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Abstract: In this study, a two-link manipulator system
stability performance is designed and analyzed using
optimal control technique. The manipulator system is
highly nonlinear and unstable. The system is modelled
using Lagrangian equation and linearized in upward
unstable position. The closed loop system is designed
using optimal sliding mode controller. The system is
compared with a known PID controller with an impulse
applied and disturbance torques and a promising results
has been obtained.

INTRODUCTION

In robotics, a manipulator is a system used to
manipulate items without any help by the operator. The
stubbornness was originally for behavior with radioactive
or biohazardous materials, using robotic arms, or they
were used in inaccessible places. In more recent
development they have been used in diverse pedestal of
application including welding automation, robotic surgery
and in space. It is an arm-like system that consists of a
design  of  segments,  usually  sliding  or  jointed  called
cross-slides which nelson and protocol aim with a
amounts of degree of freedom. In industrial ergonomics
a manipulator is a lift-assist contrivance used to help
laborer lift, maneuver and position articles in tendency
that are too heavy, too hot, too large or otherwise too
difficult for a single worker to manually handle. As
opposed to simply vertical lift assists (cranes, hoists, etc.)
manipulators have the expertise to sweeps in to tight
spaces and remove work pieces. A good form would be
banishment large stamped parts from a press and

arranging them in a rack or similar dunnage. In welding,
a rods boom manipulator is used to reprieve ejection rates,
reduce human inaccuracies and other costs in a
manufacturing setting. Additionally, manipulator tooling
gives the lift assist the aptitude to pitch, roll or spin the
parts for appropriate placement[1].

MATERIALS AND METHODS

System description: Figure 1 shows the physical model
of a two-link manipulator with each joint equipped with
a motor for providing input torque disturbance, an
encoder is used to measure the joint position. The
objective of the of this system design is to make the joint
positions θ1 and θ2 to be stable to the vertical position with
the presence of T1 and T2 disturbance inputs which are
specified  by  the  vertical  system  design  of  the
manipulator[2].

By using the Lagrangian equations, one can easily
show  that  the  dynamic  equations  of  the  manipulator
are:
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Fig. 1: Vertically designed two link manipulator
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Where:
Tapp1 = Torque applied 1
Tapp2 = Torque applied 2
Tdis1 = Torque disturbance 1
Tdis2 = Torque disturbance 2

Linearizing the system: In this study, the system
linearizing method is done for vertical unstable
equilibrium by taking:
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Then Eq. 2-4 becomes:
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Then Eq. 1 becomes:
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The parameters of the system are shown in Table 1. The
value of the matrix S, N and W becomes:

4.32 1.41
S

1.41 0.87

0.63 0.63
N

0 0

12 30
W

9 9

 
  
 
  

  
 
 

   

3789



J. Eng. Applied Sci., 15 (24): 3788-3792, 2020

Table 1: The parameters of the system
Parameters Symbols Values
Mass of the arm m1 4 kg
Mass of the wrist m2 3 kg
Length of the arm l1 0.7 m
Length of center of mass of arm lC1 0.35 m
Length of the wrist l2 0.6 m
Length of center of mass of wrist lC2 0.3 m
Moment of inertia of arm I1 0.8 kg m2/s2
Moment of inertia of wrist I2 0.6 kg m2/s2
Gravitational acceleration g 10 m/s2

The system equation becomes:
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The proposed controllers design
Optimal sliding mode controller: For the linear system:
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the objective is to minimize:
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subject to constraints:
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Here, the input term is not present in the objective
function (Eq. 12) and the constraints are that the system
is on the intersection on m sliding hyperplanes.
Furthermore, the matrix G is not specified a priori and
will come out as a solution to the problem. Using the
similarity transformation:
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Then, from (Eq. 16):
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When s(t) = 0, the (n-m) dimensional dynamics is
represented by:
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Equation 17 and 18 constitute a standard LQ problem
provided R>0. If Q is chosen to be positive definite, R is
guaranteed to be positive definite. In general, R is not
guaranteed to be positive definite if Q is positive
semidefinite. If R does not turn out to be positive definite,
it has to be arbitrarily chosen to be a positive definite
matrix. In this case, a new Q will be defined according to
Eq. 15. The gain matrix K for the minimum value of J is:
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For this system the Q, R and N matrices are:

1.321.5 0 0 0

0 1.5 0 0 1.25 0 0.42
Q R N

0 0 1.5 0 0 1.25 1.98

0 0 0 1.5 0.12

  
                  
   

The gain matrix K becomes[4]:

14.6424  -25.0976   25.3523    0.6597
K

-5.1137   47.1712   -1.1517   22.6206

 
  
 

PID controller: A Proportional-Integral-Derivative
controller (PID) is a mechanism employing feedback that
is widely used in industrial control organization and a
variety of other implementation requiring continuously
modulated control. A PID controller continuously
calculates an inaccuracies values as the unlikeness
between a desired Set Point (SP) and a measured Process
Variable (PV) and applies a adjustment based on
proportional, integral and derivative terms (denoted P, I
and D, respectively). In practical terms it automatically
applies accurate and responsive change to a control
function. The controller’s PID algorithm restores the
measured output to the desired input with minimal
deferment and overshoot by increasing the ability of the
system. The distinguishing feature of the PID controller
is the skill to use the three control terms of proportional,
integral and derivative pertinence on the controller output
to apply accurate and optimal control[5].

The proportional, integral and derivative terms are
summed to calculate the output of the PID controller.
Defining u(t) as the controller output, the final term of the
PID controller is: 

(20) 
t

p i d

0
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Tuning: The part of these effects is achieved by loop
tuning to whip the optimal control function. The tuning
constants are denoted as “K” and must be derived for each
control application as they depend on the response wood
of the complete loop external to the controller. These are
dependent on the behavior of the final control element.
Using Chien, Hrones and Reswick (CHR) PID Tuning
Algorithm method the value of the PID controller are[6]:

P I DPID K 40.4265 K 97.6709 K 2.7560  

RESULTS AND DISCUSSION

Comparison of the two link manipulator with optimal
sliding mode and PID controllers for an impulse input
torque  1:  The  simulation  results  of  θ1  and  θ2  for  the 

Fig. 2: Impulse response of θ1 to torque 1

Fig. 3: Impulse response of θ2 to torque 1

comparison of the two link manipulator with optimal
sliding mode and PID controllers for an impulse input
torque 1 of 0.1 Nm are shown in Fig. 2 and 3,
respectively[7].

The simulation result of the impulse response of θ1

and θ2 to torque 1 disturbance shows that the manipulator
with optimal sliding mode controller minimizes the
overshoot and the settling time better than the PID
controller.

Comparison of the two link manipulator with optimal
sliding mode and PID controllers for an impulse input
torque 2: The simulation results of θ1 and θ2 for the
comparison of the two link manipulator with optimal
sliding mode and PID controllers for an impulse input
torque 2 of 0.1 Nm are shown in Fig. 4 and 5,
respectively[8].

The simulation result of the impulse response of θ1

and θ2 to torque 2 disturbance shows that the manipulator
with optimal sliding mode controller minimizes the
overshoot and the settling time better than the PID
controller[9].
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Fig. 4: Impulse response of θ1 to torque 2

Fig. 5: Impulse response of θ2 to torque 2

CONCLUSION

In this study, stability control of a two link
manipulator has been done using optimal sliding mode
and proportional integral derivative controllers. The
stability performance of the system has been analyzed
using comparison simulation between the proposed
controllers. The comparison simulation of the two link
manipulator with optimal sliding mode and proportional 

integral derivative controllers has been done for an
impulse input of the applied and disturbance torques and
the simulation results prove the effectiveness of the
proposed optimal sliding mode controller in minimizing
the overshoot with a moderate settling time better than the
proportional integral derivative controller.
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