
A Review of Pseudo-Random Numbers Generation Techniques

Emeralda Gustria Sesari, Burhanuddin Dirgantoro, Casi Setianingsih and Tito Waluyo Purboyo
Department of Computer Engineering, Faculty of Electrical Engineering, Telkom University, Bandung,
Indonesia

Key words: Pseudo-random numbers, pseudo-random
numbers generator, random generation test, applications,
especially

Corresponding Author:
Emeralda Gustria Sesari
Department of Computer Engineering, Faculty of
Electrical Engineering, Telkom University, Bandung,
Indonesia

Page No.: 3107-3111
Volume: 15, Issue 16, 2020
ISSN: 1816-949x
Journal of Engineering and Applied Sciences
Copy Right: Medwell Publications

Abstract: Random numbers have many applications,
including in the case of cryptography and randomization
of a test item. In fact, random numbers that are true
random are very difficult to generate, especially by using
computers. Therefore, the solution is by generating a
pseudo-random numbers generator. This study discusses
the pseudo-random numbers generation techniques and
the test on the uniformity and independence of the
sequence. The purpose of this study is to observe the
development of pseudo-random numbers generator from
the simplest and well-known form to the complex one.

INTRODUCTION

Random Number Generators (RNG) have an
important role in simulations of computer such as to
model the inherent randomness of components[1].

Random number generators are classified in two boar
classes: Hardware RNGs and Algorithmic RNGs. The
beginning of developing random numbers generation is by
using a physical device which is relying on external
sources to produce random numbers. Nowadays, people
use a computer program to produce a random or
disordered sequence. In choosing which type of RNG is
appropriate, should depend on the application of the
random numbers itself.

This study only focuses on algorithmic RNGs,
especially on Pseudo Random Number Generators
(PRNG). There are seven methods of PRNGs and several
random number generator tests, to investigate the
uniformity and independence.

Literature review
Linear Congruential Method (LCM): Linear
congruential method generators have a function as
shown below:

 f x ax+c mod m

Where:
a = Multiplier
c = Increment
m = The modulus

A sequence of integers X1, X2, ..., is generated by
following function:

 i+1 iX aX +c mod m, f 0, 1

The output of the generator will be affected by the
selection of a, c, m and X0. The cycle length of LCM can
be maximized by following these three conditions[2]:

3107

J. Eng. Applied Sci., 15 (16): 3107-3111, 2020

C Increment c is relatively prime to m
C a 1 is a multiple of every prime dividing m
C a 1 is a multiple of 4 when m is a multiple of 4

After the random integers are being generated from 0
to m 1, they can be converted to random numbers by:

i
i

x
R , f 1, 2

m

MATERIALS AND METHODS

Random Numbers: Random numbers is a series of
independent random numbers with a specified
distribution. Random numbers are symbolized by U and
the value is from 0-1 then expressed in U(0,1). There are
many ways in order to get random numbers, either with
the help of random numbers table, computer or using
random numbers generator.

Properties of random numbers: Random numbers have
three characteristics. Random numbers have to have a
uniform distribution, random numbers that will be taken
should have an equal probability and each random number
is independent. Random numbers must be drawn
separately from uniform distributions with Cumulative
Distribution Function (CDF) and Probability Density
Function (PDF):

1, 0 x 1

f x.
0, otherwise

0, x 0

F x x, 0 x 1

1, x 1

 1 1
E X , V X

2 12

Applications of random numbers: Numbers that are
“chosen at random” are useful in many types of
applications. Such as sampling, numerical analysis,
simulation, decision making, computer programming,
cryptography, aesthetics and recreation.

In sampling, a random sample is required to represent
all possible cases on examining particular behaviour.
Random numbers are also used to solve complicated
numerical problems. For simulation, random numbers are
used to make things that simulated by computer even
more realistic. This application often used in the study of
nuclear physics about random collisions. In regard to
decision making, many people make their decision by
randomly flipping a coin or by guessing, etc. In computer

Fig. 1: Random numbers for aesthetics

programming, random value is a good source of data
to test the effectiveness of certain algorithms. Random
values are important to make a completely “unbiased”
decision. For cryptography, unbiased data or bits is
crucial for securing communications. A touch of
randomness also makes graphics and music that is
generated by computer seem more lively. A pattern
like.

Rolling dice, spinning roulette wheels, etc. are a
fascinating thing to encounter. It takes some time to
finally, Fig. 1 out the result.

Random number generator: Bruce Scheiner used these
three characteristics as a definition of random number
generator:

C The result (output) looks random, meaning that it
passes the statistical test of randomness

C Unpredictable, meaning that even if the algorithm and
the previous random numbers are known, the next
random numbers must not be easily computable

C Can not be reliably reproduced, meaning that if it
executed twice with the same exact input, then the
result is completely different

Random number generators that comply three
requirements above are called True Random Number
Generators (TRNG). But those are hard to be
generated, specifically by using computer. So, the
other alternative is by generating pseudo-random
numbers.

What is meant by random in pseudo-random number
is that the numbers are hard to predict. Pseudo-random
numbers are generally produced by mathematical
formulas and usually generated random numbers can be
repeated periodically. Such random numbers generator is
called Pseudo-Random Number Generators (PRNG).

Quadratic congruential method: LCM leads to
reasonably good random numbers. The sequence
produced by:

 i 1 iX aX mod + m+1 +c mod m

is less random. LCM can be generalized to quadratic
congruential method:

 2
i 1 i iX dX +aX +c mod m

3108

Tends to look mor
appealing than

re

J. Eng. Applied Sci., 15 (16): 3107-3111, 2020

where a, c and d has to be obtained in necessary and
sufficient conditions. This sequence has a term of the
maximum length m.

Fibonacci: Fibonacci sequence is a sequence that Xi+1

depends on more than one of the preceding values:

 i 1 i i-1X X +X mod m

This generator was talked in early 1950s. Result of
some generator testing shown that the sequence produced
by Fibonacci sequence is not satisfactorily random. We
may also consider generators of the form shown below:

 i 1 i i-kX X +X mod m

where, x is a comparatively large value. This form was
introduced by Green, Smith and Klem, etc.

Multiple recursive generators: Multiple recursive
generators are based on a generalization of linear
congruential generators:

 i 1 i 1 k i-kX aX +, ..., a X c mod m

where, k = permanent integer. Therefore, the ith of series
relies on the previous k.

Inversive congruential sequences: This method is
suggested by Eichenauer and Lehn.

 -1
i 1 iX aX +c mod m

Here p is prime and X1 ranges over {0, 1, ..., p, 1, 4}.
Inverses are defined by 01 4% 0. Therefore, definition of
014 could simply be replaced by 010 for purposes of
implementation.

Blum-Blum-Shub Generator: Blum et al.[3] linear
Congruential Method is vulnerable to attacks if they are
used to generate keys in a cryptosystem. BBS generator is
a random bit generator and has a very strong
cryptographic properties. BBS generator has the
following form:

2
i 1 iX X mod M

where, M = result of two big distinct primes. The outcome
bit is either least significant of Xi-1 or the parity of Xi-1.

Mersenne-Twister: In 1994, TT800 generator was
invented by Matsumoto and Kurita using binary

operations. Then, Matsumoto and Nishimura[4] fixed the
utilization of binary operations and developed
Mersenne-Twister. They perform on N2{0, 1}, so,
variable x is expressed by a vector ω bits (e.g., 32 bits):

 upp low
i n i m i i 1X X X X A

where, n>m are constant integers, aims the upperupp
1X

ωr(r) bits of X2 and A is ω×ω matrix of N2.| is the
operation where appends the upper ωr bits X2

upp low
1 i 1X X

with the lower r bits Xi-1. After being multiplied with
matrix A, Φ (exclusive-or) do an addition between the
result of multiplication with bit X1, m and bit modulo two.

Random generation tests: Random generation tests are
meant to check if the sequence produced by
generator is an independent and identically distributed
sequence. There are two categories of tests: first is testing
for uniformity and the second is testing for
independence.

The basic ideas of testing a random number generator
are by using hypothesis. For an example, use the test in
uniformity. There are two hypothesis, the first one is
random number generator is uniformly distributed which
is denoted by H0 or known as null hypothesis. While
alternative hypothesis is when the random numbers
generated by the generator is not uniformly distributed
(H1).

Frequency test: The first random generation test is a
frequency test. Frequency test is one of uniformity test.
There are two different methods to do frequency test,
Kolmogorov-Smirnov and the chi-square test. Those tests
above measure agreement between sample distribution
and theoretical uniform distribution.

Kolmogorov-Smirnov test compares the CDF F(x)
(uniform distribution) to the empirical CDF SN(X) of the
N samples observations:

 F x x, 0 x 1

 1 2 N
N

number of R , R , ..., R x
S x

N

If N becomes bigger, SN(x) should approach F(x). This
test build upon the statistic:

 ND max F x -S x

The Chi-square test have the same point of view as
Kolmogorov-Smirnov test but uses different method.
Chi-square looks at the deviation from the expected
value.

3109

J. Eng. Applied Sci., 15 (16): 3107-3111, 2020

 2n
i i2

0
i 1 i

0 -E
x

E

Where:
n = The intervals
01 = The total of samples
Ei = Intended total of samples. If the sample size is N

i

N
E

n

Runs tests: There are three kinds of tests in runs test: runs
up and runs down, runs above and runs below the mean
and length of runs.

Runs up and runs down test examines the
independence from the arrangement of number in a
sequence. A run is obtained from a series of identical
events proceeded and followed by a distinct event. For
example in a sequence of coin tossing may have:

HH THT THHT THH

There are seven runs in this sequence, first with a
length two, second and third with a length one. Fourth,
fifth, sixth and seventh with a length two. If is the number
of runs in a sequence, mean and variance of a is:

a

2N-1

3

Runs above and below the mean test assure that the
sequence is random. n1 and n2 are total individual
surveillances above and below the mean, b is the number
of runs. The mean and variance are:

1 2
b

2n n 1
+

N 2

1 2 1 22
b 2

2n n 2n n -N

N N-1

If n1 or n2 is larger than 20, b is normally distributed:

1 2
0 1/2

1 2 1 2
2

b- 2n n /N -1/2
Z

2n n 2n n -N

N N-1

Hypothesis of independence is said to be true if:

/ 2 0 /2-z Z z

where the stage of significance is denoted by α. The other
runs test is to test whether a length of runs is random or
not where Y1 is a total runs of length i in a sequence of N.
The value for runs up and down for i#N 2 is:

 2 3 2
i

2
E Y N i +3i+1 - i +3i -i-4

i+3

and

 i

2
E Y

N!

for i N 1. The value for runs above and below the mean is
approximated by:

'
i

i

Nu
E Y , N>20

E I

where u’i and E(i) are given by:

i i
'
i

n1 n2 n1 n2
u +

N N N N

 1 2

2 1

n n
E I + , N>20

n n

Total amount of runs (off all length) in length N:

N

E A , N>20
E I

Tests for auto-correlation: This test are related in
reliance between every random numbers or m numbers
starting with th number in a sequence:

 i i m i 2m i M 1 mR , R , R , ..., R

where i|(M|1)m# and N is the number of values in
sequence. The distribution of auto-correlation ρim is
denoted as ρim:

M

im i km k 1 m
k 0

1
R R -0.25

M+1

 im

13M+7

12 M+1

Hypothesis of independence is said to be true if:

/ 2 0 /2-z Z z

where:

im
0

im

Z

RESULTS AND DISCUSSION

This study will discuss some of the methods and
 properties contained in pseudo-random number

3110

J. Eng. Applied Sci., 15 (16): 3107-3111, 2020

Table 1: Review of the methods and characteristics used in random number generator
Methods Researchers Discussion
Probability Density Johnathan Mun In mathematics, a probability density function represents a continuous probability
Function (PDF) distribution that is defined via its integration property. The probability of interval |a,b|

is specified by The total integral of the function must be 1.0
0

a
f x dx.

Cumulative Distribution Johnathan Mun The cumulative distribution function is defined as P(x) P(X#x) Probability of X is less
Function (CDF) than or similar to x. The limits has the following characteristics: lim4i(x) 0 and lim4i(x)

1. The probability of interval |x, 4| is specified by
x
f x dx

Unpredictable Lagarias[5], The numbers are said to be random if unpredictable by looking at the previously generated

L’Ecuyer and Proulx[6] and numbers, even with unlimited resources. Random numbers generator is considered as
Ritter[7] unpredictable if the prediction time of the next output is super-polynomial or the

probability of correct prediction in polynomial time is equal to randomly guessing a value
Kolmogorov complexity M. Hutter, W. Merkle The Kolmogorov complexity of xd{0, 1} famous as algorithmic information theory as

and P. Vitanyi well is highly applied in computer science and a majority of other scientific studies.
The Kolmogorov complexity of an object is the minimal number of bits needed to
successfully portray the object. It measures the source of computation needed to specify
an object

Cryptographic properties Bellare et al.[8] Randomness is an important ingredient for cryptography. For example is randombits
that are needed not only for generating keys but are also part of steps in cryptographic
algorithms. Random bits will be generated by pseudo-random generator. The safety of
the generated random bits relies on the excellence of the generator

generators. Such as the properties of random numbers
generally PDF, CDF and level of unpredictability. Also
Kolmogorov complexity that is discussed on
Kolmogorov-Smirnov test and cryptographic properties in
random numbers (Table 1).

CONCLUSION

We have reviewed pseudo-random number generation
techniques in this study. Pseudo-random number
generation have some methods based on its formula such
as, Linear Congruential Method (LCM), Quadratic
Congruential Method, Fibonacci Sequence, Multiple
Recursive Generators, Inversive Congruential
Sequences[3] and Mersenne-Twister. Meanwhile, the
random number generation test is to test the distribution
and independence of the sequence. There are frequency
test, runs test and test for auto-correlation.

The variety of random number generation techniques
can develop the use of random numbers, especially, those
which generated by computers. Each method has its own
disadvantages and advantages, so that, it can be adjusted
to the purpose of generating such random numbers.

RECOMMENDATIONS

Future research includes developing the function,
advantages and disadvantages for each pseudo-random
numbers generator. By reviewing some of the methods in
this study, it is hoped that there will be other effective
methods that can generate random numbers better.

REFERENCES

01. Law, A.M. and W. Kelton, 2000. Simulation
Modeling and Analysis. 3rd Edn., McGraw-Hill, New
York, USA.,.

02. Knuth, D.E., 1997. The Art of Computer
Programming Volume 2: Seminumerical Algorithms.
3rd Edn., Addison-Wesley, Boston, Massachusetts,
USA., ISBN-13: 978-0201896848, Pages: 784.

03. Blum, L., M. Blum and M. Shub, 1986. A simple
unpredictable pseudo-random number generator.
SIAM. J. Comput., 15: 364-383.

04. Matsumoto, M. and T. Nishimura, 1998. Mersenne
twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM. Trans.
Model. Comput. Simul. (TOMACS.), 8: 3-30.

05. Lagarias, J.C., 1993. Pseudorandom numbers. Stat.
Sci., 8: 31-39.

06. L’Ecuyer, P. and R. Proulx, 1989. About
polynomial-time unpredictable generators.
Proceedings of the International 21st Conference on
Winter Simulation (WSC’89), December 4-6, 1989,
ACM, Washington, D.C., USA., pp: 467-476.

07. Ritter, T., 1991. The efficient generation of
cryptographic confusion sequences. Cryptologia, 15:
81-139.

08. Bellare, M., S. Goldwasser and D. Micciancio, 1997.
Pseudo-random number generation within
cryptographic algorithms: The DDS case.
Proceedings of the Annual International Cryptology
Conference (CRYPTO‘97), August 17-21, 1997,
Springer, Berlin, Germany, pp: 277-291.

3111

