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Abstract: This study mainly studies a cryptoanalytic method of searching for the secret key and its length, in
this research, a review of works devoted to solving the cryptanalysis problem of classic and asymmetric
encryption algorithms based on new technologies of artificial intelligence-bio-inspiration methods simulating
the processes of evolution of wildlife was conducted. The main distinctive features of the application of these
methods are described and experimental results are shown which demonstrate the possibility of using these
methods for solving cryptanalysis problems.
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INTRODUCTION

Currently, when developing computer technologies
that provide information security and information
protection, cryptographic methods are widely used. To
implement these methods, algorithms based on natural
systems are used: Genetic Algorithms (GA) and
algorithms of swarm intelligence. The cryptanalytical
methods of searching for a secret key and its length also
include evolutionary methods (Surakhi et al., 2017). In
models and algorithms of evolutionary computation, the
main idea is to create an initial model and rules which
allows the model to change (evolve) (Law and Kelton,
2004). The analysis of literature sources has shown that
during the past several years, different schemes of
evolutionary calculations have been considered including
genetic algorithms, genetic programming, evolutionary
strategies and evolutionary programming.

Often, the convergence of the evolutionary algorithm
requires a large number of calculations of the Objective
Function (CF) which increases the execution time of the
problem. To increase the speed of processing, instead  of 
simulation  models,  metamodels  use approximate
mathematical models which are obtained as a result of
experiments with a model of the system (Glover and
Kochenberger, 2003).

In this study, metaheuristics and methods of
constructing metamodels will be examined as well as an
approach to integrate metamodels with evolutionary
metaheuristics  to  find  the  secret  key  and  its  length
(Al Ofeishat and Al-Rababah, 2009).

Statement of the main material: The algorithm for
clonal selection which is based on the theory of clonal
selection, proposed by Burnet to describe the behaviour
and the ability of antibodies in the immune system will be

considered. Based on the principles of the evolutionary
theory of Darwin’s natural selection, the theory of clonal
selection suggests that lymphocytes (B-cells and T-cells)
are used to destroy or neutralize an antigen (pathogenic
microorganism). When a lymphocyte is selected and
bound to an antigen, it multiplies and differentiates into
plasma cells and memory cells. Plasma cells have a short
lifespan and produce a large number of antibody
molecules. The memory cells live for a long period,
expecting the same antigen in the future. An important
feature of the theory is that when a cell is selected and
cloned, these clones undergo mutations which increases
the effectiveness of antigen challenge (Dubrov et al.,
2013).

The theory of clonal selection suggests that the
immune system can change (the structure and specific
gravity of the cells) in accordance with the environment.
Through the blind selection process and the accumulation
of changes, the immune system can acquire the necessary
information to protect the human body from certain
pathogenic environmental hazards. It has been suggested
that the immune system expects a certain pathogenic
microorganism.

The clonal selection algorithm, proposed by de
Castro and von Zuben, minimizes the goal function. The
choice of antibodies is based on affinity (proximity)
which is based on the goal function. Selected antibodies
are subjected to cloning and then mutations of
proportional affinity (proximity). The mutated clone set
competes with the existing antibody population for
membership in the next generation. In addition, members
of the population with low affinity (the farthest) are
replaced by randomly generated antibodies.

Unlike the genetic algorithm, this algorithm does not
use the crossover operator. Figure 1 shows the structure
of the algorithm for clonal selection.
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Creation of the initial population

Calculation of the goal function value

Implementation of cloning operator

Addition of new anibodies

Execution of the reduction operator

Implementation of the mutation operator

     Are the break
conditions satisf ied? 

Choice of the best antibody

Fig. 1: Structure of the algorithm for clonal selection

To solve the problem of finding a secret key, vertices
are used as components and solutions are used as
antibodies. There are three main methods for creating a
population:

C Strategy of “blankets” (formation of the complete
population). Cannot be practically implemented due
to the large computational complexity

C Strategy of “shotgun” (the formation of a sufficiently
large subset of the total population) is used the most

C Strategy of “focusing” (formation of a population
from variations of one solution)

MATERIALS AND METHODS

If there is an assumption regarding the solution, in
this case, the algorithm will start working in the vicinity
of the optimum. The goal function determines the fitness
of the antibody in the population. At each iteration of the
algorithm for clonal selection, the fitness of each antibody
of  the  population is  estimated  using  the  goal  function.
In   the   case  of   finding   the   minimum  of the
function:

(1)min maxf (x), x x , x   

The goal function is represented in the form:

(2)
min

F(x) f (x)
x

 

In the case of finding the optimal route, the value of
the target function for the i-th antibody is calculated as the
cost of the solution, i.e., the length of the secret key
defined by the set of vertices xi:

(3)
kM k1 kj k , j 1k x , x x ,xF(x ) d d , k 1,K


  

Where:
M : The number of components of antibodies

(vertices)
K : The number of antibodies (solutions)

: The weight of the ribkj k , j 1x ,xd


In the early stages of the operation of the clonal
selection algorithm, a random scheme (random selection
of antibodies) is used to ensure the study of the entire
search space. In the final stages, a selective scheme is
used that creates the search (the current best antibodies
are preserved). This combination does not require scaling
and can be used to minimize the target function.

The probability of selecting a circuit on the basis of
random selection is determined by simulated annealing as
in the following:

(4)
r 0

0 0

p p exp( 1 / g(n)), g(n)

g(n 1), 0<β<1, g(0) T , T 0

  
   

where, p0 is the initial probability of reduction. Probability
selection based on a random selection scheme is
determined by simulated annealing as:

(5)r 0

0 0

p p (1 exp( 1/ g(n))),

g(n) g(n 1), 0<β<1, g(0) T , T 0

  
    

For the simulation system, a combination of values of
the input factors of the simulation model is determined
which allows a maximum/minimum of a certain response
of the random variable to be achieved. The response
function is almost impossible to calculate analytically
however, it can be calculated by running a system model.

The multi-extremity of the model response functions
and the multidimensionality of the secret key search space
and its length determine the active and efficient use of
metaheuristic methods (Dubrov et al., 2013) as optimizers
for problems of this type. Evolutionary Metaheuristics
(EM) are often used, namely, Genetic algorithms and
evolutionary strategies.
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The Genetic Algorithm (GA) is a heuristic search
algorithm which is used to solve optimization and
modelling problems by sequential selection, combination
and variation in the required key parameters using
mechanisms that resemble biological evolution.

When using encrypting tables, the key can be
considered a permutation (р1, р2, …, рn). Therefore, the
chromosome in the GA must also specify a permutation.
It should also be understood how to implement the
representation of individual genes of an individual. In the
elementary case, encryption can be performed by
assigning the corresponding genes to the individual
elements of the key, i.e., the i-th gene of chromosome P
is the element pi.

Haykin (1999) deficiencies in this approach were
noted as obtained genes are dependent on each other
which leads to the possibility of obtaining incorrect
solutions. Surakhi et al. (2017) and Dubrov et al. (2013)
proposed an alternative approach to solving similar
problems. This approach involves the use of an
intermediate representation of a set of genes through some
rule or object from which the key is formed. In this case,
an important task is to define an intermediate solution
which is represented as a bit string for the use of standard
genetic operators.

When implementing cryptanalytical GA, in practice,
an approach is used in which the key elements are
considered the genes of an individual. To avoid obtaining
incorrect solutions for decimal chromosome coding, the
rule is applied as follows: When the same genes appear on
the chromosome, the second repeating gene is replaced
with the missing gene. To determine the secret key as a
function of the fitness of individuals, the coincidence of
plaintext  and  ciphertext  is  used.  As  an  objective
function,   one   can   use   the   Jacobsen   function
(Haykin, 1999; Al-Ofeishat, 2012; Gräning et al., 2007)
on the distribution of bigram frequencies in plaintext.

An interesting development in the field of swarm
intelligence is the bee algorithm which has successfully
been used to find extremes of complex multidimensional
functions. The algorithm of the cryptanalytical method of
searching for a secret key and its length on the basis of a
bee algorithm was considered in Branke and Schmidt
(2004) and Jaskowski and Kotlowski (2008) where the
implementation of the basic steps of the bee algorithm
was proposed and a demonstration example of the
cryptanalysis algorithm implementation was given.

An analysis of the results obtained in Afonin (2011)
demonstrates that with increasing length of the key to the
real key, applying only the genetic algorithm does not
provide the expected result, regardless of the change in
the error between the plaintext and the decrypted keys. An
algorithm for calculating the secret key is proposed in this
study. It consists of two stages.

C First, the preparation, in which the encoding and
decoding of the text occur

C Second, directly calculating the secret key from an
open text with the help of an attack based on the
known plaintext and using a genetic algorithm

The   proposed   algorithm   consists   of   the
following step:

C The initial population is formed randomly
C The crossing procedure gives m×n÷2 new keys. For

parent rows, the point of division is randomly
selected and the descendants are obtained by
exchanging the cut-off parts

C The mutation operator is applied to the obtained
generation. The bit of the individual of the population
is inverted with a certain probability. Crossover and
mutation are repeated several times

C Of the new members of the population, i.e., from
public keys, private keys and corresponding
coefficients were found. With their help, the text is
deciphered

C The fitness function is the error between the open and
decrypted text

The  algorithm  ends  when  the  error  has  a value
close to zero. Evolutionary  Strategies  (ES)  (Jin  et  al., 
2003; Afonin, 2009), in contrast to genetic algorithms,
analyse the  course of evolution at the phenotype level. In
ES, each individual is characterized by a fitness function
and a chromosome line. The fitness Function (FP)
depends  on  the  Objective  Function  (OF) of the
problem.

In the ES algorithms, the values of the mutation step
and the rotation angle are adapted, the main operator is
the mutation operator, implemented by means of the
normal distribution law.

There  are  three  main  approaches  to  the
integration of metamodels with evolutionary
metaheuristics   for  finding   the   secret  key and its
length: polynomials, kriging and neural networks
(Takialddin  et  al.,   2017;   Chernyshev   et  al., 2014;
Al-Ofeishat et al., 2018).

To find the secret key, it is optimal to use
polynomials of the second degree. Calculation of the
unknown coefficients of the polynomial is carried out by
the method of least squares or the gradient method. The
main drawback to this approach is the considerable time
required to calculate the coefficients in the case of a long
key length. Kriging is a combination of the global model
and local “deviations”:

(6)(x) = (x)+Z(x)
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where (x) is the global component of the model of the
objective function which is specified by the polynomial
and Z(x) is the Gaussian function with zero expectation
and covariance which simulates local deviations from the
global model.

Calculation of model parameters is realized using the
maximum likelihood method. The main advantage of
kriging is that with its help, the calculation of the
confidence interval is carried out without additional
calculations (Jain and Chaudhari, 2018). However, the
need to perform matrix transformations to calculate the
model yield significantly increases the computation time
with increasing dimensionality of the problem.

Neural networks are a “powerful” device for
approximating complex dependencies (Jain and
Chaudhari, 2019). Most often, three types of networks are
used: multilayer perceptron, a network based on radial
basis functions and a support vector machine. To improve
the efficiency of solving the problem of searching for a
secret key using a multilayer perceptron, modifications of
the BP algorithm and methods for optimizing the network
structure for a particular task are used.

For multilayer perceptron, training is based on error
correction (training with the teacher) with the most
commonly used algorithm being reverse Propagation (BP)
which is an iterative gradient learning algorithm that
provides minimization of the root-mean-square error.

Backward propagation algorithm
C Number of iterations of training n = 1, initialization by uniform

distribution on the interval (0,1) or [-0.5, 0.5] of displacements
(thresholds)  and weights(k)

jb (n) (k)
ijw (n) :

(7)(k 1) (k)i 1, N , j 1, N , k 1,L  

where, N(k) is the number of neurons in the k-th layer and L is the
number of layers

C Set the training set:

(8) (0) ( L )N N(x , d ) | x R ,d R , 1,P     

where, xµ is the µ-th training input vector, dµ is the µ-th training
output vector, N(0) is the number of neurons in the input layer, N(L)

is the number of neurons in the output layer and P is the power of
the learning set. The number of the current pair from the training
set is µ = 1.

C Calculation of the output signal for each layer (straight run):

(9)(0)
i iy (n) x

(10)( k 1)

(k) (k) (k) (k)
i j j

N
(k) (k 1) (k)
ij i

i 0

y (n) f (s (n)),s (n)

w (n)y (n), j 1, N , k 1,L








  

where, N(k) is the number of neurons in the k-th layer, k is the layer
number, L is the number of layers,  is the weight of the(k)

ijw (n)
connection from the i-th neuron to the j-th neuron on the k-th layer
at time n,  is the output of the j-th neuron on the k-th layer(k)

jy (n)

and f(k) is the activation function of neurons of the k-th layer. It is
believed that:

(11)(k) (k) (k 1)
0 j j 0w (n) b (n), y (n) 1 

C Calculation of the energy of the ANN error:

(12)

(L)N
2 (L)
j j j j

j 1

1
E(n) e (n), e (n) y (n) d

2 


  

C Adjustment of the synaptic weights based on the generalized delta
rule (reverse run):

(13)
(k) (k)
ij ij (k)

ij

E(n)
w (n 1) w (n)

w (n)


   



where, η is the parameter that determines the speed of training (for
large η training is faster but the risk of obtaining the wrong
decision increases), 0 <η< 1:

(14)
(k 1) (k) (k 1)
i j(k)

ij

E(n)
y (n)g (n), i 0, N , k 1,L 1

w (n)
 

   


(15)( k 1)

(L) (L) (L)
j j j

(k) N
j (k) (k) (k 1) (k 1) (k 1)

j jl l l
l 1

f ' (s (n))(y (n) d ), k L

g (n)
f ' (s (n)) w (n)g g (n), k L





  



  


 





C Checking the termination condition
If n mod p>0, then μ = μ+1, n = n+1 and transition to 3.
If n mod P = 0 mo and

(16)
P

s 1

1
E(n P s) .

P 

   

=  then n = n+1 and transition to 2.
If n mod P = 0 and:

(17)
P

s 1

1
E(n P s)

P 

   

then end

RESULTS AND DISCUSSION

In the literature, there is an opinion (Haykin, 1999;
Al-Ofeishat, 2012) that when using metamodels in
evolutionary algorithms, it is important that there is not an
error in the metamodels approximation but the correct
selection.

The random nature of the objective function can have
a negative effect on the operation of the EM, leading to
wandering of the search process, loss of the rate of
convergence of the algorithm and falling into local
optima. The main approach is to run a series of runs of the
model for one individual solution and calculate the
average value of the OP. It is believed that the main focus
is the work of the selection operator EM in selecting
individuals in the next generation (Lasry, 2018). The
accuracy of the metamodel varies from generation to
generation due to a change in the location of the current
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population in the search space and changes in the data
used to build the metamodel. Therefore, predicting the
number of control individuals in the next generation based
on the quality of the  metamodel which is calculated for
the current generation, may be erroneous. The rank
correlation prank (Ariffin et al., 2019) is used as the
criteria for assessing the quality of the metamodel which 
depends  on  the  difference  in  the  ranks (numbers in the
sorted by the FP list) of individuals who are calculated
using the objective function. If it were possible to first
assess the quality of the metamodel in the current
generation and then use this estimate to determine the
controlled individuals in the same generation, then this
method could be effectively used to correctly select the
individuals in the next generation.

Consider the task of developing hybrid metaheuristics
that use not one but several model-oriented algorithms.
The number of algorithms is called basic. Each algorithm
has its own model and as a result of their work, we obtain
one or several solutions.

Let the algorithms be performed asynchronously and
their interaction at iteration h occurs by forming
metamodels considering individual models and the model
generated by the previous iteration and generated by the
decision algorithms.

The key stages of metaheuristics are considered.
After the initialization phase which is controlled by
metaheuristics, all the algorithms of the model are
launched. The solutions are independently generated in
steps and each algorithm updates its own model.

When the specified exchange conditions are met, the
current models of the basic algorithms (Possibly, the
corresponding solution variants) are used by control
metaheuristics to form a new aggregated model. In this
case, the previous aggregated model can also be used and
the process of formation can be represented as an
optimization problem of finding the best element in the
model space.

Next, the generated aggregated model is sent to the
basic algorithms where it can both be used in combination
with their own model and replace it completely. When the
completion condition is met, the metaheuristics return one
or more of the best solutions found by the underlying
algorithms.

The results of computational experiments indicate
that this methodology increases the effectiveness of
model-oriented algorithms, although it may require the
development of more complex methods for aggregating
models.

CONCLUSION

The methodology considered in the article for
constructing the meta-search for a secret key allows us to
diversify the work of the basic algorithms and reduce the
probability of completing the search in areas that do not
contain a global solution. The exchange of information
between the basic algorithms creates the prerequisites for
improving the efficiency of the search process which is of

a global nature. Thus, the choice of a specific information
exchange scheme (the method of co-operation) determines
the balance between intensification and diversification of
the search.
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