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Abstract: CHP (Combined Heating and Power) and
CCHP (Combined Cooling, Heating and Power) systems
defined by a high energy efficiency and a fewer polluting
emissions in comparison to the separated energy
generation leads to a high attention during the last decade.
In order to combine these systems into a grid, the
economic aspect and an environmental aspect must be
studied. In this study, a multi-objective optimization is
developed to study these aspects. This optimization is
based on the economic and the environmental challenges
of a trigeneration system that produces cooling, heating
and electricity simultaneously. Due to the complexity of
the system a Genetic algorithm is used to find the optimal
solution. Then, a new decision-making strategy for the
optimal power of the CCHP system that must be
integrated in any sector based on Mathematical
regressions is introduced.  Different load levels were
studied in order to demonstrate the effectiveness of this
proposed optimization.

INTRODUCTION

During the last decades, the installation of CHP and
CCHP systems is increasing because of their high
efficiency and less polluting emissions. The cogeneration
and trigeneration systems are proven to be systems that
achieve energy savings and reduces polluting emissions
at the same time. First, their installation was focused in
industries, later installation was made in commercial and
even in residential buildings. For cooling production an
absorption or an adsorption chiller can be used in the
CCHP system.

Generally, as any system the first design of a
CHP/CCHP system is not the final design since it can be
improved by applying the proper modifications to get in
the end the final design. Therefore, the optimization is the

key for the improvement of the main design which can be
in cost saving, increasing efficiency and decreasing
polluting emissions. The optimization process can be
applied on the prime mover, the heat recovery system, the
operation strategy and on the energy storage system.
Many researches are carried out on the optimization of a
CHP or a CCHP system. There are many ways of
optimization like the Mixed-Integer Linear Programming
(MILP), the Mixed-Integer Non-Linear Programming
(MINLP), the Stochastic optimization, the Genetic
Algorithm (GA) and the Particle Swarm Optimization
(PSO).

From the above, the design of a trigeneration system
is a complex multi-objective optimization problem. The
scope of this research is to introduce a method of
optimization of a trigeneration plant taking into
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consideration the environmental and economic criteria.
The set of optimal solutions is grouped and then a
decision-making technique is introduced to choose the
best solution.

A single multi-constraint objective for a CCHP
system cannot adequately represent the problem being
faced. For this reason, there is a need to formulate the
problem with two or more objectives. Therefore, the
multi-objective optimization method is applied to solve
the problem.

A multi-objective optimization optimizes many
objectives simultaneously in an area of multi-criteria
decision making. It is also called Pareto optimization.
When these objectives are contradictory, the optimal
solution of one function may exclude those of other
functions. Then, the new optimum will be the
compromise between the objectives. The set of Pareto
optimal points in the objective space form the Pareto
front.

The relative importance of the objectives is generally
not  known  until  the  system  is  well  defined  and  the
trade-offs between objectives are well understood. As the
number of objectives increases, the tradeoffs will likely
become complex and less easy to quantify.

In this research, we consider the following system: F
(Power) = [Total_cost (Power), Polluting_emissions
(Power)]. Next, we must evaluate the system we are
studying by  its  economic  and  environmental
performance.

In former studies, Tsay et al.[3] found the optimal
power that corresponds to the minimum cost of
production and the optimal power that corresponds to the
minimum polluting emissions each one separately. They
proposed also a distribution strategy for policymakers[1].
They calculated as well the minimum cost in 3 cases
(Peak, half-peak and off-peak) by considering
environmental constraints[2, 3]. Lastly by Tsay[3] they
concluded that the cost of production and the polluting
emission are inversely correlated. Frangopoulos et al.[4]

utilized the Genetic Algorithm (GA) with a sensitivity
analysis to obtain the optimal number of CHP to be
integrated for a given power, without taking into
consideration the environmental limitations. Thus, for a
given system, the decision makers only have to find the
number of cogeneration systems that needs to be
installed[4]. Furusawa etc, took into consideration the
environmental constraints in their study to find the cost of
production. They found that the cogeneration systems
even with big capacities reduces the primary energy
consumption and the polluting emissions mainly the 
emissions. Freschi etc, adopted the weighted sum method
for economic and environmental evaluations. As a result,
they obtained many solutions as compromise solutions[5].
This method is not considered evident and accurate
because different solutions can be obtained by changing
the weights factors.

As a conclusion from the above cited studies, the
decision-making strategy of the optimal power of a
CHP/CCHP system is taking into consideration a
compromise between the economy and the environment
issues.

On another side, many decision-making techniques
utilizedthe multi-objective optimization. To design a
hybrid energy system, Perera et al.[6] adopted the Fuzzy
TOPSIS technique of multi-criteria decision making[6, 7].
This technique is combined with Pareto multi-objective
optimization. Applying this technique with a weighting
decision matrix the solution is obtained. Thus, TOPSIS
Fuzzy technique is based on estimation of the weight
factors. Chaudhuri and Deb[8] utilized an interactive multi-
criteria decision-making method that is founded on the
weighted sum approach, the function-based approach of
the distribution service and the Chebycheff function
approach. The optimal solution based on estimations of
the decision makers is found. Pedrycz and Song[9] used the
methods of AHP (Analytic Hierarchy Process) and
granularity information[10-14]. Due to the importance of the
objective studied the weighting factor is assigned to it
from a fuzzy set theory defined by Huang[15]. A fuzzy
decision algorithm defined by Niknam et al.[16]  based on
the selection of the weight factors by the decision makers
due to the importance of the objective studied. By
Miettinen et al.[17] used a method that finds the optimal
solutions of Pareto obtained by selection of preference
information in the form of classifications by the user. This
method is a NIMBUS multi-objective optimization[18-20].
Gunawan and Azarm tested a set of robust designs which
is considered as a set of optimal solutions (Pareto
solutions)[21]. Dowhan et al.[22] applied the analytic
hierarchy  process  method  combined  with  Pareto 
multi-objective optimization. Yang and Wang converted
the multi-objective problem to a single objective problem
using the weighted aggregation approach method defined
by the multiplication of the objective by a weighting
factor estimated by the user and the decision maker[23].
Dufo-Lopez, etc., calculated the optimal solution of the
Pareto front by using many control strategies in order to
produce energy[24].

All the above-mentioned studies are based on
decision-making techniques that adopt estimations and
suggestions of the users and the decision makers while
using the multi-objective optimization. Not very often,
these techniques are appropriate because the decision
maker has a predicted result that must be confirmed by
the method. But in general, the results must be based on
a scientific method and not assumptions.

Al Asmar et al.[25] have proposed a scientific method
of multi-objective optimization and decision-making to
calculate the best power of a cogeneration system to be
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installed in several sectors based on the multilinear
regression as a function of total cost and polluting
emissions[25-27].

Rabbani et al.[28] used Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) to find the optimal
solution  between  the  economic  aspect  represented  by
the capital cost, operational cost and energy consumption
and  the pollutant  emissions  represented  by  the 
emissions  following  five  different  load  strategies  and
by  applying  different  weight  factors  chosen  by  the
user[28].

In this research, we propose a new method for
selecting the  best  solution  calculated by a heuristic
multi-objective optimization. This method is applied to
find the optimal power of a trigeneration system to be
installed in any sector, respecting the economic-
environmental conflict.

First of all, we find the best regression fitted with the
Pareto set previously calculated. The minimum residual
for the selected regression corresponds to the optimal
solution.

Model of performance of the trigeneration system: In
this study, a mathematical formulation of a trigeneration
system with gas turbine as a prime mover and an
adsorption chiller will be carried out. Two objective
functions will be considered, the first function
corresponds to the total cost which represent the economy
objective function. And the second function corresponds
to the  emissions due to integration of trigeneration
system into a grid which represents the environmental
objective function. The objective function that represent
the total cost to be optimized is represented as follow by
(Eq. 1)[25-27, 29, 30]:

Ftotal = Produced energy cost-exchanged energy
cost+maintenace cost-Attrition cost of conventional
extinct generator+investment cot transmission cost.
Which can be represented mathematically as follows:
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The objective function that represent the pollutant
emissions (CO2) to be optimized is represented as follow
by Eq. 2[25-27, 29, 30]:

pollutionF Fuelpollution+pollutionduetosystemdeterioration

-pollution due to conventionalextinct generator

+pollutiondue ro the fabricatioof theunitsof the CCHP



Which can be represented mathematically as follows:
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The total cost and CO2 emissions functions are
contradictory but need to be solved simultaneously to find
the optimal solution of the CCHP studied. Therefore, the
system composed from these two objective functions can
be solved using a multi-objective optimization tool. In this
study the multi-objective genetic algorithm solver of
MATLAB 2018b is used.

Integration level: Three energy load levels are
considered in this study: residential, commercial and
industrial. For the residential load level, six medium
apartments in a building are considered. Their electrical
and  thermal  consumption  is 57000 and 56000 kWh for
2 years, respectively. The inequality constraint of this
level is: P15 kW; the lower bound is 5 kW and the upper
bound is 15 kW[25].

For the commercial load level, 17 shops are
considered. Their electrical and thermal consumption is
100000 and 105000 kWh for 2 years, respectively. The
inequality constraint of this level is: P30 kW; the lower
bound is 16 kW and the upper bound is 30 kW[25].

For the industrial level integration, it corresponds to
a high energy level paper mill. Its electrical and thermal
consumption is 200000 and 210000 MWh for 2 years,
respectively. The inequality constraint of this level is: P50
MW; the lower bound is 16 MW and the upper bound is
50 MW[25].

Main factors: For the three load levels the system studied
is a CCHP system with gas turbine as a prime mover and
an absorption chiller.

The efficiency of the cogeneration system is
considered to be 85% and the coefficient of performance
of the absorption chiller is 0.8. This study corresponds to
two years of integration of trigeneration systems and 2
values for the integration system n (1.1 and 1.5) with an
average of 8000 operating hours per year for the
cogeneration system and an average of 3200 operating
hours per year for the absorption chiller. Then the number
of time intervals is j = 2. Thus, the number of traditional
generators extinct because of this integration is k = 1. The
calculated power: P = Pthermal+Pcooling+Pelectrical. All the data
required are represented below for each load level[25]

(Table 1).
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Table 1: Factors of different load levels
Factors Residential sector Commercial sector Industrial sector
E (kWh) [67000;66000] [120000;125000] [77000;76000].103

Tariff (€/kWh) 0.17 0.17 0.17
c (€/kWh) [0.1:0.11] [0.1:0.11] [0.085 0.090 ;0.085 0.090 ;0.090 0.095]
alpha [0.2;0.3] [0.2;0.3] [0.2 0.3 ; 0.3 0.3 ; 0.31 0.3]
cm (€) [2000;2100] [4000;4100] [120000 130000; 170000 180000;150000 140000]
a (€/h) [0.1;0.12] [0.2;0.18] [15 14 15; 15 15 14]
ct (€/kWh) 0.01 0.01 0.01
D (kg/MWh) [40;41] [60;61] [300 280; 275 273; 270 270] 
Dam (kg) [320;360] [480;460] [2000 2100; 2100 2150; 2000 2170]
Pol (kg/h) [4.5;4.6] [6.5;6.6] [75 76 75; 76 75 74]
fam 0.1 0.1 0.1

MATERIALS AND METHODS

The Pareto set of solutions will change at each
simulation on MATLAB. Therefore, there is no ideal
solution  but  there  is  a  preferred solution using the
multi-objective optimization. This multi-objective
simulation is executed on MATLAB 1000 times for each
level in order to get a more accurate result.

All the Pareto sets obtained are assembled to obtain
the resulting Pareto set. In this study as a novelty different
regression method will be introduced and compared in
order to select the best solution. We will use the resulting
Pareto set to represent the different regressions. The best
solution will correspond to the best regression and the
closest one to the regression selected.

Multiple linear regression: Multiple linear regression is
used to model the relationship between a response or a
dependent variable and two or more explanatory or
independent variables by fitting a linear equation to the
observed data.

This study considers two explanatory variables: the
total cost (x1) and the CO2 emissions (x2). The response
value is the predicted value . The MLR applied to theŷ

model from the multi-objective optimization obtained is
as follow:

0 1 1 2 2ŷ + .x + .x +    

Where:
α0 = Intercept of the power
α1 and α2 = The partial regression coefficients
g = The random errorof the studied regression[31]

Multiple polynomial regression: Multiple polynomial
regression is used to model the relationship between a
response or dependent variable and two or more
explanatory or independent variables by fitting a
polynomial equation to the observed data.

This study considers two explanatory variables: the
total cost (x1) and the CO2 emissions (x2). The response
value is the predicted value . The MPR applied to the
modelfrom the multi-objective optimization obtained is as
follow:

2 2
0 1 1 2 2 3 1 4 2

5 1 2

ŷ + .x + .x + x + +x +

.x .x +

     
 

With α0 intercept of the power α1, α2, α3, α4 and  α5 are the
partial regression coefficients.  g is the random errorof the
studied regression.

Multiple Log-Level regression: Multiple Log-Level
regression is used to model the relationship between a
response or dependent variable and two or more
explanatory or independent variables: the total cost (x1) 
and the CO2 emissions (x2). The response value is the
predicted value The Multiple Log-Levelapplied totheŷ.

modelfrom the multi-objective optimization obtained is as
follow:

0 1 1 2 2ˆLn y + .x + .x +    

With α0 intercept of the power α1 and  α2 are the partial
regression coefficients. g  is the random errorof the
studied regression.

Multiple level-log regression: Multiple level-log
regression is used to model the relationship between a
response or dependent variable and two or more
explanatory or independent variables: the total cost (x1)
and the CO2 emissions (x2). The response value is the
predicted value . The Multiple level-log applied totheŷ
modelfrom the multi-objective optimization obtained is as
follow:

   0 1 1 2 2ŷ + .Ln x + .Ln x +    

With α0 intercept of the power α1 and  α2 are the partial
regression coefficients.  g is the random error of the 
studied regression.

Multiple log-log regression: Multiple Log-Log
regression is used to model the relationship between a
response or dependent variable and two or more
explanatory or independent variables: the total cost (x1)
and the CO2 emissions (x2). The response value is the
predicted value . The Multiple Log-Log applied to theŷ
modelfrom the multi-objective optimization obtained is as
follow:
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   0 1 1 2 2ˆIn y + .Ln x + .Ln x +    

With α0 intercept of the power  α1 and α2 are the partial
regression coefficients. g is the random error of the
studied regression.

Method of selection of the best regression and best
solution: In statistics, the standard deviation represents
the measure of dispersion of a set of data values studied.
In our study, the standard deviation is calculated for the
residual of each solution obtained by the multi-objective
optimization tool. The lowest the standard deviation of the
residuals is the fitter is the data with the regression
studied. 

In this study, the regression selected is the best
regression that fits the data which means that it will be the
regression with the lowest standard deviation of the
residuals. Once the regression is selected, the best power
needs to be found inside this regression. For this purpose,
the observed power that have the smaller residual will be
considered as the best power of trigeneration system to be
integrated into the grid for each load level. Note that each
data point has one residual defined by:

ˆe y-y

Residual Observed value-Predicted value

RESULTS AND DISCUSSION

In  this  study,  the  numerical   results   of   the
“multi-objective” optimization that was simulated 1000
times is represented. The number of solutions obtained for
each series is far greater than the number of simulations
(15210 for the residential case and 38251 for the
industrial case). We have eliminated duplicates to obtain
an equiprobable data set, knowing that regressions are not
affected by repeated solutions. The table below shows the
value of standard deviation for different regression types
and for all the studied load levels (Table 2).

Since, the standard deviation for the log-log
regression is the lowest, therefore we will choose the
predicted values for the power from this regression.
The difference between the observed value of the
dependent variable (y) and the predicted value ( ) isŷ

called the residual (e). Each given point has a single
residual which is represented by equation:

ˆe y-y

Residual Observed value-Predicted value

The equation obtained from the regression is
considered as an empirical relation (equation) between the
power, the total cost and the polluting emissions. This
equation depends on the characteristics of the system and
the energy demand. The power corresponding to the
smallest residual is considered as the optimal power to be
integrated into the grid[1, 25, 29].

The series corresponding to the residential and
commercial load levels when n = 1.1 did not provide an
optimal solution unlike where all the other series an
optimal solution is provided. These solutions are between
the lower and the upper boundaries of each load level.
Therefore, we chose the log-log regression analysis
(lowest standard deviation) between all the regressions in
order to select the optimal solution. The equations
obtained by the log-log regression for each data series
obtained from the multi-objective optimization are as
follow (Table 3): 

Residential load level for n = 1.5:

   
 

1

-5
2

ˆIn y -2.830438081-0.01594476In x +

0.987802028In x +1.304173.10



Commercial load level for n = 1.5:

   
 

1

-6
2

ˆIn y 3.054455338-0.005238329 In x +

0.993966735 In x +8.692974.10

 

Industrial load level with n = 1.1:

   
 

1

-5
2

ˆIn y -3.339671947-0.05481179 In x +

0.98765487 In x +2.862607.10



Industrial load level with n = 1.5:

   
 

1

-5
2

ŷ -3.767117075+0.992521052 In x -0.000180406

In x +9.179882.10



Table 3 represents the observed power having the
smallest  absolute  residual  which  represents  the optimal

Table 2: Standard deviation of different regressions for all load levels studied
SD Type of regression MLR MPR Level-log Log-level Log-log
Residential n = 1.5 0.000239897 0.000207113 0.016346958 0.002233927 8.11452.10-6

Commercial n = 1.5 0.000205999 0.000205983 0.008012557 0.003170067 5.05672.10-6

Industrial n = 1.1 0.00031029 0.00031029 0.01447069 0.010237925 1.62644.10-5

n = 1.5 0.00180465 0.00179916 0.50982296 0.010306197 5.61441.10-5
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Table 3: Results of the multi-objective optimization
Integration levels Total cost (€) Pollution (kg of CO2) Power (KW) Residuals
Residential (n = 1.5) 24187 7893.7 9.299 5.84782E-11
Commercial (n = 1.5) 36770 34287 26.878 3.37081E-09
Industrial (n = 1.1) 23142000 286700 44333 2.35507E-11
Industrial (n = 1.5) 9773600 131580 20447 5.79290E-09

power for each case. It also represents the total cost and
the polluting emissions of each system in function of the
motivation factor n. For the residential and the
commercial load levels, the multi-objective optimization
has provided only one solution (the lower boundary of the
power). And thus, there is no need to calculate the
residuals.

As shown in the above table, the pollution factor
affects the solution. In fact, if this factor is not taken into
consideration the best power could be chosen according
to the highest power obtained by the optimization (the
best economic power). Therefore, this study can highlight
the fact that due to the log-log regression, the best
economic-environmental power is obtained.

Nevertheless, the motivation factor and the total cost
are inversely proportional (if n increases, the total cost
decreases and vice versa). Furthermore, the integrated
power is directly related to the motivation factor which is
economically viable for the user.

Moreover, the integration of trigeneration systems in
an industrial load level is very advantageous. In fact, at
both motivation factors, the results were satisfactory.
However, for the residential and commercial integration
level, the results were only satisfactory with the highest
motivation factor. Finally, the parameters of the objective
functions affect the results of the optimization. Between
all the parameters the most affecting one is the energy
consumption. Thus, the results could vary according to
the energy load on the grid.

CONCLUSION

In this research, our interest was to install a
trigeneration system into an electrical grid for different
energy loads level taking into consideration the economic
and the environmental issues.

The innovation in this study was to introduce a new
decision-making strategy that is used to find the optimal
trigeneration power that respects the economy and the
environment issues. This innovation is divided into four
stages. The first corresponds to a multi-physical
modeling,  associated  with  economy  and  environment,
of  the  integration  of  trigeneration  systems  in  an
electrical network.  The  second  corresponds  to  the 
heuristicmulti-objective optimization (Genetic algorithm)
dealing with the total cost and  emissions objective
functions in order to obtain the Pareto front which
generates the optimal solutions set. The third is the
application of a new decision-making strategy by

choosing the best regression fitted to the model. The
fourth corresponds to the selection of the best
trigeneration power adapted to the level of integration
required that corresponds to the smallest residual of the
chosen regression. This power illustrates the best
compromise between the total cost and emissions.

Finally, the above cited is applied on three load
levels (residential, commercial and industrial). The results
were significant showing the benefit of integrating a
CCHP into each network. This study could be applied to
any multi-objective optimization method. In addition, it
could be applied to several integration levels and
trigeneration system types. Being dependent on energy
consumption, the best suitable trigeneration power varies
according to the system’s application.

List of Nomenclatures:

M = Number of cogeneration systems
N = Number of time intervals
K = Number of conventional extinct generators
Pi = Power produced by ith cogeneration system

(MW)
Pc, I = Power produced by ith absorption chiller

system (MW)
ti, j = Production time of the ith cogeneration

system at jth time interval (h)
tc, ij = Cooling production time of the ith absorption

chiller at jth time interval (h)
Ej Load = Load demand at jth time interval (MWh)
Tariff = Electricity tariff (€)
N = Incentive or motivation factor when consumer

sells the utility (usually 
Hbij = Fuel enthalpy in the boiler of the ith

cogeneration system at jth time interval
(MWh)

Pi = Pithermal+p1electrical or

bij i ij c,i

bij

H P * t +p +Losses

0 Loseses 0.5H



 

cij = Fuel cost of the ith cogeneration system at
jth time interval (€/MWh)

αij = Deterioration factor of the ith cogeneration
system at jth time interval (0#αi#1; αi = for
ideal cogeneration system and  for damaged
one)

cmij = Average maintenance cost of the ith
cogeneration system at jth time interval (€)

Inv. Cost = Investment cost of the trigeneration system.
(€)
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ajk =  Attrition cost of the kth conventional off-
generator at jth time interval due to
cogeneration system integration. ( €/h)

St = Total steam demand (Ton)
cw = Cost of water (€/Ton)
ct = Transmission cost (€/MWh)
Dij = Pollution rate of fuel in the boiler of the ith

system at jth time interval (Ton/MWh)
Damij = Pollution due to damaging of the ith system

at jth time interval (Ton)
poljk Pollution of the kth off-generator at jth time

interval (Ton/h)
Fam = Amortization and maintenance factor
NIN = Number of pieces of equipment installed
CO2l = CO2 emission associated with the

construction of the unit
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