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Abstract: This study discusses how to optimize the
Bidirectional of the Central Pattern Generators (CPGs) to
produce rhythmic patterns for human locomotion by using
the enhancement Genetic algorithm and pattern search
function. It also shows how small changes in some CPG
parameters in stable domain result in different walking
gaits, optimizing bidirectional two CPGs in stable domain
do not only enhance movement but also generate
rhythmic patterns similar to the rhythmic patterns derived
from real data without any input or sensory feedback.

INTRODUCTION

To begin with, CPGs are neural networks located in
the spinal cord of vertebrate as well as invertebrate
animals. These CPGs are designed to exclusively supply
synchronized rhythmic pattern activities, viz., leg
movement in the course of walking, respiration or
chewing[1]. One of the captivating characteristics of CPGs
lies in their capacity to generate rhythmic signals over and
above any rhythmic contribution from higher control
centers or sensory response. In addition, CPGs are
vigorous, versatile and effortlessly adjustable. These
compelling attributes render CPGs expedient for mobility
control of robots with multiple joints, Degrees of Freedom
(DOF) and even for kinematically redundant robots.
Research into bio-robotics has recently gained
unprecedented momentum. The interest in the application
of robots to enhance traditional mechatronics systems or
to attend to particular issues related to biology has
brought bio-robotics back to life but with a different
spirit[1]. The focus now is on how in robotics, CPGs can

be effectively manipulated to administer cadenced
movements related to crawling, flying and swimming and
not only legged walking (for more details)[1, 2]. A plethora
of studies on CPGs have introduced fascinating results.
Some of these studies have indicated that CPGs can in
fact control some functions in the human body, viz.,
breathing and digestion[2, 3]. Other studies, based on the
suppressive or stimulatory connection between the
extensor neuron and the flexor neuron[4, 5] have revealed
the potential of modelling a variety of physical structures
of the limbs and arms of robots[6-10] by copying the control
systems of robots. This endeavor is based on the premise
that CPGs will simultaneously start to orchestrate and
send  gestures  to  neurons  once  the  body  begins  to
move[11, 12]. The ultimate goal of such studies is to produce
rhythmic patterns in robots akin to those existing in
reality. A rather inspiring endeavor in recent years has
focused on how CPGs can account for different modes of
locomotion. Research into insect kinesis has given rise to
a variety of CPG setups utilized in octopod and hexapod
robots[11, 12]. Other CPGs setups have been manipulated to
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manage swimming robots, viz., eel robots or swimming
lampreys[13, 14]. Finally, some CPG configurations have
been utilized to   control   biped   locomotion   in  
humanoid robots[15-21].

In view of the studies mentioned above, this study
explores the effect of optimizing bidirectional two CPGs
on the performance of one-leg movement of humans by
using Genetic Algorithm (GA) and pattern search. First,
the paper examines the kinematics of human locomotion
utilized in simulations and gait setups by depending on
Tema Motion software. Second, it mentions to Uncouple,
Unidirectional and bidirectional two CPGs. Third, it
probes the stability of the three cases CPGs under
investigation. Fourthly, optimizing bidirectional two CPG
structures to generate rhythmic patterns for one human’s
leg with two and three degrees of freedom. The paper
concludes that an optimizing of bidirectional two CPGs
may equally produce similar results to the rhythmic
patterns that obtain from real data. Fifthly, this study
focuses on the effective parameters in CPGs. Finally, the
paper draws conclusions and offers suggestions for future
research.

MATERIALS AND METHODS

Kinematic analysis and modeling of biped locomotion
systems: Presumably, collecting the real data is the
shortest and most straightforward method to produce a
CPG-induced acceleration motion trajectory for biped
locomotion. In order to determine the kinematic attributes
with the system behavior while walking, we first use the
rubrics of biped kinematics on the sagittal plane to outline
the simple kinematic precepts of robotic bipedal
locomotion with two or three DOFs[22, 23]. A comparison
of the acceleration or forward motion trajectory gleaned
from the real data with CPGs will be simultaneously
drawn. Figure 1 illustrates how CPGs are used to produce
rhythmic patterns for the hip, knee and ankle angles via
one leg of a human when the lower body is parallel to the
ground. It is worth mentioning here that the results
obtained are contingent upon the manner in which CPGs
are analyzed.

A closer look into the kinematics of the hip, knee and
ankle angles in the swing phase reveals the following
basic kinematics equations: From the joint between hip
and knee and from the joint between knee and ankle, we
have. The first coordinate (x1, y1) yields x1 = xd+L1cosθ1

and y1 = yd+L1sinθ1. The second coordinate (x2, y2)
reveals that x2 = xd+L1cosθ1+L2cosθ2 and y2 =
yd+L1sinθ1+L2sinθ2 and the third coordinate (x3, y3)
translates into:

3 2 3 3 3 2 3 3x  = x +L cos  and y  = y +L sin 

where, xd is the proceeding displacement (i.e., the distance
during locomotion) and yd stands for the positive direction 

Fig. 1: The Planar biped model when the lower body is
parallel to the ground

of the hip height at each step. L1, L2 and L3 represent three
lengths: from the hip joint to the knee joint, from the knee
joint to the ankle joint and from the ankle joint to the end
effector, respectively. The angles, θ1, θ2 and θ3 which
represent the hip, knee and ankle angles, respectively, will
acquire their rhythmic patterns from CPGs. With regard
to yd, it is assumed to be zero when the lower body is
parallel to the ground. The researchers in this study,
however, fixed the hip joint in spite of the fact that the hip
joint was not fixed when collecting real data.

Central Pattern Generators (CPGs): We have already
defined CPGs as inspired networks of nonlinear bipolar
neurons capable of generating rhythmic patterns without
providing input from higher control centers. Indeed, many
an application has been conducted using numerous
different neutrals in robotics. Such neutrals have been put
into action via software methods, called CPGs. The CPG
unit is accountable for producing the angular locus that is
vital for the hip and knee joints. These CPGs are
supported in mathematical equations and presented in
general formulas. This process is generally referred to as
the standalone nonlinear oscillator. In keeping with a
number of experiments, Marbuch and Van den Kieboom
claim that sinusoidal signals appear to be compatible with
locomotion control[9, 21, 24]. For instance, let us consider the
following equation:

x Asin(2 ft+ )  

Where:
A = The amplitude
f and n = The frequency and phase, respectively

Now, by taking the first and second derivatives of x,
a first order differential equation can be derived:
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x v, v -x    

where, τ = 1/2πf. A closer examination of this linear
differential equation gives us an inferential
characterization  of  the  amplitude  A.  It  is  important 
to note here that A is subject to the fundamental settings
conditions, suggesting that it may be affected to a certain
extent by variations in the state variables. It is highly
recommended, therefore, to add a new term that would
propel the system to a limit cycle with an accurate
amplitude. To that end, the addition of this new term will
produce the following differential equation:

(1)2 2

x v

v -x- (x +v -E)v-x
E

  


 
  





In Eq. 1 above, the parameters τ, α and E are positive
criteria. The bearing x2+v2 serves as the definitive energy
of the oscillator and the aspect x2+v2-E is the energy error
of the oscillator. Because of this, the nonlinear term may
be presumed as the normalized energy error multiplied by
α and v. The positive parameter a may be utilized to
coordinate the attracting force to the limit cycle. In this
case, the larger α, the faster the convergence will be.
Equation 2 delineates the system for these types of
oscillators:

(2)

i i

ij j ij j2 2
i i i i i i 2 2

ji j j

x v

a x +b v
v - (x +v -E )v -x +

E x +v

  
       







where, aij and bij are positive constants that designate the
manner of the impact of oscillator j on the oscillator i,
importing a specific phase difference into the limit cycle.
However, certain  structures of outputs may appear by
virtue of  changing the numerical values of the
parameters[21, 25]. Interestingly, drawing on the system of
differential Eq. 2 above unfolds three kinds of CPGs,
namely Uncoupled, unidirectional and bidirectional  two
CPGs. By assuming x1= θ1, x2 = θ2 and x3 = θ3 where θ1,
θ2 and θ3 stand for the angular  positions of the hip, knee
and the ankle, respectively. 

RESULTS AND DISCUSSION

Stability analysis
Uncoupled two CPGs: Economically speaking,
uncoupled two CPGs comprise four  differential 
equations.  Equation 3 below delineates the system of
these equations:

(3)

1 1

2 2
1 1 1 1 1 1

1

2 2

2 2
2 2 2 2 2 2

2

x v

v - (x +v -E )v -x
E

x v

v - (x +v -E )v -x
E

  
  

  


  










The four differential equations above correspond to
two CPGs. Given that the first CPG and the second CPG
are independent of each other, the stability of this system
discussed in more details[21].

Unidirectional two CPGs: In a similar manner,
unidirectional two CPGs comprise four differential
equations laid out by the system of the differential Eq. 4:

(4)

1 1

2 2 12 2 12 2
1 1 1 1 1 1 2 2

1 2 2

2 2

2 2
2 2 2 2 2 2

2

x v

a x +b v
v - (x +v -E )v -x +

E x +v

x v

v - (x +v -E )v -x
E

  
  



  
  










These four differential equations represent two CPGs.
The first CPG is designated by the first and second
equations and the second CPG the third and fourth
equations for stability in more details[21].

Bidirectional two CPGs: Bidirectional two CPGs
constitute the system of four differential equations as
displayed in Eq. 5 which embody two CPGs. The first
CPG reflects the first and second equations and the
second CPG describes the third and fourth equations:

(5)

1 1

2 2 12 2 12 2
1 1 1 1 1 1 2 2

1 2 2

2 2

2 2 21 2 21 1
2 2 2 2 2 2 2 2

2 1 1

x v

a x +b v
v - (x +v -E )v -x +

E x +v

x v

a x +b v
v - (x +v -E )v -x +

E x +v

  
  

  


  










Stability for bidirectional two CPGs is discussed in
more details[21]. According to this study indicates that the
bidireccional coupling yields the best performance level.
Results also reveal that when μ = μ1 = μ2 = α/E1 = α/E2

and τ = τ1 = τ2 are close to zero and the fixed points are
stable, the velocity and displacement increase. That is,
changes in the CPG parameters may produce different
results. Of course, it is not only the value of both
parameters τ and α are important but also in the
bidirectional two CPGs, the couple weight aij and bij that
drive the system to two  diverging  phases  which  lead  to 
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Fig. 2: Video-recorded data and high-speed camera 

Fig. 3: Angles of the hip and knee that are collected by
real data

obtain the conflicting perturbations, these perturbations
are influenced by the energies Ej of bidirectional two
CPGs. The rhythmic motions rely on coupling weights aij

and bij and the values of both parameters τ and α[21].

Obtaining real data: Obtaining real data involves
different objectives. One of the major objectives, for
instance, is to learn whether the output of CPGs may be
endorsed. Another important and legitimate inquiry is
whether manipulating CPGs would establish rhythmic
patterns for the hip, knee and ankle angles akin to those
seen in nature. Figure 2 explain how real data can be
obtained under different circumstances along with their
analysis. The data were obtained through video recording
by using high speed camera as described in Fig. 2.

In fact, in order for us to be able to analyze the
video-recorded real data, the researchers used the Tema
Motion software. Results of using Tema Motion to
establish real data for the hip and knee angles are shown
in Fig. 3 and for the hip, knee and ankle angles are shown
in Fig. 4 where θh, θk and θa stand for the angles of hip,
knee and ankle of the real data, respectively.

Optimizing CPGs: Our aim here is to Compare the real
data with optimizing bidirectional two CPGs in order to
generate  rhythmic  motions  similar  to  those,  we  see in 

Fig. 4: Angles of the hip, knee and ankle that are collected
by real data

natural human locomotion. Presumably, part of evaluating
gait patterns is optimizing the CPGs in order to obtain
optimal parameter sets. Put differently, it is vital that we
recognize how the angular positions of the hip and knee
may change in time in order to produce motion along the
x-direction. Recall that each pattern generator produces
angular patterns for each joint. There are three cases to
consider here. The parameter sets for the CPG of each
joint  are  given  below  for  the  bidirectional  two  CPGs
is P = {τ, α, E1, E2, a12, b12, a21, b21}, other cases uncoupled
and unidirectional CPGs are Cancelled here according to
studying[21]. In order to determine the optimal parameter
sets by manipulating the Genetic algorithm, this study
endeavors to utilize more than one cost function. The first
cost function can be written as:

(6)
m

2 2
1 1 h 2 k

k 1

J (( (k)- (k)) +( (k)- (k) )


    

Translating the aforementioned equation into words
indicates that θ1 and θ2 are the outputs of the CPGs as
defined before where θh and θk are the angles of hip and
knee of the real data respectively and that n is the total
number of step times. The conclusive goal here is to
minimize differences between the outputs of the CPGs
and the real data for the angles of the hip and the knee in
the region captured by stability analysis[21]. In addition,
the equation above unfolds two constraints, namely
0#1θ1, θ2#π. In the present study, a hybrid function was
used during the optimization process, an optimization
function that runs after the GA terminates in order to
improve the value of the fitness function. The significance
of the hybrid function stems from the fact that it uses the
final point from the GA as its initial point which can be
specified in the hybrid function options.

In particular, the present study draws on the
optimization Toolbox function for pattern searches or
fmincon a constrained minimization function. Of course, 
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Fig. 5: One leg animation for the CPGs corresponding to
the  values  α  =  0.0010,  τ  = 0.9624, E1 = 0.4721,
a12 = 1.6071, b12 = 0.0288, E2 = 1.3746, a21 =
2.1200, b21 = -0.0479 and the initial conditions,
x1(0) = 1.8139, v1(0) = 0.1369, x2(0) = 2.1081,
v1(0) = 0.5569

manipulating this Toolbox function necessitates initially
running the GA to target a point close to the optimal point
and hence to use that point as the initial mark for a pattern
search or fmincon. With respect to the stability part, it is
predicated on the fact that the leg would not be able to
move when cases of the uncoupled and unidirectional two
CPGs are applied to simple kinematic equations. In
contrast, locomotion is predicted to occur when
bidirectional two CPGs are applied with constraints to the
joint angles between [0, π]. The conclusive objective of
optimizing the CPGs and applying the objective function
in Eq. 6 was to minimize the error between the real data
and the outputs of the CPGs. To decrease the error, we set
the initial conditions in the CPGs as variables which are
determined by GA optimization and where the mutation
rate and crossover fraction are predicted to be 0.05 and
0.2, respectively. As described in Fig. 5-8. (x2c, y2c) and
(x2r, y2r) are the second coordinates of one leg using
output of CPGs and real data, respectively.

e1 and e2 are the errors between each angle,
respectively. Remarkably, concentrating on three joints
with three DOFs of the ankle, knee and hip angles and
using the same technique above, we succeeded in
obtaining the real data for the three angles as shown in
Fig. 4. Adding the ankle angle obtained from real data in
the objective function yielded the following new objective
function:

(7)
n

2
2 1 3 a

k 1

J J (( (k)- (k)) )


  

Where:
θ3 = The output of the third CPG for the angle of the

ankle
θa = The angle of the ankle obtained from the real data

Fig. 6: Outputs of the CPGs and real data: The outputs of
the CPGs correspond to the same values in Fig. 5 

Fig. 7(a, b): Coordinates of the knee joint and
displacement against time

Fig. 8: Errors between the outputs of the CPGs and the
real data at each angle corresponding to the same
values in Fig. 5

For the last CPG different couplings may be used. In
this study, for the ankle joint we use two CPGs coupled
bidirectionally and we take only one output, followed by
optimizing  the  objective  function  J2.  The  results  are 

3678

 

  

-0.4      -0.2       0        0.2     0.4      0.6       0.8        1.0

0.0 
 
0.1 
 

0.2 
 

0.3 
 

0.4 
 

0.5 
 

0.6 
 

0.7 
 

0.8 
 

0.9 

x

y 

 

  

3.0 
 

2.8 
 

2.6 
 

2.4 
 

2.2 
 

2.0 
 

1.8 
 

1.6 
 

1.4 
 

1.2 
 

1.0 
0           5         10          15         20         25        30         35 

Time 

A
ng

le
s 

θh 
θ1 
θk 
θ2 

  

0           5          10          15         20         25         30        35 
Time 

(a) 
1.0 

 

0.5 
 

0 
 

-0.5 
 

-1.0 

(b) 
1.5 

 

1.0 
 

0.5 
 

0 

(x
2c

, y
2c

) 
an

d 
(x

2r
, y

2r
) 

D
is

pl
ac

em
en

t 

x2c 
x2r 
y2c 
y2r 

 

  

0           5          10          15         20         25         30        35 

Time 

0.4 
 

0.3 
 

0.2 
 

0.1 
 

0 
 

-0.1 
 

-0.2 
 

-0.3 

A
ng

le
s 

e1 
e2 



J. Eng. Applied Sci., 15 (22): 3674-3683, 2020

Fig. 9(a, b): Angles of both the CPGs and real data with
horizontal axis

Fig. 10: One leg animation with three DOFs in swing
phase corresponding to the same values in Fig. 9

Fig. 11: Errors between the outputs of the CPGs and the
real data at each angle corresponding to the same
values in Fig. 9

shown in Fig. 9-11. Note that, the outputs of the CPGs are
close to those coming from the real data, although, the hip
joint  being  fixed.  The  outputs  correspond  to  the
values α = 0.0024, τ = 0.9601, E1 = 0.1989, a12 = 1.4845, 

Fig. 12(a, b): Angles of the hip and knee using the
outputs of the CPGs and the real data: the
outputs of CPGs correspond to the values  
α = 0.0012, τ = 0.9617, E1 = 0.2003, a12 =
1.4789, b12 = 0.0478, E2 = 5.9966, a21 =
2.1212, b21 = -0.0512 and the initial
condition x1(0) = 1.7785, v1(0) = 0.1390,
x2(0) = 2.1075, v2(0) = 0.5540

b12 = 0.0614, E2 = 5.000, a21 = 2.1210, b21 = -0.0586 and
the  initial  condition  x1(0)  =  1.8135,  v1(0)  =  0.1390,
x2(0) = 2.1075, v2(0) = 0.5540, for the first two CPGs and
α1 = 0.3653, τ1 = 0.9623, E3 = 1.2259, a34 = 0.6486, b34 =
0.0331, E4 = 3.0105, a43 = 1.6668, b43 = -0.0054 and the
initial condition x3(0) = 0.6162, v3(0) = 0.3347, x4(0) =
0.4661, v4(0) = 0.0174 for the last two CPGs. Where e1,
e2 and e3 are the errors between each  angle, respectively
in Fig. 11.

In order to reduce the error between the real data and
the outputs of the bidirectional two CPGs in one leg with
2 DOFs, we should optimize the objective function below:

(8)

n
2

3 1 2c 2r
k 1

2
2c 2r

J J + ((x (k)-x (k)) )+

(y (k)-y (k)) )



 

where, (x1c, y1c),  (x2c, y2c),  (x1r, y1r)  and  (x2r, y2r) are the
coordinates that are generated from the outputs of the
CPGs and real data during locomotion. The CPGs are able
to generate the RPs similar to the outputs of the real data.
The results of the optimization are shown in Fig. 12-15.
The objective function J3 indicates that the standard
deviation or the error between the outputs of the
bidirectional two CPGs and real data are decreased
compared with the previous case for one leg with two
DOFs. Despite the fact that the error still exists in this
case, the outputs of the CPGs corresponds to the same
values of the parameters which applies our conditions of
the stability of the bidirectional two CPGs.

However, to optimize the model with three joints, it
is highly recommended that we use the objective function
in Eq. 9:
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Fig. 13: Animation of one leg with 2 DOFs
corresponding to the same values in Fig. 12

Fig. 14: Displacement against time corresponding to the
same values in Fig. 12

(9)

n
2 2

4 3 3 Ar 3c 3r
k 1

2
3c 3r

J J + (( (k)- (k)) +(x (k)-x (k)) +

(y (k)-y (k)) )



  

where, (x3c, y3c) and (x3r, y3r) are horizontal axes that are
generated outputs from CPGs and real data during
locomotion. The results of the optimization are shown by
Fig. 16 and 17.

Unlike the other cases-induced results, these results
have improved greatly when using the bidirectional two
CPGs. Remarkably, this type of CPGs, the bidirectional
two CPGs has generated rhythmic patterns that are closest
to those derived from the real data by using GA and
pattern search solvers. Most importantly, this type of
CPGs has revealed the best results compared to all other
types of CPGs thus far available up to day.

Effective parameters in CPGs: In this part of the study,
we attempted to optimize the parameters of the CPGs with
the objective of determining the operational parameters in
the  bidirectional  two  CPGs.  The  results reveal that the 

Fig. 15: Errors between the outputs of the CPGs and the
real data at each angle corresponding to the same
values in Fig. 12

Fig. 16(a, b): Angles of the hip, knee and ankle using the
outputs of the CPGs and the real data: the
outputs  of  the  CPGs  correspond to values
α = 0.0023, τ = 0.9599, E1 = 0.2020, a12 =
1.4808, b12 = 0.0582, E2 = 4.9724, a21 =
2.1238, b21 = -0.0612 and the initial
condition x1(0) = 1.8135, v1(0) = 0.1390,
x2(0) = 2.1075, v2(0) = 0.5540, for the first
two CPGs and α1 = 0.3225, τ1 = 0.9623, E3

= 1.9637, a34 = 0.6509, b34 = 0.0278, E4 =
2.1947, a43 = 1.4209, b43 = -0.0010 and the
initial condition x3(0) = 0.6258, v3(0) =
0.3154, x4(0) = 0.4318, v4(0) = 0.0218

most effective parameters are τ and α where the parameter
τ stands for the number of oscillations. In order to verify
the results, we repeated the optimization of human
locomotion shown in Fig. 5 and 6 and started changing
the value of τ: the results reveal two distinct patterns: the
first unfolds an inverse pattern, where an increase in the
value of τ results in a decrease in displacement and
velocity. The second one, by contrast, reveals that a
decrease  in  the  value  of   τ   produces   an   increase   in
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Table 1: Effects of τ on J1 and xb when other parameters are fixed
τ J1 xb

0.9624 29.7447 1.0671
1.9624 430.0472 0.4366
2.9624 403.9559 0.2183
3.9624 466.4726 0.2156
0.5624 415.6542 1.6304
0.1624 359.8602 3.4021

Table 2: Effects of α on J1 and xb when other parameters are fixed
α J1 xb

0.0020 34.0806 1.0502
0.0080 37.8369 1.0015
0.0180 49.4105 0.7352
0.0900 125.3871 0.1278

 

Fig. 17: One leg with 3 DOFs animation in the swing
phase corresponding to the same values in Fig. 16

displacement and velocity. Table 1 summarizes these
results  where  the  values  of  the  fixed  parameters  are
α = 0.0010, E1 = 0.4721, a12 = 1.6071, b12 = 0.0288, E2 =
1.3746, a21 = 2.1200, b21 = -0.0479.

In a similar fashion, an increase in the value of
parameter α contributes to a decrease in the displacement
and velocity. However, decreasing the value of α by a
small amount results in an equal percentage increase in
the displacement and velocity. These results are not
inconsistent with the conclusions obtained from the
stability section. Table 2 summarizes the results of
increasing  and  decreasing  the  value  of  parameter  α
where the values of the fixed parameters are τ = 0.9624,
E1  =  0.4721,  a12  =  1.6071,  b12  =  0.0288, E2 = 1.3746,
a21 = 2.1200, b21 = -0.0479.

In view of the fact that we used the GA for
optimization, the outputs of the CPGs were not identical
to the real results obtained for the hip and knee, however,
they were almost identical. This small difference may be
attributable to the facts that the Genetic algorithm only
yielded the local minimum, the waist of the lower body in
our model is parallel to the ground and the hip joint is
fixed. To show the effect of the coupling weights aij and
bij, we repeat the same experiment that is done in Table 1
and  2  by  running  the  optimization  and  using the cost 

Table 3: Values of J1 and xb for different choices of a12 and b12

τ a12 b12 J1 xb

0.9624 1.5071 0.0288 29.7447 1.0671
1.9624 1.5993 -0.1322 402.7306 -0.1514
2.9624 1.5889 -0.1820 382.4701 -0.1229
3.9624 1.5845 -0.2920 441.6822 -0.1467
0.5624 1.4999 0.0434 33.19570 1.0906
0.1624 1.5916 0.0086 318.3521 0.3164

Table 4: Values of J1 and xb for different choices of a21, b21 and τ
τ a21 b21 J1 xb

0.9624 2.1200 -0.0479 29.74470 1.0671
1.9624 2.0087 -0.2107 412.9008 -0.1514
2.9624 1.9999 -0.3484 385.4969 0.1865
3.9624 2.0474 -0.4382 448.4796 0.1493
0.5624 2.0650 -0.1311 388.3686 0.9846
0.1624 2.1228 -0.1216 337.6760 0.8460

Table 5: Values of J1 and xb for different choices of a12, b12, a21, b21 and
τ

τ a12 b12 a21 b21 J1 xb

0.9624 1.5071 0.0288 2.1200 -0.0479 29.7447 1.0671
1.9624 1.4579 -3.2676 2.1651 2.6068 68.6185 0.4021
2.9624 1.5900 -1.7699 2.1651 2.6068 309.9797 0.0200
3.9624 1.5731 -3.1830 2.2245 3.8558 282.0600 0.0338
0.5624 1.6839 0.0275 2.0681 -0.2714 334.0745 -0.7710
0.1624 1.6210 0.0028 2.0515 -0.0736 310.0280 -0.6511

Table 6: Values of J1 and xb for different choices of a12, b12, a21, b21 and
α

α a12 b12 a21 b21 J1 xb

0.0020 1.4950 0.0474 2.1256 -0.0398 32.8514 1.1122
0.0080 1.4729 0.0667 2.1262 -0.0291 33.2497 1.0495
0.0180 1.4535 0.1074 2.1254 -0.0019 38.2692 0.5752
0.0900 1.4719 0.4715 2.1231 0.2778 60.2143 0.0001
0.0005 1.5019 0.0428 2.1251 -0.0419 33.2938 1.1200
0.0001 1.5038 0.0415 2.1250 -0.0425 33.4570 1.1157

function J1, the results are shown by Table 3-6. Table 3
presents the results of changing the couple weights a12, b12

and τ. In this table, the values of the fixed parameters are
α  =  0.0010,  E1  =  0.4721,  E2  =  1.3746,  a21  =  2.1200,
b21 = -0.0479. Note that, the errors between the real data
and the outputs of the CPGs in Table 3 have decreased
relative to Table 1.

These results are similar to the coupling weights a21

and b21 as seen in Table 4. In this table the values of the
fixed parameters are α = 0.0010, E1 = 0.4721, E2 =
1.3746, a12 = 1.5071, b12 = 0.0288.

By changing the value of τ and the four parameters
a12, b12, a21 and b21 as in Table 5 and following the same
previous steps. In this table the values of the fixed
parameters are α = 0.0010, E1 = 0.4721, E2 = 1.3746. Note
that the results presented in Table 5 are much better than
those in Table 3 and 4.

By using the same technique and changing the value
of α. The optimization is done for the bidirectional two
CPGs in order to find the optimal values of parameters
a12, b12, a21, b21. These results are illustrated in Table 6. In
this table the values of the fixed parameters are τ =
0.9624, E1 = 0.4721, E2 = 1.3746.
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CONCLUSION

This study has recommended to the necessity for the
study of human locomotion to explore in detail the
underlying constraints that render the optimization of
CPGs more practical, and it has presented the case for the
adoption of a particular type of CPG, namely the
bidirectional two CPGs which generates rhythmic patterns
that are close most of those existing in real life. In light of
the theoretical framework discussed above, the
bidirectional two CPGs seem to be the best candidate to
create rhythmic patterns most analogous to those derived
from real data by using the Genetic Algorithm (GA) and
pattern search solvers. Most importantly, the study shows
that a small change in the parameter settings of CPGs may
very well produce different results. The study also shows
that an increase in the values of τ and α decreases the
displacement and the velocity whereas a decrease in their
values increases the displacement and the velocity. In
conclusion, the parameters of the coupling weights are
important in order to balance the disturbance during
optimization.  Moreover,  when  the  parameters  α  and
τ0(0, 3), the bidirectional two CPGs of the third type are
definitely able to generate different RPs for one leg to
move; these RPs generate different types of locomotion
when the couple parameters aij and bij0[-3, 3].

It is certain that it is possible to generate the rhythmic
patterns by optimizing the bidirectional two CPGs outside
of the above regions. This study indicates that not only do
CPGs in the spinal cord of humans influence human
locomotion, they also take over the locomotion without
any provided sensory feedback. To the extent that
bidirectional CPGs are the most effective essentials akin
to real life-induced rhythmic patterns, it is reasonable for
them to be considered pivotal features most conducive to
locomotion.
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