOG. A term,
found that ‘Language-translators’ is also essentially once defined, may be easily expanded/modified later.
required as constituent/attribute. The approach allows the According to the proposed framework, a conceptual
required modification easily. framework may be easily expanded both upwards as well

The task of developing a formal model of the as downwards. For example, let language-translators be
problem domain and its environment (Sridhar and Gill, the first to be defined as (Language translators, xxx,
2015a, b; Serban et al., 2010; Goulao and Abreu, 2005; (Assembler, compiler, interpreter)) without having defined
Woodcock et al., 2009 and Zhixiong et al., 2007) is among System Software and compiler. Later on, let, System
the first ones for automation of a task. The task of Software may be defined with language-translators as
formalization is composed of two major parts: giving one of its components and also, compiler may be
formal definitions of the structure of problem domain, its defined as (compiler, classification-5, (Cross-compiler,
environment and interface between the two and giving source-to-source-compiler, Incremental-compiler, source
formal definitions of the dynamics within each of the compiler) with compiler being a component of language
problem domain, the interface and some relevant aspects translators. The approach allows writing of the code for
of the environment. The structure of a system consists of each of language-translators, system software and
elements and components of the system, relations and compiler independently of the others.
even meta-relations between the elements/components.
The dynamics with in a system refers to various Classification of application software: The ideas
processes that go inside the system/interface which either explained above are applied, in the next study for
transform one state to another state of system while semi-automating the task of validating software, of
maintaining its equilibrium or transform the very structure relevant metrics and relevant knowledge-base. The
of the system/interface. explanation is mainly in respect of Application Software,

For the structure, a broad 4-step outline of iterative the most dominant class of software under classification.
method for formalizing each of domain, interface and For the purpose, some subclasses of Application
environment is given: Software are enumerated (in alphabetic order) as:

Step 1: The formalizing process starts with denoting Software, Automotive Software for monitoring, guiding
formally some most fundamental concepts of the problem and control of vehicles, Business and Financial
domain and later of the part of environment of the problem Software, Communication Software, Design Software
domain and of interfaces between the two. (CAD, CAM, robotics), Data and Knowledge base

Step 2: Next, properties of the denoted concepts, relations services Software, Embedded Application Software,
and meta-relations, etc., between these concepts are Emergency, Disaster Forecasting and Management

Assistive Software for differently enabled, Automation

Software, Educational, Scientific, Engineering and

J. Eng. Applied Sci., 15 (1): 252-260, 2020

256

Information Software, Entertainment Software, Exploratory tools, other software tools)) is slightly modified by
Software (space, minerals, oil), GIS, Governance Software,
Healthcare Software, Manufacturing Software (3D
Printing), Military Software for Missile Control,
Monitoring Software, Searching Software (Search
engines), Virtuality and Simulation Software.

Most of the above mentioned subclasses with in
Application Software class may be further classified
based on service/function provided. For example,
Business and Financial Software may be further classified
as: Business Software (Payroll calculations, budgeting,
sales analysis, financial forecasting, managing employee
database, maintenance of stocks, etc.) and Banking
Software (Online accounting facility, ATM machines),
marketing: advertising and home shopping.

Similarly, Healthcare may be further classified as
diagnostic system for collecting data and for identifying
cause of illness, lab-diagnostic system to conduct tests
and to prepare reports, patient monitoring system to
check the patient's signs for abnormality as in Cardiac
Arrest, ECG, etc., pharma information system to check
drug labels, expiry dates, harmful side effects, etc.,
surgery for performing surgery.

Also, design (engineering) may be further classified
as structural engineering for say, analyzing stress and
strain in respect of design of ships, buildings, budgets,
airplanes, etc., industrial engineering for dealing with
design, implementation and improvement of integrated
systems of people, materials and equipment and
architectural engineering for helping in planning towns,
designing buildings, determining a range of buildings on
a site using both 2D and 3D drawings. Next, the above
classification along with preceding outline is used to
illustrate the approach.

RESULTS AND DISCUSSION

Exemplars explaining the proposed approach: In this
study, the approach to the proposed framework is
discussed in sufficient details through a number of
exemplars.

Formal notation and semi-automation of knowledge-base
for software and validation: For developing computational
framework (instead of the mathematical one of section
for the proposed semi-automated solution, the notation
used in the previous study for denoting various
concepts like totality of software, etc., have to be slightly
modified in the manner explained. For example, the
representation of totality of software as a three-element
list: (Totality-of-software, Classification 1, (System
Software, Application Software, computer programming

incorporating (sub-discipline-path (Totality-of-software)),
so that, the new notation becomes (Totality-of-software,
(sub-discipline-path (Totality-of-software)) (Classification
1, (System Software, Application Software, computer
programming tools, other software tools))).

The highlighted portion indicates the inserted
modification. The purpose of the modification is to keep
track of the lowest level of sub-discipline at which a
validation metric may be defined/introduced or a
validation procedure may be initiated from its code. The
purpose will get more clarified as the development of the
proposed framework is explained in increasing details.
To facilitate human understanding, the notation is
rewritten as:

Algorithm 1; Totality-of-software:
(Totality-of-software,

(sub-discipline-path (Totality-of-software))
 (Classification 1,

(System software, Application software, Computer programming tools,
Other software tools)
)
)

Next, in order to explain how the notation is further
expanded, let it be assumed that the System Software,
according to Scheme 2-System-software may be classified
as Operating Systems, Utility Programs, Library Programs,
Language Translators). Then the expanded notation may
be in either of the following two forms:

Algorithm 2; Totality-of-software:
(Totality-of-software,

(sub-discipline-path (Totality-of-software))
 (Classification1, (System software, Application software, Computer
programming tools, Other software tools)))

(System Software, (sub-discipline-path (Totality-of-software, System
software))
 (Scheme2-System-software, (Operating Systems, Utility
Programs, Library Programs,
 Language Translators))

Or

Algotrithm 3; Totality-of-software:
(Totality-of-software,

(sub-discipline-path (Totality-of-software))
(Classification1, (
 (System Software, (sub-discipline-path (Totality-
of-software, System software))
 (Scheme2-System-software, (Operating Systems,

Utility Programs, Library
 Programs, Language Translators)
),

However, for ease of human understanding and ease
of incorporating modifications, only the Algorithm 2 will
be used in the rest of the communication.

J. Eng. Applied Sci., 15 (1): 252-260, 2020

257

Flexible and distributive nature of approach for Next, if classification of health-care becomes available
concurrent development: Next, in order to as data collecting system, lab-diagnostic system, patient
demonstrate the flexible and distributive nature of the monitoring system, pharma information system and
approach, let it be assumed that instead of ‘System surgery, then complete notation, so far can be obtained
Software’ classification, ‘Application Software’ becomes by appending the following code to algorithm 5above as
available as:

(Application Software, Scheme 1-Application
Software, (business-software, scientific
Software, Healthcare-Software, Design
Software) Instead of algorithm 2, the following
becomes the required notation

Algorithm 4; Totality-of-software:
(Totality-of-software,

(sub-discipline-path (Totality-of-software))
 (Classification1, (System software, Application software, Computer
programming tools, Other software tools)))

 (Application-Software, (sub-discipline-path (Totality-of-software,
Application-software))
 (Scheme1-Application-software, (business-software, scientific
software, Healthcare-software,
 Design-software, …)
)

Now, if the system-software classification
becomes available, the notation algorithm 4 can be
extended as:

Algorithm 5; Totality-of-software:
(Totality-of-software,

(sub-discipline-path (Totality-of-software))
 (Classification1 (System software, Application software, Computer
programming tools, Other software tools)))

 (Application-Software, (sub-discipline-path (Totality-of-software,
Application-software))
 (Scheme 1-Application-software, (business-software, scientific-
software, Healthcare-software,
 Design-software, …)

)
(System Software, (sub-discipline-path (Totality-of-software, System
software))
 (Scheme2-System-software, (Operating Systems,
Utility Programs, Library Programs,
 Language Translators))

The same notation algorithm 5 will be obtained, if the
order of availability of classifications is first for System
Software followed by that for Application-Software. Thus,
the framework is flexible as well as distributive. Also, if the
software to be developed is very large as would be this
one, if fully developed, different teams may develop parts
of software independent of each other, e.g., one may
develop System-Software part and the other the
Application Software part and then merge the two. Thus,
the development of software through the proposed
framework is concurrent also.

(Health-care, (sub-discipline-path (Totality-of
software, Application-Software, Health-care))
(nil, (Data collecting system, lab-diagnostic
system, patient monitoring system, pharma
information system and surgery) where ‘nil’
indicates that no further classification is
required

Characterization of validation metrics in the framework
for semi-automation: So far, the approach for
formalization and semi-automation of relevant knowledge
is illustrated only in respect of a sort of hierarchy of
disciplines and sub-disciplines of software, for which
validation process may be required to be applied.
However, during the process of extending definitions, a
stage reaches when relevant to a particular discipline/
sub-discipline, definition/algorithm of a particular
validation metric ultimately needs to be given and
inserted in the framework. A metric, in the proposed
framework, may be characterized as a recursive list in the
following manner:

((attribute-name 1, attribute-value1) (attribute
name 2, attribute-value 2), ... (attribute-namek,
attribute-valuek), …) where some of the
attribute-values may be links-addresses

For example, Computational Framework for a
semi-automated software validation metric may be of the
form:

((name-of-validation-metric, ???) (sub-discipline
path (Totality-of-software, top-sub-discipline,
next-level-sub-discipline,...)) validation-metric),
(definition-or-algorithm-of validation-metric, ???
)(link-to-executable-code-of-validation-metric,
???))

For the purpose of presenting some concrete
exemplars, let it be assumed that the Application-software
consists of four classes from the set {space-application,
object-oriented, component-based, embedded}. Then its
notation in the framework is (Application-software,
sub-discipline-path (totality-of-software, Application
software) (classification, (space-application, object

J. Eng. Applied Sci., 15 (1): 252-260, 2020

258

oriented, component-based, embedded)) Further, let Ando, T., H. Yatsu, K. Hisazumi, A. Fukuda and
space-application be classified by classification-1 as M. Matsumoto et al., 2015. Reference model of
(a-s-1, a-s-2, a-s-3, …). specifications toward independent verification and

Then, notation becomes (Application-software, validation. Proceedings of the IEEE Region 10th
sub-discipline-path (totality-of-software, Application Conference on TENCON 2015-2015, November 1-4,
software) (classification, (space-application, object 2015, IEEE, Macao, China, ISBN:978-1-4799-8639-2,
oriented, component-based, embedded)). (space pp: 1-3.
application, sub-discipline-path (totality-of-software, Anonymous, 2002. Department of Health and Human
Application-software, space-application) (classification-1, Services. Food and Drug Administration. Center for
(a-s-1, a-s-2, a-s-3, …)). Devices and Radiological Health, USA.

Now, assume that there is no further classifications of https://www.fda.gov/OHRMS/DOCKETS/98fr/02n-
any of a-s-1, a-s-2, a-s-3, ..., then, there may be various 0276-npr0001.pdf.
issues associated with each a-s-1, a-s-2, a-s-3 of a class Bagalini, E. and M. Violante, 2016. Development of an
a-s-i, say, its definition, validation metrics etc. automated test system for ECU software validation:

The previous notation may be further expanded An industrial experience. Proceedings of the 15th
as (a-s-i, sub-discipline-path (totality-of-software, Biennial Baltic Conference on Electronics (BEC’16),
Application-software, space-application, a-s-i) October 3-5, 2016, IEEE, Tallinn, Estonia,
(definition-of-subclass, …, validation-metrics-of-subclass ISBN:978-1-5090-1393-7, pp: 103-106.
(link-to-set-of-definition-of-validation-metrics, set-of Bajeh, A.O., S. Basri, L.T. Jung and M.A. Almomani, 2014.
links-to-validation-metrics-code)). In summary, the Empirical validation of object-oriented inheritance
approach allows development of the intended system in hierarchy modifiability metrics. Proceedings of the
small steps concurrently. International Conference on Information Technology

CONCLUSION IEEE, Putrajaya, Malaysia, ISBN:978-1-4799-5424-7,

Validation, along with appropriate procedures and Balci, O., 1998. Verification, validation and accreditation.
metrics for it, plays significant role in developing Proceedings of the 30th IEEE Conference on Winter
appropriate, efficient and robust software. There is a large Simulation (WSC'98), December 13-16, 1998, IEEE,
number of types of software with each type requiring Washington, USA., pp: 41-44.
specific validation procedures and metrics. It is desirable Bell, D.G. and G.P. Brat, 2008. Automated software
to create a semi-automated framework for knowledge base verification and validation: An emerging approach for
of validation metrics which allows quick access to the ground operations. Proceedings of the IEEE
appropriate metrics and which is flexible enough to allow Conference on Aerospace, March 1-8, 2008, IEEE, Big
modifications when required. A framework is proposed for Sky, Montana, USA., ISBN:978-1-4244-1487-1, pp:
the purpose based on LISP-like notation, using which, a 1-8.
knowledge base consisting of definitions, tools, Boehm, B.W., 1976. Guidelines for verifying and
techniques, algorithms, executable codes etc. may be validating software requirements and design
created for semi-automating the task of software specifications. Eur. IFIP., 79: 711-719.
validation. Boehm, B.W., 1984. Verifying and validating software

The explanation in the previous two sections outlines requirements and design specifications. IEEE.
how through the proposed framework an appropriate Software, 1: 75-88.
validation metric is located, details about the validation Briand, L., K.E. Emam and S. Morasca, 1995.
metric can be found and the validation process may be Theoretical and empirical validation of software
applied. The total task of semi-automating software product measures. Intl. Software Eng. Res. Netw., 1:
validation, in general, is quite large which may require 1-23.
hundreds of man-hours but the foundational Brooks, F.P., 1986. No silver bullet-essence and
computational structure has been explained above in accidents of software engineering. Proceedings
sufficient detail. of the IFIP Congress on Information Processing

REFERENCES Publishers (BV), Dublin, Republic of Ireland, pp:

Alshayeb, M. and W. Li, 2003. An empirical validation of Canfora, G., F. Garcia, M. Piattini, F. Ruiz and C.A.
object-oriented metrics in two different iterative Visaggio, 2005. A family of experiments to validate
software processes. IEEE Trans. Software Eng., 29: metrics for software process models. J. Syst.
1043-1049. Software, 77: 113-129.

and Multimedia (ICIMU’14), November 18-20, 2014,

pp: 189-194.

86, September 1-5, 1986, Elsevier Science

1069-1076.

J. Eng. Applied Sci., 15 (1): 252-260, 2020

259

Cruickshank, K.J., J.B. Michael and M.T. Shing, 2009. A Liu, Y., W. Chen, P. Arendt and H.Z. Huang, 2011. Toward
validation metrics framework for safety-critical a better understanding of model validation metrics. J.
software-intensive systems. Proceedings of the Mech. Des., 133: 1-13.
IEEE International Conference on System of Mair, C. and M. Shepperd, 2011. Human judgement and
Systems Engineering (SoSE’09), May 30-June 3, software metrics: vision for the future. Proceedings
2009, IEEE, Albuquerque, New Mexico, USA., of the 2nd International Workshop on Emerging
ISBN:978-1-4244-4766-4, pp: 1-8. Trends in Software Metrics (WETSoM'11), May

Csertan, G., G. Huszerl, I. Majzik, Z. Pap and 24, 2011, ACM, Waikiki, Honolulu, Hawaii,
A. Pataricza et al., 2002. VIATRA-visual automated ISBN:978-1-4503-0593-8, pp: 81-84.
transformations for formal verification and validation Marculescu, B., 2010. Implementing a software verification
of UML models. Proceedings of the 17th IEEE and validation management framework in the space
International Conference on Automated Software industry. Master Thesis, Department of Computer
Engineering (ASE’02), September 23-27, 2002, IEEE, Science and Engineering, University of Gothenburg,
Edinburgh, England, UK., pp: 267-270. Gothenburg, Sweden.

Dolado, J.J., 2000. A validation of the component-based Michael, J.B., M.T. Shing, K.J. Cruickshank and
method for software size estimation. IEEE. Trans. P.J. Redmond, 2010. Hazard analysis and validation
Software Eng., 26: 1006-1021. metrics framework for system of systems software

Fenz, S. and A. Ekelhart, 2011. Verification, validation and safety. IEEE. Syst. J., 4: 186-197.
evaluation in information security risk management. Oberkampf, W.L. and M.F. Barone, 2006. Measures
IEEE. Secur. Privacy, 9: 58-65. of agreement between computation and

Goulao, M. and F. Abreu, 2005. Formalizing metrics for experiment: Validation metrics. J. Comput. Phys., 217:
COTS. Master Thesis, Department of Informatics, 5-36.
Faculty of Sciences and Technology, New University Pohl, K. and C. Rupp, 2015. Requirements Engineering
of Lisbon, Lisbon, Portugal. Fundamentals. 2nd Edn., Rocky Nook, Santa Barbara,

Jamil, B., J. Ferzund, A., Batool and S. Ghafoor, 2010. California,.
Empirical validation of relational database metrics for Ramirez, E.H., R. Brena, D. Magatti and F. Stella, 2010.
effort estimation. Proceedings of the 6th International Probabilistic metrics for soft-clustering and topic
Conference on Networked Computing (INC’10), May model validation. Proceedings of the IEEE/WIC/ACM
11-13, 2010, IEEE, Gyeongju, South Korea, International Conference on Web Intelligence and
ISBN:978-1-4244-6986-4, pp: 1-5. Intelligent Agent Technology (WI-IAT’10) Vol. 1,

Johanning, H., J. Lee, C. Hemming and L. Christensen, August 31-September 3, 2010, IEEE, Toronto,
2014. Checklist for computer software validation. Ontario, Canada, ISBN:978-1-4244-8482-9, pp:
Pharm. Technol., 38: 56-57. 406-412.

Kaivola, R., R. Ghughal, N. Narasimhan, A. Telfer and J. Schneidewind, N.F., 1994. Validating metrics for ensuring
Whittemore et al., 2009. Replacing Testing with space shuttle flight software quality. Comput., 27:
Formal Verification in Intel^{\scriptsize\circledR} 50-57.
CoreTM i7 Processor Execution Engine Validation. Serban, C., A. Vescan and H.F. Pop, 2010. A conceptual
In: Computer Aided Verification, Bouajjani, A. and framework for component-based system metrics
O. Maler (Eds.). Springer, Berlin, Germany, definition. Proceedings of the 9th International
ISBN:978-3-642-02657-7, pp: 414-429. Conference on Roedunet (RoEduNet’10), June 24-26,

Khan, A.I., M.M. Alam and U.A. Khan, 2013. Validation of 2010, IEEE, Sibiu, Romania, ISBN:978-1-4244-7335-9,
component based software development model using pp: 73-78.
formal B-method. Intl. J. Comput. Appl., 67: 24-35. Skroch, O., 2007. Validation of component-based software

Koopman, P., 2015. Verification, validation & certification: with a customer centric domain level approach.
Distributed embedded systems. Master Thesis, Proceedings of the 14th Annual IEEE International
Carnegie Mellon University, Pittsburgh, Conference on Engineering of Computer-Based
Pennsylvania. Systems (ECBS'07), March 26-29, 2007, IEEE, Tucson,

Li, H., 2016. Validation metrics analysis of community Arizona, USA., pp: 459-466.
detection algorithms. Proceedings of the 2nd IEEE Sridhar, M. and N.S. Gill, 2015a. Formal conceptual
International Conference on Computer and
Communications (ICCC’16), October 14-17, 2016,
IEEE, Chengdu, China, ISBN:978-1-4673-9027-9, pp:
2521-2525.

framework for structure of context of
component-based system for designing robust
software systems and metrics. Intl. J. Comput. Appl.,
112: 30-37.

J. Eng. Applied Sci., 15 (1): 252-260, 2020

260

Sridhar, M. and N.S. Gill, 2015b. Imperfection of domain Veerappa, V. and R. Harrison, 2013. An empirical
knowledge and its formalization in context of design validation of coupling metrics using automated
of robust software systems. J. Software Eng. Appl., 8: refactoring. Proceedings of the ACM/IEEE
489-498. International Symposium on Empirical Software

Steven, R.R., 2001. Software Verification and Validation Engineering and Measurement, October 10-11,
for Practitioners and Managers. 2nd Edn., Artech 2013, IEEE, Baltimore, Maryland, USA.,
House, Norwood, USA., ISBN:9781580532969, Pages: ISBN:978-0-7695-5056-5, pp: 271-274.
387. Venkitachalam, H., J. Richenhagen, A. Schlosser and

Subramani, R., R. Penneru, G. Selvaraj, B. Radhakrishnan T. Tasky, 2015. Metrics for verification and
and K. Puttaiah, 2014. Coverage metrics for device validation of architecture in powertrain
level validation of SATA and SAS devices: An software development. Proceedings of the 1st
approach. Proceedings of the 5th International International Workshop on Automotive Software
Conference on Intelligent Systems, Modelling and Architecture (WASA’15), May 4-8, 2015, IEEE,
Simulation (ISMS’14), January 27-29, 2014, IEEE, Montreal, Canada, ISBN:978-1-4503-3444-0, pp:
Langkawi, Malaysia, ISBN:978-1-4799-3858-2, pp: 27-33.
163-168. Woodcock, J., P.G. Larsen, J. Bicarregui and J. Fitzgerald,

Szabo, C. and Y.M. Teo, 2012. An integrated 2009. Formal methods: Practice and experience. ACM.
approach for the validation of emergence in Comput. Surv., 41: 1-36.
component-based simulation models. Proceedings of Xargay, E., V. Dobrokhodov, I. Kitsios, I. Kaminer and
the Conference on Winter Simulation (WSC'12), K.D. Jones et al., 2009. Flight validation of a metrics
December 9-12, 2012, ACM, Berlin, Germany, pp: driven L1 adaptive control in the presence of
242-242. general unmodeled dynamics. Proceedings of the

Tomar, P. and N.S. Gill, 2010. Verification and validation of IEEE International Conference on Control and
components with new x component-based model. Automation (ICCA’09), December 9-11, 2009, IEEE,
Proceedings of the 2nd International Conference Christchurch, New Zealand, ISBN:978-1-4244-4706-0,
on Software Technology and Engineering pp: 2243-2248.
(ICSTE’10) Vol. 2, October 3-5, 2010, IEEE, San Juan, Yan, S., Y. Zhao and P. Chen, 2015. Automated test
Puerto Rico, USA., ISBN:978-1-4244-8667-0, pp: platform for FPGA software validation. Proceedings
V362-V365. of the International Conference on Semiconductor

Tripathi, P., M. Kumar and N. Shrivastava, 2008. Technology (CSTIC’15), March 15-16, 2015,
Theoretical validation of quality metrics. Proceedings IEEE, Shanghai, China, ISBN:978-1-4799-7242-5,
of the 2008 International Conference on Software pp: 1-3.
Engineering Research and Practice (SERP’08), July Zhixiong, J., Q. Leqiu and P. Xin, 2007. A formal
14-17, 2008, Monte Carlo Resort, Las Vegas, Nevada, framework for description of semantic web services.
USA., pp: 1-7. Proceedings of the 7th IEEE International Conference

Usai, F., K. O'Neil and A.J. Newman, 2017. Design and on Computer and Information Technology (CIT’07),
empirical validation of effectiveness of LANGA an October 16-19, 2007, IEEE, Aizu-Wakamatsu,
online game-based platform for second language Fukushima, Japan, ISBN:978-0-7695-2983-7, pp:
learning. IEEE. Trans. Learn. Technol., 99: 1-1. 1065-1070.

