
McEliece in RADG using Diffie-Hellman Key Exchange Security System

Salah Albermany and Zahraa Naseer
Faculty of Mathematics and Computer Science, University of Kufa, Kufa, Iraq

Key words: Public key, RADG, Diffie-Hellman key
exchange, security

Corresponding Author:
Salah Albermany
Faculty of Mathematics and Computer Science,
University of Kufa, Kufa, Iraq

Page No.: 3138-3145
Volume: 15, Issue 17, 2020
ISSN: 1816-949x
Journal of Engineering and Applied Sciences
Copy Right: Medwell Publications

Abstract: A high-performance ciphering algorithm is
presented. The proposed method combines the ciphering
technique (Reaction Automata Direct Graph (RADG))
with McEliece cryptosystem to obtain higher level of
security. This proposed algorithm has dynamic transitions
too generated by Deffie-Hellman key exchange. McEliece
algorithm is an asymmetric encryption algorithm, adding
a higher level of security to the proposed approach called
ME-RADG-Diffie-Hellman.

INTRODUCTION

The need for security aspects has increased in the
current era because of overlapping information and access
to information via. the internet, this information need a
modern and developed means to protect to ensure that no
manipulation of information and change as well as when
sending messages between individuals or official bodies
these messages needs to the means to protect their own.
To prevent penetration or get this information from these
methods of encryption, the encrypt of information is
ways proved effective in making or delay the discovery of
information (to delay the discovery of information when
the information becomes relevant non-values or
unimportant)[1]. The encryption process in the system
proposed by the algorithm of McEliece cryptosystem, it is
an asymmetric encryption algorithm using the public key
where everyone is dealing with the public and private key
When you send a message the sender must have the
private key and the recipient must have a private key and
a public key where the sender sends the encrypted
message which encrypted with recipient public key and
when the recipient gets the message he will decrypt this

message with his private key. We conclude from these
words that the sender has a public key and private revenue
as well as his public key to the recipient[2]. This study
using presents a novel keyless security scheme which is
based on Reaction Automata Direct Graph (RADG)[3], a
new trend in security that has recently merged and proved
to be efficient. However, one of the weaknesses of this
technique is the fixed graph design but proposed
algorithm depends on McEliec key with dynamic
transitions generated by using the Deffie-Hellman key
exchange. The problem discussed in this study is
changing the graph from fixed to dynamic using the
Deffie-Hellman key exchange, decreasing the decryption
time yet adding more security level.

RADG: RADG (Reaction Automata Direct Graph) is
algorithm which does not need a key exchange between
the two parties because of the combination of automatic
graph and reaction states. RADG design consists of a
sextuple represents as (Q; R; G; Ψ; J; T) where: ‘Q’
stands for a set of standard states, ‘R^’ stands for a set of
reaction states, ‘G’ stands for a set of input data, ‘Ψ’
stands for a set of output transitions, ‘J’ stands for a set

3138

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

4
jump

Q set

0
17
18

3
19
20

1

16
15

2
21
22

R set

5
23
24

Reaction states

Standard states

(which is subset of Qcalled jump states) and ‘T’
Represents transition Function. Each state has λ values.
RADG encryption is based on the relationship between
states, from another side, the design of RADG is based on
m, n, k and λ where n (the size of the Q-set) = |Q|, m (the
size of the R-set)= |R| and λ represents the number of
values in each state except jump set states. The encryption
starts with Q-set of states with each value of the state
depending on the message and when the transitions get to
a jump state they will move randomly and taking the
values from the R-set and going back to the Q-set using
the corresponding transition. The example below
helps understanding RADG design must n$2 and
k#ln/2m[3].

Example: If n = 4, k = 1, m = 1 and suppose λ = 2
number of value in each state then the transition among
states as shown in As shown in Fig. 1, if λ = 2, then G =
{0, 1}, number of states in R (reaction states) is only one
state according to m = 1, number of jump states is 1
according k = 1 and number of states in Q (standard
states) is 4 according to n = 4 and Ψ = {15-24}. Suppose
the original message to be encrypted using RADG is
1110. Transition function as T (address of state bit of
message). Thus, we have T(0.1) = (3.18), T(3.1) = (2.20),
T(2.1) = (1.22) and T(1.0) = (3.15). The corresponding
outputs are 18, 20, 22, 15, respectively.

McEliece cryptosystem: The McEliece cryptosystem is
a type of public key cryptosystem that uses a linear
error-correcting code in order to create a public key and
a private key. The original error correcting code used in
this cryptosystem is the binary Goppa code. A public key,
as one would assume is public anyone and everyone can
find it. In order to do this, the private key is only held by
the receiver of the message. Traditionally, we use the
example of two friends, Alice and Bob, to explain
cryptography. Suppose Alice wants to send a private
message to Bob. Bob must first publish his public key,
which is based on his private key. Then, Alice takes
Bob’s public key and encrypts her message with it. The
message then becomes a codeword. She sends her
encrypted message to Bob. Bob then uses his private key
to decrypt the codeword and read the message[4].

In order to construct the public and private keys, Bob
must first choose an arbitrary Goppa polynomial g(z) with
a degree t over GF(m2). The Goppa code is defined by this
polynomial and by L has parameters [n, $n-mt, $2t+1].
Using this, Bob would then compute the k×n generator
matrix G of the Goppa code. Then, Bob randomly chooses
a k×k invertible matrix S and a n×n permutation matrix P
which means that P has exactly 1 in every row and
column with all other entries being zero. Then he
computes G’ = SGP.G’ is his encoding matrix. This
results in his public key consisting of G’ and t only[5].

Fig. 1: Example of flowing ciphering data in RADG
design

The private key consists of the polynomial g(z), the
original matrix G, along with matrices S and P such that:

(1)G' = SGP

Once Bob publishes his public key, Alice generates
a random binary vector e of length k that has a weight
wt(e)#t. Then, Alice can encode her message m = (m_1,
m_2, …, m_k) by computing:

(2)y = mG'+e

Then, Alice sends her ciphertext y. Bob receives
Alice’s codeword and uses his permutation matrix P to
compute y’ = yP(-1) = mG’P(-1)+eP(-1) = mSG PP(-1)+e’ =
(mS)G+e’.

Bob can then decode y’ into the message m’ = mS by
finding e’ which is done by Bob applying Patterson’s
algorithm[6]. Once this is done, Bob can calculate
y-e’ = mSG and since, Bob knows what S is he can
calculate S(-1) and then recover the original message:

(3)(-1)m = m'S

Basically, the parameters of the McEliece crypto
system are the parameters of the Goppa code used. After
choosing the underlying Galois field GF(m2) and the error
correcting capability of the code t, all other parameters
depend on these two values. The original parameters
suggested by McEliece are m = 10, t = 50 but in citehac,
the authors noted that t = 38 is a better choice with regard
to the computational complexity of the algorithm without
reducing the security level. These parameters nowdays
only give 260-bit security compared to a symmetric ciher.
To achieve an appropriate level of 280-bit security at least
parameters n = 211 = 2048, t = 38 and k = n-m·t = 1751
must be chosen.

3139

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

addj

V0, j

V1, j

m = 0j

m = 1j

Diffie-Hellman key exchange: The purpose of DH
algorithm is to enable two users to securely exchange a
key that can then be used for subsequent encryption of
messages. The algorithm is itself limited to the exchange
of secret values.

The Diffie-Hellman algorithm depends for its
effectiveness on the difficulty of computing discrete
logarithms. Briefly, we can define the discrete logarithm
in the following way. Primitive root of a prime number P
is one whose powers modulo P generate all the integers
from 1 to -1. That is, if is a primitive root of the prime
number P, then the numbers a mod p, a2 mod p, …, a(p-1)
mod p are distinct and consist of the integers from 1
through p-1 in some permutation. For any integer b and a
primitive root a of prime number, we can find a unique
exponent i such that:

(4)ib a (mod p)

where, 0#i#(p-1). The exponent i is referred to as the
discrete logarithm of b for the base, mod p. Discrete
logarithms are logarithms defined with regard to
multiplicative cyclic groups. If G is a multiplicative cyclic
group and g is a generator of G, then from the definition
of cyclic groups, we know every element h in G can be
written as gx for some x. The discrete logarithm to the
base g of h in the group G is defined to be x. For example,
if the group is Z*

5 and the generator is 2, then the discrete
logarithm of 1 is 4 because 24 = 1 mod 5[2].

The proposed ME-RADG-Diffie-Hellman:
ME-RADG-Diffie-Hellman is (McEliece in RADG using
Diffie-Hellman key exchange security system). This
proposed method is an asymmetric encryption algorithm,
bused on RADG method, McEliece and Diffie-Hellman
key exchange. The Diffie-Hellman key exchange is using
to generate a dynamic transition design.

The ME-RADG-Diffie-Hellman design is based on
RADG mathematical model and the characteristics of the
RADG algorithm. ME-RADG-Diffie-Hellman contain 6
tuples as original RADG which are {R, Q, G, Ψ, J, T} as
it has been discussed in (section II) as well as the
Deffie-Hellman key exchange in (section IV).

Diffie-Hellman key exchange is used as the first step
in the transition function which allows both sender and
receiver to generate the next states.

Encryption: The first step in encryption process, encrypt
the message by using the ME-RADG-Diffie-Hellman
algorithm is convert the message in to binary value. Let,
the binary Message M:

1 2 3 4 5 j |M|M = m , m , m , m , m ,..., m , ..., m

Fig. 2: Method of choosing the index of value from state

Fig. 3: General design of ME-RADG-Diffie-Hellman
encryption

where, Mj = 0, 1(j = 1, 2, …, |M|). From the transition
function get the address of first state (add1). Every state
has set of value V(i, j) (i = 0, 1, …, λ-1).

Let λ = 2, value = {V0, V1} OR value (add1) = {V0, 1,

V1, 1}. Where add1 corresponding m1, add2 correspond in
m2, …, addj corresponding mj. In general value (addj) =
{V0, j, V1, j, …, Vλ-1, j}. Then encryption of m1 is Vi,1

(Fig. 2).
The output value gets encrypted using McElice using

public key matrix G’ (the dimensions of G’ matrix =
kmc×nmc):

j i, jC = McEliece(V)

Encrypted (Vi, 1) by McEliece algorithm by using the

public key (G’): Then by adding akmc mc×nmc mc bitbi k1 t n×G = y[P].

random error vector (e) of length nmc bit and weight(t)
then C1 = y+e repeating above process for to C1, C2, …, to
C|m| where, C|m| = McEliece (V(i, |m|). Then, the Cipher text
is C1, C1, ..., C|m|. Clarifying the above steps in Fig. 3.

Transition function: This function generates the next
states which add an advantage to the previous method

3140

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

making it dynamic transitions without the need of adding
the address to the cipher. The first step selects a large
prime number (q) and select number (%), % must be a
primitive root of q and (%<q) [agreement between Alice
and Bob on q and %]. The output must be within the J-set
or Q-set. This is done by using this condition (|Q|#q-1).
The sender selects the privet key XA such that (XA<q) and
calculates the public key YA using YA = %XA mod q.

The receiver selects the privet key XB such that
(XB<q) and calculates the public key YB using YB = %XB
mod q. The sender sends YA to the receiver and the
receiver sends YB to the sender. The sender calculates the
secret key transition by equation:

AX
BSecret key transition of sender Y mod q

The receiver calculates the secret key transition by
equation:

BX
ASecret key transition of receiver Y mod q

Must the secret key transition of sender = secret key
transition of receiver. When encryption process using the
secret key transition of sender to calculates the address of
first state (add1) by using the equation:

Secret key transition of sender
1add mod q

If the add1 from the Q set calculate the address of
second state (add2) by using the equation:

Secret key transition of sender 1
2add mod q

Else the add1 from the J set then select random state
from R set. This state becomes add1 and calculates the
address of second state (add2) by using the equation:

Secret key transition of sender 1
2add mod q

In general addj = %Secret key transition of sender+j-1 mod q (j = 1, 2,
…, q-2). When decryption process using the secret key
transition of receiver to calculates the address of first state
(add1) by using the equation:

Secret key transition of receiver
1add mod q 

If the add1 from the Q set calculate the address of
second state (add2) by using the equation:

Secretkey transition of receiver 1
2add mod q

Else the add1 from the J set then select random state
from R set. This state becomes add1 and calculates the
address of second state (add2) by using the equation:

Secret key transition of receiver 1)
2add mod q

In general, addj = %Secret key transition of receiver+j-1 mod q (j =
1, 2, …, q-2). Repeat these operations to end the
message, {addj}, j = 1, 2, …, |M|.

Decryption: The first step decrypts process, decrypt the
message by using (The ME-RADG-Diffie-Hellman)
algorithm is read the cipher text.

Let the cipher text C = c1, c2, c3, c4, c5,..., cj, ..., c|M|.
The second step decrypts the first value in cipher text (cj)
by McEliece algorithm using privet key matrixes (P, G, S,
t), the dimensions of (P matrix = nmc×nmc), (G matrix =
kmc×nmc) and (S matrix = kmc×kmc) (the input is nmc bit
and output is kmc bit:

j jD = McEliece (c)

Let decrypted (c1) by McEliece algorithm using the
privet key (P, G, S, t), the result is D1 (kmc bit). Third step
from the transition function gets the address of first state
is (add1). Every state has a set of values Vi, j (i = 0, 1, …,
λ-1).

Let λ = 2, value = {V0, V1} OR value (add1) =
{V0, 1,V1,1} where add1 corresponding D1, add2

corresponding D2, ..., addj corresponding Dj

If D1 = V0,1 then m1 = 0, else D1 = V1, 1, then m1 = 1.
Repeating this process to the end of cipher text, then the
message M = m1, m2, ..., m|M|.

Algorithms: This section provides algorithms of
ME-RADG-Diffie-Hellman encryption and decryption as
well as algorithm of the transition function where
substitution is calculated in two directions (sender and
receiver) such that the operations of the transition function
efficiently in the inverse direction.

Encryption: Encryption process using ME-RADG-
Diffie-Hellman algorithm encrypts input message M =
{m0, m1, ..., m|M|} and uses the McEliece algorithm by
using the public key (Algorithm 1).

Algorithm 1; ME-RADG-Diffie-Hellman encryption:
Input: Message (M)
Output: cipher text (C) ={c1, c2,…, c|c|}
1: read binary message M = {m1, m2, ..., m|m|}
2: While (no<message length)
3: stateno7Transition function
4: if stateno from Q set
5: value7Q[stateno]: get value [message]
6: convert the value from decimal to binary vector

3141

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

7: cipher[no]7McEliece E (value)
8: else stateno from J set
9: State no random (0, R length)
10: value7R[stateno]: get value [message]
11: go to step 6 and 7
12: End if
13: End while
14: return cipher text7cipher [no]
End algorithm

Transition function: This function works when
encryption and decryption (by sender and receiver)
(Algorithm 2).

Algorithm 2; ME-RADG-Diffie-Hellman transition
function:
Input: Q, J and R-set
Output: addresses of state.\\{stateno} no = 1, 2, …, |M|
1: select q and %, must % is a primitive root of q and (%<q) [agreement
between Alice and Bob on q and %]
2: Alice selects the privet key XA such that (XA<q)
3: Alice calculates the public key YA using YA = %X

A mod q
4: Bob select the privet key XB such that (XB<q)
5: Bob calculate the public key YB using YB = %X

B mod q
6: (Alice send the public key (YA) to Bob)
7: (Bob send the public key (YA) to Alice)
8: Alice Secret key transition of Alice7YB

X
A mod q

9: Bob secret key transition of Bob7YA
X

B mod q
10: While (no<message lenght)
11: when Alice needed Generating a series of states for j71 to q-2
stateno7%

Secret key Transition of Alice+j-1 mod q
end for
12: when Bob needed Generating a series of states
for j71 to q-2
stateno%

Secret key transition of Bob+j-1 mod q
end for
14: end While
15: return stateno\\state number
End algorithm

Decryption: The decrypt ion process of
ME-RADG-Diffie-Hellman algorithm is based on the
same structure of encryption process but depends on the
privet key in inverse process to decrypt cipher and using
McEliece algorithm (Algorithm 3).

Algorithm 3; ME-RADG-Diffie-Hellman decryption:
Input: ciphertext C = {c0, c1,..., c|c|}
Output: Message (M)
1: read the cipher text C = {c0, c1, ..., c|c|}
2: While (no<message length)\\no is index of cipher
4: convert the cipher of value (cno) from decimal to binary vector
5: value[no]7McElieceD(cno)\\decrypt the cipher of value (cno) by using
McEliece
6: stateno7Transition function
7: if stateno from Q set
8: decipher[no] = Q[stateno]: get value [message]
9: else
10: decipher[no] = R[stateno]: get value [message]
11: End if
12: End while
13: return message M7decipher[no]
End algorithm

Table 1: Values of R and Q set (in ME-RADG-Diffie-Hellman example)
State Cipher if 0 Cipher if 1 Status
1 2 3 Q
2 6 7 Q
3 8 4 Q
4 10 5 Q
5 11 1 Q
6 Jump Jump J
7 0 3 Q
8 9 13 Q
9 6 14 Q
10 Jump Jump J
11 7 12 Q
12 5 15 Q
13 2 8 R
14 6 3 R
15 10 5 R
16 7 9 R
17 1 4 R
18 0 11 R
19 13 15 R
20 14 12 R

Example: Assuming the two users agreed on the linear
code C is (7, 4) and generator matrix:

4 7

1 0 0 0 1 1 0

0 1 0 0 1 0
G

1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

, t 1, x 1



 
 
   
 
 
 

and the message M is (1 1 0 1 0 0 1) encrypts the message
M by using ME-RADG-Diffie-Hellman cryptosystem.
Given the cipher in Table 1.

Generate of the keys: The nmc=7, kmc = 4 (from the linear
code C). We need to choose our random matrices S
(binary non-singular matrix) must be (kmc×kmc) matrix and
(binary permutation matrix) must be (nmc×nmc) matrix
choosing our random matrices as follows:

4 4

7 7

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0

1 1 0 1

1 0 0

0 0 1 0

1
S

0 1 1 1

1 1

0

0 0

P





 
 
 
 
 
 


 
 
 
 
 



 







 


 

Compute the public key G’ = SGP

3142

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

'

4×7

1 1 1 1 0 0 0

1 1 0 0 1 0 0
G =

1 0 0 1 1 0 1

0 1 0 1 1 1 0

 
 
 
 
 
 

let q = 13, q is a prime number (agreement between two
users the sender and receiver):

q-1 12 Q 

let % = 2 [is primitive root of q and %<q]. Let, the sender
called Bob and the receiver called Alice. Let Alice select
the privet key XA = 3, (XA<q). Alice calculates the public
key YA using YA = %X

A mod q = 23 mod 13 = 8. Let Bob
select the privet key XB = 7, (XB<q).

Bob calculate the public key YB using YB = %X
B mod

q = 27 mod 13 = 11 the public key of receiver (Alice) is
(G’, t, YA). (Alice send the public key to Bob) the private
key of receiver is (S, G, P, XA). The public key of sender
(Bob) is (YB). (Bob send the public key to Alice) the
private key of sender is (XB).

Encryption: The encryption of the message depends on
2 functions: encrypt function to encrypt the values and
transition function to transition between the states.

Transition function: |Q| = 12 (Number of Q-set and J-set
(|J|f|Q|)) |J| = 2 (Number of J-set), |R| = 8 (Number of
R-set) Must |Q|#q-1 (because the output must be within
the J-set or Q-set) secret key transition of Bob (sender) =
YA

XB mod q = 87 mod 13 = 5 address of first state = %Secret

key transition of Bob mod q = 25 mod 13 = 6.
Since, the address of first the state is 6 and the state

6 is a jump state, then select a random state from R set,
for example, select state 16, then add1 = 16 address of
second state = %Secret key transition of Bob+1 mod q = 26 mod 13 =
12. Since, the address of second the state is 12 and the
state 12 is from Q-set, then add2 = 12 address of third
state = %Secret key transition of Bob+2 mod q = 27 mod 13 = 11.

Since, the address of third the state is 11 and the state
11 is from Q-set, then add3 = 11. Repeating this process
to the end of message, the result is {add1, add2, add3, add4,
add5, add6, add7} = {16, 12, 11, 9, 5, 20, 7}.

Encrypt the values: Since, |Q|+|J| = 10+2 = 12 and q-1 =
13-1 = 12, then |Q|+|J| = q-1. Since, x = 1, then λ = 2x = 2
(Each state has two values).

Since, kmc = 4, then 2kmc = 24 = 16 all the values# 2kmc

(Because it needs to be encrypted with a public key
matrix G’, the size of G’ is kmc×nmc.

Step 1: Read binary message. Message = 1101001.

Step 2: add1 = 16, (from the transition function). This
state has two values are V0,1 = 7 and V1,1 = 9.

Step 3: The first bit from the message is m1 = 1 select the
second value is V1,1 = 9 because the bit of message
is m1 = 1.

Step 4: Encrypt value (9) by McEliece algorithm and use
public key matrix (G’): the size of G’ matrix = (kmc×nmc).
Since, [log2 value] = 4 bit = kmc, then C1 = E(value)G’.
Encrypted the value by McEliece algorithm using the
public key (G’) and then we add a random error vector (e)
length nmc bit and weight(t), the input kmc bit and output
nmc bit:

 

   

1

1

4 7

value 1001 then C value×G'+e

1 1 1 1 0 0 0

1 1 0 0 1 0 0
C 1001

1 0 0 1 1 0 1

0 1 0 1 1 1 0

0000100 1010010


 

 
 
   
 
 
 



C1 = 82 is cipher of m1.

Step 5: add2 = 12, (from the transition function). This
state has two values are V0,2 = 5 and V1,2 = 15.

Step 6: The first bit from the message: m2 = 1. Select the
second value is V1,2 = 15 because the bit of message
is m2 = 1.

Step 7: Encrypt value (15) by McEliece algorithm and
use public key matrix (G’): the size of G’ matrix =
kmc×nmc. Since, [log2 value] = 4 bit = kmc, then C2 =
E(value)G’.

Encrypt the value by McEliece algorithm using the
public key (G’) and then we add a random error vector (e)
length nmc bit and weight(t), the input kmc bit and output
nmc bit:

 

 

'
2

2

4 7

value 1111 then C value×G +e

1 1 1 1 0 0 0

1 1 0 0 1 0 0
C 1111

1 0 0 1 1 0 1

0 1 0 1 1 1 0

0000100


 

 
 
   
 
 
 

C2 = 123 is cipher of m2. Repeat this process to the end of
message. Cipher text (C) : 82, 123, 3, 85, 31, 85, 103
(Table 2).

3143

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

mj

Secret key

addj

V0,j

V1,j

.

.

.

addj addj+1

mj+1Transition
function

Transition
function

addj+1

V0,j+1

V1,j+1

.

.

.

V , V , ..., V , V , V , ..., Vi,1 i,2 i,j i,j+1 i,j+2 i,|m|

Public key Encrypt
function

Cipher text: C , C , ..., C, C , ..., C1 2 j j+1 |M|

Table 2: Encryption process (ME-RADG-Diffie-Hellman)
Index Message Stateno Status Jump state E value N stateno

0 1 16 In R Jump 82 12
1 1 12 In Q 123 11
2 0 11 In Q 3 9
3 1 9 In Q 85 5
4 0 5 In Q 31 10
5 0 20 In R Jump 85 7
6 1 7 In Q 103 -

Table 3: Decryption process (ME-RADG--Diffie-Hellman)
Index Ciphertext Values Stateno Status Jump state N stateno Message
0 82 9 16 In R Jump 12 1
1 123 15 12 In Q 11 1
2 3 7 11 In Q 9 0
3 85 14 9 In Q 5 1
4 31 11 5 In Q 10 0
5 85 14 20 In R Jump 7 0
6 103 3 7 In Q - 1

Table 4: Integrity in ME-RADG-Diffie-Hellman
Index Ciphertext Values Stateno Status Jump state N stateno Message
0 82 9 16 In R Jump 12 1
1 123 15 12 In Q 11 1
2 3 0 11 In Q - -
3 - - - - - - -
4 - - - - - - -
5 - - - - - - -

Decryption: Decryption the message depends on 2
functions: the decrypt function to decrypt the values and
transition function to transition between the states.

Decrypt the first value 82 by using private key of
Alice in McEliece algorithm. The result is value (9).
Secret key transition of Alice (receiver) = YB

XA mod q =
113 mod 13 = 5 first state = %Secret key transition of Alice) mod q =
25 mod 13 = 6 (Table 3).

Since, the address of first the state is 6 and the state
6 is a jump state, then search value 9 in R set find in state
16, the value 6 in state 16 is bit (1) is first bit in original
message (Fig. 4).

Decrypt the second value 123 by using private key of
Alice in McEliece algorithm. The result is value (15)
second state = %Secret key transition of Alice+1 mod q = 26 mod 13 =
12, state 12 is from Q set, the value 15 in state 12 is bit (1)
is second bit in original message. Repeating all the way
until the cipher is finished. The message is 1 1 0 1 0 0 1.

Analysis: The performance and security analysis of this
method (McEliece RADG using Diffie-Hellman key
exchange security system) is explained in E. examples in
section (V).

Data integrity: In terms of data and network security,
data integrity is the assurance that information can only be
accessed or modified by those authorized to do[7]. In this
algorithm, any modify on the transferring data by
unauthorized users or try to damaging the data by adding
noise or deleted some pieces from the data, then the

Fig. 4: General design of transition function IN
ME-RADG-Diffie-Hellman

decipher process cannot be resumed as the previous step
in Table 4 in the 3th row if the data change from
(3) to (2); then the process cannot be resumed to decipher
the message as shown in Table 4.

Authentication: Authentication is a technique used to
investigate the identity of the party who generated data by

3144

J. Eng. Applied Sci., 15 (17): 3138-3145, 2020

Fig. 5: Authentication in ME-RADG-Diffie-Hellman

Fig. 6: Entropy for message run 100 times

using hash value. The authentication mechanism joins
with the data integrity[8]. In this method using a hash
function to provide message authentication and do not
need server on network, the whole can be described in
three steps (Fig. 5).

Step 1: Each value in massage {V1, V2, ..., V\|M|}
encrypt by using the public key and this value are entering
into “h” hash function (using one of hashing algorithm
like MD5). In MD5 the input length string is 512 bits if
PA<512 bits padding with zeros on the left, the sender
sends the cipher value and hash value as authentication
code.

Step 2: The receiver will decrypt cipher values by using
the privet key to get the plaintext, see “D” function
in Fig. 3 and 4. The plaintext then compute the hash
value like step 1 from the message values (plaintext).

Step 3: The final step is compared between the
authentication code and sends from the sender
and hash value calculated by receiver if they

equal the receiver authentication the sender if the
values are not equal the receiver rejects the sender.

Performance analysis of ME-RADG-Diffie-Hellman
design: In order to analyze the performance of the
ME-RAGE-Diffie-Hellman exchange method, the entropy
is used. The ME-RADG- Diffie-Hellman is run 100 times
for the same message to show how to implement in terms
of entropy of different ciphertext values. In Fig. 6, the
entropy for the same text appears 100 times.

CONCLUSION

A new security approach has been proposed based on
the classical RADG and the McEliece algorithm. The
proposed method, called ME-RADG-Diffie-Hellman,
outperforms the original RADG as follows:

The time of decryption is less than the RADG
because there is on search process to get the cipher value
from all states every time. Now, we don’t the state values
are generated by the Diffie-Hellman.

The security is upgraded using the asymmetric design
(only one person need to privet key). The system design
is more dynamic including more parameters in McEliece
algorithm.

REFERENCES

01. Kaufman, C., M. Speciner and R. Perlman, 2002.
Network Security: Private Communication in a
Public World. Prentice Hall, New Jersey, USA.,.

02. Stallings, W., 2010. Cryptography and Network
Security: Principles and Practices. 5th Edn.,
Prentice-Hall, Upper Saddle River, New Jersey,
ISBN-10: 0136097049, Pages: 744.

03. Albermany, S.A. and G.A Safdar, 2014. Keyless
security in wireless networks. Wirel. Pers. Commun.,
79: 1713-1731.

04. McEliece, R.J., 1978. A public-key cryptosystem
based on algebraic. National Aeronautics and Space
Administration, Washington, USA.

05. Canteaut, A. and N. Sendrier, 1998. Cryptanalysis of
the original McEliece cryptosystem. Proceedings of
the International Conference on the Theory and
Application of Cryptology and Information Security,
October 18-22, 1998, Springer, Beijing, China, pp:
187-199.

06. Pless, V., 1989. Introduction to the Theory of Error
Correcting Codes. John Wiley and Sons Inc., New
York, USA.

07. Kou, W., 2012. Networking Security and Standards.
Vol. 394, Springer, Berlin, Germany,
ISBN:978-1-4613-7820-4, Pages: 203.

08. Boyd, C. and A. Mathuria, 2013. Protocols for
Authentication and Key Establishment. Springer,
Berlin, Germany, ISBN:978-3-642-07716-6, Pages:
321.

3145

Ciphertext Hash
function

Encrypt Public key

Message Yes/No

A

Ciphertext

Decrypt Private
key

Message Hash
function

Sender Receiver

Ciphertext

Authentication code

1.04

1.02

1.00

0.98

0.96

0.94

E
nt

ro
py

0 10 20 30 440 50 60 70
No. of run

80 90 100

