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Abstract: Brain-computer interface is a technology which creates a new way of communication between a
person’s brain and the external world. To achieve this objective, the brainwaves of a person must be gathered
by using specialized devices and then classified in different categories that are associated with specific
commands. In the process of brainwave gathering, brain activities of a person can be influenced by different
types of stimuli to get the desired results and one of the most important and popular stimuli used in this field
is steady state visually evoked potential. Based on this background, this review seeks to show and analyze a
series of articles that have been executed around the world related to brain-computer interface applications
using steady state visually evoked potential. This review has been executed with the objective of identifying
the advantages and limitations of utilizing steady state visually evoked potentials, its main areas of application
and the future challenges. Additionally, this review analyzes the different technologies involved to the
implementation of state visually evoked potential systems such as signal classification techniques,
electroencephalography devices, channels, verification metrics and experimental environments used in the
research projects. In summary, this review intends to guide the scientific community about the different aspects
involved in conducting research on the development of brain-computer interface applications using
electroencephalography devices and steady state visually evoked potential.
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INTRODUCTION

Brain-Computer Interface (BCI) is a technology that
uses signals gathered from the brain of a person to enable
communication with the external world. Although, BCI
may seem like a novel concept, it was first introduced by
the researcher Jacques J. Vidal in 1973 who presented the
term, the vision and some ideas of what this technology
could achieve Nam et al. (2018). And with almost 50
years of antiquity, the main milestones of the field were
achieved even before; like the birth of the
Electroencephalography (EEG) concept Berger (1929),
the  description  of  contingent   negative   variation
Walter et al. (1964) or the beginning of neurofeedback
Kamiya (1968). Despite such achievements, there were no
significant advances until this century when important
real-life projects began to appear Shih et al. (2012). Those
projects received the attention of the scientific community
and followed in new researches that allowed the progress
of this field.

In order to implement a functional application, a BCI
system must be able to capture the signals of the brain,

process them, i.e., extracting specific characteristics and
identifying the user’s intentions and execute the
functionalities selected by the user He et al. (2013). In
this aspect, brainwave acquisition is indispensable for the
implementation of a BCI system and for such process, a
large number of techniques have been developed. Those
techniques can be divided into two large categories, i.e.,
invasive (which uses surgical implants in the brain for
signal acquisition) and non-invasive (which does not
require a surgical implant for signal acquisition)
Graimann  et  al.  (2009).  Invasive  techniques  allow
getting data with higher quality, however, they are not
widely  used  because  they  require  surgical  operations
that can bring medical complications. On the other hand,
non-invasive techniques  are  widely  used  since  there
are no health risks and they have a much easier
implementation   feature.   Within   the   category   of 
non-invasive BCI, various technologies are used to
capture brain signals. Among them, the most important
technologies include: functional Magnetic Resonance
Imaging (fMRI) based on measuring changes in blood
flow Rios-Lago (2008), Functional Near-Infrared
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Spectroscopy (fNIRS) (which uses infrared light to
measure characteristics  of specific cortical regions)
Bunce et al. (2006), Magnetoencephalography (MEG)
(which is based on measuring magnetic induction in
neuronal cells) Hamalainen et al. (1993) and
Electroencephalography (EEG) (which yields a record of
brain bioelectric activity) Zhang et al. (2017a, b). And
among the mentioned technologies, EEG is considered as
the most popular and accessible method for most
researchers, since, there are more variety of devices that
meet their needs in the market i.e., portability, ease of use,
number of brainwave channels and price Thakor and
Sherman (2013).

According to the International Federation of Clinical
Neurophysiology, EEG is defined as “the science relating
to the electrical activity of the brain and the technique of
recording electroencephalograms” Steriade et al. (1990).
In recent years, a large number of EEG based BCI
systems have been developed thanks to the release of
different low-cost devices that allows recording brain
signals at a constant rate i.e., Muse headband, OpenBCI,
emotiv EPOC. Additionally, the development of different
technologies to analyze and use the brain signals gathered
using EEG such as ERD/ERS (event-related
desynchronization and event-related synchronization),
P300, motor imagery and SSVEP (Steady State Visual
Evoked Potentials) Bi et al. (2013), also helped the
expansion of BCI systems based on EEG. In this aspect
among the aforementioned technologies for analyzing and
using brainwaves, one of the most important is SSVEP.
SSVEP makes use of brainwaves generated by visual
stimulation responses when a subject looks at a light
source flickering at a specific frequency. SSVEP’s usage
has  grown  considerably,  since, it is easy to implement
in real life applications, denoting more than anything
benefits  such  as  the  use  of  few channels to get
accurate results and the short training time needed by the
user.

Due to the importance of EEG and SSVEP in BCI
systems, this review presents a detailed study of different
application researches done using the aforementioned
technologies. This review has the purpose to deliver a
systematic literature review of the latest BCI applications
that uses EEG and SSVEP to help people understand the
new trends of applications in this area and the different
technologies involved in the implementation of those
applications.

MATERIALS AND METHODS

To fulfill the purpose of this review, we have
conducted a systematic review of different researches that
focus on BCI systems based on EEG and SSVEP. For this
process, we adopted the approach described by Arksey
and O’Malley which is commonly used in researches

involving health. This method offers a way to examine the
extent and nature of the research regardless of the quality
of the study Arksey and O’Malley (2005).

Criteria of inclusion and exclusion: Scientific articles
reviewed were selected based on the following criteria:

C Articles published since, January, 2012
C The BCI system must use EEG and SSVEP

technologies
C Since, the purpose of this review is focused on the

implementation of real-world applications, researches
that only focus on signal classification and modeling
were excluded

Search strategy and results: The search was performed
in various scientific databases including IEEE Xplore,
ACM Digital Library, ScienceDirect, SemanticScholar,
Scopus, Springer and Hindawi. The words BCI, EEG,
SSVEP, control and application were searched in titles,
keywords and abstracts of articles. Once the search was
done, 110 articles were collected. After reviewing their
complete content, we proceeded to exclude those articles
not focused on BCI applications and those not using
SSVEP responses. After such exclusion, the whole set of
articles were reduced to 40 which were selected as the
target of analysis of this review. Figure 1 shows the
details of the article selection process.

Review of EEG-SSVEP application: In the field of
neuro-engineering, Steady State Visually Evoked
Potentials (SSVEP) is defined as a set of signals that are
captured when there is a certain visual stimulation at
specific frequencies called Visual Evoked Potentials
(VEP). Registered VEPs are activated by sensory
stimulation of a subject’s visual field and they reflect
visual information processing mechanisms in the brain
Wang et al. (2006). A BCI system that uses VEP can
identify the object in which the user is focusing their
attention, through an analysis of the EEG signals recorded
in real time. To ensure reliable identification, VEPs
derived  from  different  stimulus  sequences  are
registered and  usually  classified  to  a  frequency 
domain  Vialatte et al. (2010). SSVEPs are widely used
with EEG since it delivers excellent signal-to-noise ratio
and relative insusceptibility to artifacts. In this sense, the
growing interest of the scientific community for BCI
systems that are lightweight, easy-to-use inexpensive and
non-invasive has allowed EEG-SSVEP to be applied in a
variety of solutions in different areas. Based on this
background, this review has analyzed the most recent
research articles related to EEG-SSVEP implementations
intended to be used in real life. The reviewed articles were
classified in different categories as shown in Fig. 2.

Health applications: According to the World Health
Organization, between 20 and 50 million people around
the world suffer from injuries caused by car accidents that

660



J. Eng. Applied Sci., 15 (2): 659-678, 2020

Exclusion after analysing
the abstract (N = 21)

Exclusion of articles not
focused on applications

(N = 29)

Exclusion of articles not
focused on SSVEP

(N = 20)

Second review articles

Fig. 1: Diagram of articles selection process

Fig. 2: Categories of BCI applications based on SSVEP

result in temporary or permanent disabilities Road safety
(2018). Considering  this  statistic, health  is  one  of  most
benefited fields of BCI systems based on SSVEP, since,
this  technology  can  improve  the  quality  of  life  of
people who suffer from Motor Neuron Diseases (MND)
or other types of movement disabilities. Health

applications can be divided into manipulation assistive
technologies, navigation assistive technologies, hybrid
assistive  technologies  and  physical  rehabilitation  tools.

Manipulation assistive technologies: Manipulation
assistive technologies are focused on providing support
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for people who have difficulties to perform daily tasks.
Some examples of this type of technologies are electric
hospital bed proposed by Peng et al. (2016),  an assistant
arm for patient feeding Perera et al. (2016, 2017), the
control of a transhumeral prosthesis Ruhunage et al.
(2017) and robotic arms Yang et al. (2017); Zhang et al.
(2017a, b); Pelayo et al. (2018); Zhang et al. (2012).

Among the reviewed articles, Peng et al. (2016)
proposes  an  electric  hospital  bed  controlled  by
SSVEP-P300 combination responses. SSVEP is used to
turn on/off and control the bed. Different frequencies, 6.0,
6.67, 7.5 and 8.57 Hz are displayed in the corners of the
screen and they are used to select one of 4 commands.
Among the 4 commands, only one is used at the moment.
The brain signals are filtered using a bandpass of 0.1-20
Hz and then classified using power ratios obtained by
using Minimum Energy Combination (MEC) and Discrete
Fourier Transform (DFT) methods. On the other hand,
P300 is used to control the main functions of the bed.

Within the robotic arm control implementations we
have Perera et al. (2017, 2016); Ruhunage et al. (2017a,
b); Yang et al. (2017); Zhang et al. (2017); Pelayo et al.
(2018); Zhang et al. (2018), several solutions are
presented. According to Perera et al. (2017), the
researchers developed a BCI system to control a robotic
arm that aids in people’s feeding process. The system was
created to help people with any type of movement
limitations in their upper limbs. The frequencies used for
this system were 6, 7 and 8 Hz. The system processes the
brain signals by means of spatial and high-pass filters and
the frequency domain is extracted and classified using a
simple threshold and Fourier transform. Similarly, the
research Perera et al. (2017) proposes a system for
controlling a robotic food assistance arm. The system uses
6, 7 and 8 Hz to control an arm with 4 Degrees of
Freedom (DOF). The signals are processed with high-pass
filter and fourier transform, then, they are classified with
an algorithm based on a threshold.

On the other hand, the work presented by Ruhunage
et al. (2017) proposes an arm prosthesis composed of an
elbow (controlled by EMG signals) and a hand (controlled
by EEG-SSVEP signals). This system works with a single
frequency of 6 Hz for hand control. The data is processed
as follows: first, the signals are handled by an algorithm
developed by the authors; then, a filter based on high-pass
differentiation and fourier transform are applied; later, the
frequency intervals (thresholds) that will be used for the
classification are extracted; and at the end, the command
is executed when 5 consecutive positive ratings are
obtained.

Another manipulation assistive technology
application  is  the  one  presented  by  Zhang et al.
(2017a, b). In such research, the authors present a hybrid
BCI system that uses SSVEP responses, motor imagery,
computer vision and artificial intelligence. All the

technologies are applied in order to control a robotic arm
to grasp objects. The operation of the system is based on
detecting objects in a certain area. Once the object is
detected, it is selected through SSVEP responses using a
panel that generates different visual stimuli. The robotic
arm approaches the selected object using artificial
intelligence algorithms and sends the commands to open
and close the hand by means of Electrooculography
(EOG) signals.

Similarly, Zhang et al. (2017ab) shows a BCI system
that uses SSVEP responses in order to control a robotic
arm. The system classifies the signals into 4 categories. 4
Hz to move left, 4.615 Hz to move right, 5,455 Hz to
move up and 6 Hz to move down. The operation of the
system is based on amplified brain signals generated
when the user looks at a screen. These signals pass
through a fourth order filter in order to eliminate noises
and detect the command and once the desired command
is detected, it is sent to the robotic arm to perform the
movement.

In the same way, Pelayo et al. (2018) presents a
system that allows users to control a robotic arm through
EEG signals based on SSVEP responses. The operation of
the system is based on controlling 3 servomotors (servo 1:
change the orientation, servo 2: change the angle, servo 3:
change the claw’s opening) using signals generated by the
brain of the user when he/she looks at 3 LED lights of
different frequencies (servo 1: 7 Hz, servo 2: 11 Hz, servo
3: 15 Hz).

Finally, Yang et al. (2017) presents a shared control
of a robotic arm which combines SSVEP and vision
sensor. The operation of the system is based on the
visualization of target objects using a camera integrated
into the robotic arm. Each object has blinking diamonds
which generate the SSVEP stimuli needed to invoke the
commands that allow the user to choose the objects. On
the other hand, the vision sensor technology allows
detecting the positions of the objects.

Navigation assistive technologies: Navigation assistive
technologies are created to provide support to people with
disabilities in order to help them be more independent
with their mobility. One type of solution of this
technology is the user controlled wheelchair presented by
Li et al. (2013); Turnip et al. (2015a-c); Andronicus et al.
(2015); Turnip et al. (2016); Turnip et al. (2017, 2017);
Turnip and Mistry et al. (2018). There are several
techniques that can be used for delivering user control to
wheelchairs but SSVEP is one of the most popular
because of its accuracy and usability. Research works
analyzed in this review vary in their configurations but
they all focus on four frequencies to control the
wheelchair. Li et al. (2013), the authors make use of an
hybrid system proposed by Peng et al. (2016) to control
the wheelchair while Turnip et al. (2016) proposes an
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electric wheelchair control system using 6-9 Hz
frequencies to execute turn left, turn right, go back and go
forward commands, respectively; the signals are
processed and classified using a sixth order Bandpass
Filter (BPF) with cutoff frequencies of 4 and 30 Hz and
an Adaptive Neuro-Fuzzy Inference System (ANFIS).
Turnip et al. (2015a-c) also uses an ANFIS classifier but
extracts the signals characteristics by using a Nonlinear
Adaptive Filter (NAF) and estimates the parameters of the
signals by using a self-regressive model;  the  data  used 
as  input  of  the  classifier  are also pre-processed by a
sixth order bandpass filter with 4 and 30 Hz cutoff
frequencies. The system works with images at 6-9 Hz
frequencies that are displayed in a Graphical User
Interface (GUI) combined with the task of imagining the
movement of the chair in the desired direction.

On the other hand, the work indicated by Mistry et al.
(2018) adds proximity sensors to the wheelchair to
provide a way to prevent collisions; if sensors detect an
obstacle at a distance of 50 cm or less, then the movement
of the wheelchair to such direction is not performed. The
system processes the SSVEP signals generated by the
stimuli of 4 frequencies (7 Hz turn left, 9 Hz go forward,
11 Hz turn right and 13 Hz go back) by means of Fourier
transforms and SNR classification.

Additionally, systems proposed by Turnip et al.
(2017) use frequencies of 7.5, 10, 15 and 20 Hz with an
Adaptive Feedforward Neural Networks (AFNN)
classifier to perform the control of the wheelchair. Being
more specific, Turnip et al. (2017) uses the
aforementioned frequencies to advance, stop, turn right
and turn left, respectively and processes the signals using
a bandpass filter with a Chebyshev method with cutoff
frequencies of 7 and 30 Hz, to then classify them using
the AFNN. Meanwhile, Turnip et al. (2017) uses the
frequencies to stop, advance, turn right and turn left,
respectively and processes the signals using a bandpass
filter with cutoff frequencies of 7.5-20 Hz with an
attenuation of -10 dB, to then pass through a stop-band
filter with cutoff frequencies of 5-30 Hz and with an
attenuation of -40 dB, to finally, classify them using the
AFNN.

Although, many of the articles detail the frequencies
they use Andronicus et al. (2015) and Turnip et al. (2016)
do not. Andronicus et al. (2015) focuses on explaining the
construction of a system with the minimum amount of
electrodes to make more comfortable to use. This system
consists of 3 parts: a pre-processing stage that uses a
“centering process” to eliminate data offset, a feature
extraction   stage   based   on   4   bandpass   filters   with 
“14-order Chebyshev Type 2 IIR” and Power Spectral
Density (PSD) estimation using the Welch method and a
classification stage based on a “threshold and voting”
system for classification into 4 patterns: forward, stop,
left, right. Finally, Turnip et al. (2016) details that its

operation is based on the processing of signals through, a
bandpass filter, noise elimination by Wavelet and Fourier
transforms and classification of signals through ANFIS.

Hybrid assistive technologies: In the literature review,
we found a solution that combines manipulation assistive
and navigation assistive technologies in a single system
by implementing the control of a wheelchair with a
robotic arm. In such work, Achic et al. (2016) presents a
BCI system that uses EMG and EEG waves to control a
robotic arm that is connected to an electric wheelchair.
This system uses the SSVEP responses based on 14-7 Hz
frequencies for controlling the robotic arm. The SSVEP
signals are processed by a fourth order Butterworth low
filter with a 50 Hz cutoff frequency, Fourier transforms
and frequency domain classification.

Physical rehabilitation: Systems in this category provide
help to people who have difficulty to move, so that, they
can restore their lost capabilities and recover the levels of
mobility they previously had. Additionally in some cases,
these solutions can help them to adapt to the acquired
disabilities.

The work presented by Gui et al. (2015) proposes an
exoskeleton system that aims to help people in lower
extremities rehabilitation process. The selected SSVEP
frequencies used by the system are 6.82, 7.5, 8.33 and
12.5 Hz which give the functions of decelerating,
accelerating, normal walking and braking of the
exoskeleton, respectively. The system processes the
signals with a filter that cuts the frequencies between
0.05-60 Hz and classifies them using Linear Discriminant
Analysis (LDA) and Container Strategy (CS) algorithms
devised by the authors. In the end, the system makes the
decision by using a central pattern generator algorithm
which tells the exoskeleton the movements to perform.

On the other hand, Savic and Popovic (2016) shows
3 versions of a system for functional electrical
stimulation. While the first version uses SSVEP and ERD
signals, the next two versions work only with ERD
signals. The frequencies used for SSVEP were between a
range of 15 and 24 Hz. The system filters the SSVEP
signals with six fourth order Butterworth bandpass filters
with a bandwidth of 1 Hz and the filtered signals are
classified using band power thresholds.

Vehicle control: In recent years, the research of BCI have
explored new fields of application and one of the most
important has been the control of different types of
vehicles including the unmanned aerial vehicles proposed
by Wang et al. (2018); Khan et al. (2016) and unmanned
ground vehicles in Lee et al. (2012); Zhang et al. (2011);
Diez et al. (2014); Gonzalez-Mendoza et al. (2015);
Farmaki et al. (2016); Stawicki et al. (2016); Wu et al.
(2016) and Liu et al. (2018).
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Unmanned aerial vehicles: In the field of Unmanned
Aerial   Vehicles   (UAV),   the  work  presented  by 
Wang et al. (2006) shows a system that controls a
quadrotor helicopter using an encephalogram system and
a virtual reality device. The objective of the system is to
control the pitch, yaw and roll movements of a helicopter
through SSVEP responses. The system has two states, the
transitional state and the stable state. To determine the
state in which the system is, the data of the head position
of the virtual reality device (i.e., HTC VIVE) is used
during the SSVEP session.

Similarly, Khan et al. (2016) proposes the scheme for
a quadcopter through the use of several signals. Four
brain signals are decoded using a hybrid
Electroencephalogram (EEG) -Near Infrared Spectrum
(NIRS) system. The signals obtained by NIRS are used to
move the quadcopter forward while the decoded EEG
signals are used to increase and decrease the height;
meanwhile, SSVEP is used as a security mechanism to
avoid collisions by stopping the command in execution.
Horizontal eye movements are used to control the rotation
of the quadcopter.

Unmanned ground vehicles: In the field of unmanned
ground vehicles, article Diez et al. (2014) presents an
asynchronous machine-man interface that allows the
navigation  of a  motor  vehicle  and  it  is  based  on  a
high-frequency SSVEP. In the aforementioned system,
SSVEP signals are generated by four stimulation boxes
around a monitor that generate frequencies of 37-40 Hz
while the monitor shows a real-time video that the vehicle
perceives.

Additionally, the control of Remote Control (RC)
cars using brainwaves is explored in different articles. Lee
et al. (2012) presents a system that uses SSVEP responses
for driving an RC car; the automotive has a camera
connected to the computer in which the visual stimuli are
superimposed. They use three rectangles that emit signals
at 13-15 Hz. The system captures the signals using a
bioamplifier, then converts the analog signals to digital
ones and finally they are processed to control the RC car.
Similarly, Wu et al. (2016) shows a BCI system that
controls an RC car inside a labyrinth; one of the
objectives of the research is to get a system that avoids
obstacles. The system uses a NuAmp EEG amplifier and
a remote control car that uses four types of signals i.e., 7,
8-10 Hz for its movements i.e. go forward, turn to the left,
turn to the right and go backwards, respectively. The
operation of the system is based on receiving signals
through the NuAmp amplifier which are produced by a
visual stimulus generated on a screen. These signals are
passed through a fourth order bandpass filter with Low
cutoff frequency (Lf1) and High cutoff frequency (Hf1) in
order to remove the noise.

Persisting  in  the  automotive  control  field, 
Farmaki et al. (2016) presents a BCI System based on
SSVEP responses that control an RC car using 4
commands: move forward, turn left, turn right and brake.
Commands are sent when an SSVEP response is received
at different frequencies (10 Hz for “go forward”, 13,333
Hz for “turn right”, 15 Hz for “turn left”, brake when no
stimulus is received). In the same way, Gonzalez-
Mendoza et al. (2015) describes the development of an
SSVEP system that controls a car remotely. For the
control of the movements of the car, an interface of 4
visual stimuli zones was developed (15 cm 2 each zone)
and each zone generates 4 different visual stimuli   9 Hz
(to advance), 8 (to go back), 7 (turn left) and 6 Hz (turn
right). After obtaining and processing the signal, an
algorithm proposed by the researchers was used to find
the peak of the power spectrum of second harmonic; if the
peak is at the frequency corresponding to the visual
stimulus, the interface proceeds to send the respective
command to move the car via Bluetooth communication;
the system makes use of an Arduino board and a full
bridge controller L298N for motor controlling.

Furthermore, two SSVEP BCI systems created to
control an MRC (Mobile Robotic Car) are found in our
literature review. Liu et al. (2018) proposes a BCI system
that uses 4 stimuli frequencies (18 Hz to turn left, 20 Hz
to  move  forward,  22  Hz  to  turn  right  and  24  Hz  to
move back). The system uses a GES 300 system with a
64-channel hat, a smart Wi-Fi car that uses an Arduino
microcontroller with an ultrasonic sensor and a camera
that presents the environment in real time. LEDs were
used to generate the stimuli. Similarly, the BCI system
proposed by Stawicki et al. (2016) has live video
feedback and allows to control the camera and MRC.
When you are in driver mode, you have the options to go
forward, turn left, turn right and change to camera mode;
in camera mode, you have the possibility to look to the
left, look to the right, look up and change to driver mode.
The frequencies used to control these commands vary
from person to person and they are selected using a
wizard software which chooses the four best frequencies
from a set of 14 possible frequencies (from 6-20 Hz). In
the same way, article Zhang et al. (2017a, b) develops a
BCI application that allows controlling a mobile unit
through the Internet. The platform uses a server for EEG
signal acquisition/processing and an integrated robotic
arm which is controlled by an Android smartphone using
the Bluetooth protocol. The SSVEP system uses 7, 11, 13,
17 and 19 Hz to represent the turn left, turn right,
advance, move back, move the robotic commands,
respectively.

Robot control: In 1929, Berger demonstrated the
possibility of recording brainwaves from the intact skull.
Since, then, researchers have tried to use those signals for
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different purposes in different areas. In this sense, one of
the most active areas of brainwaves application now a
days is the field of robotics, since, they can deeply
transform the lifestyle and way of working of people
around the world.

Within the reviewed articles, Guneysu and Akin
(2013) shows a BCI system that uses SSVEP responses to
control a humanoid robot NAO. The SSVEP system uses
7, 9, 11, 15 Hz lights to move left, right, down and up,
mainly emitted from 4 light-emitting diodes. The
mentioned articles maintain a similarity with Zhao et al.
(2017) which uses a BCI system with SSVEP responses
to control an NAO robot. The system uses 5 frequencies
between 4.615, 6.67, 8.57, 12, 15 and 20 Hz. SSVEP to
navigate through menus with the help of a graphical
interface. This will allow the user to implement 14
different behaviors through the use of enhanced frequency
stimuli.

On the other hand, Kang et al. presents a method to
control robots using EEG-SSVEP. Although, the
researchers indicate that they are controlling robots in the
background, the system controls only the leading robot
while the rest devices move through a “follow the leader”
paradigm. To generate the stimuli, a 1020×580 screen is
used to display 4 rectangles (10×8 cm each) with
frequencies of 8.75, 10, 12 and 15 Hz corresponding to
move back, turn clockwise, turn anticlockwise and move
along commands. The system is constructed in such a way
that the EEG waves are extracted using the NCC NuAmps
of 24 channels at a sampling rate of 512 Hz.

Finally, Su and Li (2017) presents a BCI system
based on SSVEP that control a humanoid robot moving
within a space containing static and dynamic obstacles.
The system uses Kinect and laser sensors to obtain a map
of the space where the robot will be mobilized and such
data is stored in the FastSLAM program. Subsequently,
the brainwaves are captured by using the NeuroScan EEG
and they are classified in different commands e.g., there
is no obstacle, brake, obstacle to the right and obstacle to
the left; commands to avoid obstacles use the Probability
Potential Field (PPF).

Internet of things: The growing number of devices
connected to the Internet has contributed to the
development and implementation of new technologies
such as smart homes, smart industries and smart cities. In
this situation, the scientific community has also begun to
develop applications that combine Internet of Things
(IoT) and BCI technologies. The first BCI solutions to
control  IoT  devices  showed  up  as  platforms  as  seen
by De Buyser et al. (2016); Jagadish et al. (2017) and
applications by Shivappa et al. (2018). These solutions
use brainwaves captured by EEGs and produced by
human actions such as blinking and facial expressions.
Even  though  blinking  and  facial  expressions  are  good 

options, the use of SSVEP in IoT applications are
considered an important advance in the area since, the
increase of the quantity of visual stimuli frequencies will
generate a greater range of commands to control more
variety of devices. This is the reason why several articles
are focusing on the control of IoT devices based on
SSVEP. Zhao et al. (2017) proposes an SSVEP solution
for controlling household devices such as lights and
electric curtains; this system makes use of an ADS1299
based headset to extract data generated by 8, 9, 11 and 12
Hz stimulus frequencies. The headset amplifies the
signals to improve accuracy and it is designed to be
portable. On the other hand, another SSVEP IoT system
is presented by Virdi et al. (2017). In such solution,
different IoT devices such  as  lights,  fans,  televisions 
and  alarms  of  a  house are controlled by 10-13 Hz
stimulus frequencies. Furthermore, a platform prototype
for multiple devices control has been developed by
Anindya et al. (2016); the system allows to control up to
three connected devices and it uses a low stimulus
frequencies set (6, 6.5, 7, 7.5, 8.2, 9.3, 10, 12 Hz) and a
high frequencies set (8, 14, 28 Hz).

Virtual reality: According to Alimardani et al. (2015),
the development of applications in virtual reality has
increased considerably due to the growing interest of
users and launching of affordable devices. In this aspect,
BCI systems have been used for different applications to
connect the real world with a virtual one.

Among different applications, SSVEP based BCIs
that allow users to explore virtual worlds also have
received the attention of the research community. In
Bevilacqua et al. (2014), the authors propose an avatar
control system (in first person view) which uses 12, 15
and 20 Hz stimulus frequencies for executing turn left,
turn right and go forward commands, respectively.
Additionally by Li et al. (2017), the researcher propose a
car driving system in a virtual world. The system uses 8
and 10 Hz SSVEP stimulus frequencies to brake and
accelerate  the  car  and  uses  motor  imagery  to  execute
turn left and turn right commands, it also includes a
computer vision module to detect intersections and
collisions.

Augmentative and alternative communication:
Augmentative and Alternative Communication (AAC)
refers to any method that allows a person to communicate
without  the  need of talking Augmentative and
Alternative Communication   (ASHA)  (2019). According 
to  Abhang et al. (2016) BCI systems have ventured into
this area through the implementation of different
techniques such as spellers (e.g., following the Donchin
format for the character matrix). One of this type of
systems is proposed by Nakanishi et al. (2017). In such
system, the authors propose a solution completely based
on SSVEP which uses 40 stimuli with frequencies ranging
from 8-15.8 Hz in 0.2 Hz intervals displayed in a 5×8

665



J. Eng. Applied Sci., 15 (2): 659-678, 2020

matrix, representing 26 characters, 10 digits/numbers and
4 symbols. On the other hand, Won et al. (2014) presents
a 30-character speller whose peculiarity is that it uses high
frequencies visual stimuli. We are saying that the system
is peculiar since, SSVEP systems usually work with a low
frequencies range (<20 Hz). In this research, high
frequencies are used since they can reduce the fatigue of
the subject and it can make the system less susceptible to
external noise. For the system, an LED keyboard with a
QWERTY design of 28.5×8.5 cm was used; the interface
contains the 26 L of the English alphabet and some
special characters such as '. ', ' <', ' _ ' and '/'. To assign
frequencies, a distribution model was designed for each
letter, so, the minimum difference between neighboring
LEDs was 1.2 Hz in a range from 26-34.7 Hz.

RESULTS AND DISCUSSION

Analysis of technical specifications of previous works
methods of data extraction and classification: In BCI
systems, stimuli generation and data gathering are
characterized and classified based on electrodes location
standards. However, signal processing and classification
for detecting commands of applications are not subject to
any specification or standard. In fact, the effectiveness of
these alternatives is one of the main focus of research in
the BCI field. Methods for data processing and
classification go from traditional signal analysis methods
to machine learning algorithms. A summary of the
classification methods used in recent researches is
organized in Table 1.

Canonical Correlation Analysis (CCA) is an approach
that is gaining strength in SSVEP signals detection and
differentiation. As you can see in Table 1, CCA was not
used a few years ago but it is used in most of the latest
research works. This is because unlike other techniques,
CCA has a better Signal-to-Noise Ratio (SNR), less
subject dependency and allows the use of harmonic
frequencies (Hakvoort et al. (2011)); in fact, it is the
technique that delivered better results. Additionally, we
have noticed that CCA is commonly used in conjunction
with other techniques in order to improve its accuracy in
non-harmonic frequencies (achieving an average of 81.5%
in terms of precision). Since, traditional techniques
usually have the limitation of having low precision in
detecting harmonic frequencies, CCA appears as its
solution. Additionally, CCA allows making use of a
greater number of stimuli which can be translated into
more commands for applications.

Even though, CCA is the most used technique in
recent years according to the reviewed articles, other
traditional methods such as Linear Discriminant Analysis
(LDA) or Fast Fourier Transform (FFT) are also widely
used. LDA is a very simple linear classifier and its use has
become popular due to its low computational complexity
(Nicolas-Alonso and Jaime, 2012) for this reason, this
technique is used to implement solutions in
microcontroller boards with limited resources. In addition,
LDA’s popularity is due to its acceptable results; the
previous works that we have analyzed in this review had
an average accuracy of 81.8%. FFT is another popular
algorithm and it is used in conjunction with some filters

Table 1: Classification methods used in SSVEP BCI systems
Application area References Articles title Classification method Results (accuracy)
Health: Manipulation Peng et al. (2016) Control of a nursing bed based on a hybrid MEC and SVM 93.75%
assistive technologies brain-computer interface

Perera et al. (2017) SSVEP Based BMI for a meal assistance robot FFT 87.88%
Perera et al. (2017) EEG-controlled meal assistance robot with

camera-based automatic mouth position tracking Threshold based 85.7, 100 and 85.7%
and mouth open detection

Ruhunage et al. EMG signal controlled transhumeral prosthetic with Threshold based 90.90%
(2017) EEG-SSVEP based approach for hand open/close
Zhang et al. (2017) A hybrid EEG-based BCI for robot grasp controlling CCA and LR-LDS 66.46%
Zhang et al. (2011) A new object-oriented SSVEP-based BCI paradigm CCA 87.66±2.09%

using continuous action scene
Pelayo et al. (2018) Brain-computer interface controlled robotic arm Not specified 85.86%

to improve quality of life
Yang et al. (2017) Mind control of a robotic arm with visual fusion FFT and CCA 90%

technology
Health: Navigation Li et al. (2013) A hybrid BCI system combining P300 and MEC and SVM Not specified
assistive technologies SSVEP and its application to wheelchair control

Turnip et al. EEG-SSVEP signals extraction with nonlinear NAF and ANFIS 95%
(2015a-c) adaptive filter for brain-controlled wheelchair
Andronicus et al. Heuristic steady state visual evoked potential Threshold and 84.94%
(2015) based brain computer interface system for robotic voting system

wheelchair application
Turnip et al. (2016) An application of online ANFIS classifier for ANFIS 90%

wheelchair based brain computer interface
Turnip et al. (2017) Real time classification of SSVEP brain activity 

with adaptive feedforward neural networks AFNN 85%
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Table 1: Continue
Application area References Articles title Classification method Results (accuracy)

Turnip et al. (2017) Design of extraction method of ssvep brain activity AFNN 82%
with IIR chebyshev

Turnip et al. (2016) Utilization of EEG-SSVEP method and ANFIS ANFIS 90%
classifier for controlling electronic wheelchair

Mistry et al. (2018) An SSVEP based brain computer interface system SNR based 79.4 and 100%
to control electric wheelchairs

Health: Hybrid Achic et al. (2016) Hybrid BCI system to operate an electric wheelchair Linear 79%
assistive technologies and a robotic arm for navigation and manipulation tasks
Health: Physical Gui et al. (2015) Online brain-computer interface controlling robotic LDA 92.40%
rehabilitation exoskeleton for gait rehabilitation

Savic and Popovic Brain computer interface prototypes for upper limb Not specified 79.17, 100 and
(2015) Rehabilitation: a review of principles and  79.5%

experimental results

Vehicles: UGV Lee et al. (2012) A brain-wave-actuated small robot car using ensemble MFD 94.74%
Control empirical mode decomposition-based approach

Zhang et al. (2012) A simple platform of brain-controlled mobile robot
and its implementation by SSVEP CCA and LDA 71.70%

Diez et al. (2014) Mobile robot navigation with a self-paced FFT 87.40%
brain-computer interface based on high-frequency
SSVEP

Farmaki et al. Applicability of SSVEP-based brain-computer CCA and LDA 70%
(2016) interfaces for robot navigation in real

environments
Gonzalez-Mendoza Brain Computer Interface based on SSVEP for FFT 70%
et al. (2015) controlling a remote control car
Stawicki et al. Driving a semiautonomous mobile robotic car
(2016) controlled by an SSVEP-Based BCI MEC 93.03%
Su and Li (2017) Brain-computer interface based stochastic navigation MSI 94.08%

and control of a semiautonomous mobile robot in an
indoor environment

Wu et al. (2010) A new SSVEP based BCI application on the mobile FFT 83.83%
robot in a maze game
Brain-machine interfacing-based teleoperation of LDA 84.80%
multiple coordinated mobile robots

Liu et al. (2016) Design of a video feedback SSVEP-BCI system for
car control based on improved MUSIC method MUSIC and SVM 87.50%

Vehicles: UAV Khan et al. (2017) Hybrid EEG-NIRS based active command LDA 87.20%
control generation for quadcopter movement control

Wang et al. (2018) A Wearable SSVEP-Based BCI system for CCA 83.33%
quadcopter control using head-mounted device

Robotics Guneysu and Akin An SSVEP based BCI to control a humanoid DFT and a Gaussian 75%
(2013) robot by using portable EEG device model
Zhao et al. (2017) Behavior-based SSVEP hierarchical architecture 

for telepresence control of humanoid robot to CCA 88%
achieve full-body movement

Virtual reality Bevilacqua et al. A novel BCI-SSVEP based approach for control 
(2014) of walking in virtual environment using a CNN 87.50%

convolutional neural network
A human-vehicle collaborative simulated driving CCA, wCCA, CSP, 91.1±10.0%
system based on hybrid brain-computer interfaces kNN and SVM
and computer vision

Internet of things Anindya et al. A prototype of SSVEP-based BCI for home SVM 83.26 y 71.67%
(2016) appliances control
Zhao et al. (2017) A SSVEP intelligent home service system based CCA 87%

on CCA
Virdi et al. (2017) Home automation control system implementation LDA 84.80%

using SSVEP based brain-computer interface
Augmentative and Won et al. (2014) A BCI speller based on SSVEP using high frequency CCA 80%
Alternative sStimuli design
Communication
(AAC)

Nakanishi et al. Enhancing detection of SSVEPs for a high-speed TRCA 89.83±6.07%
(2017) brain speller using task-related component analysis
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in the signal pre-processing phase; the works using FFT
that we analyzed in this review had an average accuracy
of 82.4%.

Another important fact is that the presence of
machine learning and deep learning techniques is
increasing significantly. The use of Support Vector
Machine (SVM) and neural networks such as
Convolutional Neural Network (CNN) or Adaptive
Feedforward Neural Network (AFNN) in classification
tasks is increasing due to their results in terms of accuracy
(average accuracy of 85.6% in reviewed articles). With
this background, machine learning techniques seem to be
promising options to achieve more precise results with
less subject dependency in the future. However, we must
consider that the implementation of these technologies
requires wider knowledge to adjust its parameters and a
larger amount of data/time to train and test the models.

Used channels: One of the most important information in
BCI applications is the channels used to gather brain
signals since, they are the source of input data. Because of
such importance, this review also has analyzed the
different channels used in different researches. Our
analysis indicated that channels O1, O2 and Oz were the
most frequently used in SSVEP (Meng et al., 2011). This
is because these channels are located in the occipital lobe
of the brain which is involved with vision. As shown in
Table 2 among 43 articles, 27 of them used the Oz
channel while 30 used O1 or 2 as a solitary channel or in
combination with other channels. It should also be noted
that 31 of the articles used channels different from those
indicated above; we assume that this was due to:

Restriction of channels: The following articles Guneysu
and Akin (2013); Gui et al. (2015); Achic et al. (2016);
Wang et al. (2018) make use of EMOTIV EPOC that has
14 channels that include O1 and 2 but does not have the
Oz channel.

Variation of signals: SSVEP varies depending on the
user Meng et al. (2011).

Hybrid solution: Some articles such as Peng et al.
(2016); Zhang et al. (2017); Li et al. (2017) implements
a hybrid BCI system that incorporates SSVEP in
combination with other method such as motor imagery
and P300.

Within the reviewed articles, 3 did not specify the
used channels as seen in Yang et al. (2017); Zhao et al.
(2016a, b) and Pelayo et al. (2018) specified the number
of used channels.

Evaluation methods: Each system needs an evaluation
process to determinate its level of accuracy. In this regard,
we believe that it is important to understand which are the

most popular methods used by different works in
evaluating BCI systems, to obtain reproducible and
quantifiable measurements. In this review, we have
analyzed which are the most popular evaluation methods
used in different articles. This analysis will help
researchers to recognize the possible evaluation methods
for this kind of systems. Table 3 shows that the most used
metric is the success rate which presents the percentage of
success with respect to the errors that existed during the
tests. Another common evaluation criteria is the time
efficiency.

Participants: Reviewing different articles of the BCI
field, we understand that the accuracy achieved by the
proposed models is a very important metric (summarized
in Table 1). But these results are be insufficient to
determine the reliability of a system as a real-life solution
if it were tested in a small number of users; this is because
one of the main problems of BCI systems on detecting
and classifying signals is the subject’s dependency. For
this reason, an analysis of testing environments of
reviewed articles was carried out in this review.

Table 4 presents the number of subjects who
participated in the experimentation of previous articles. It
reflects   that   among   the   40  reviewed  articles, only
Liu et al. (2018) does not show concise information in
this aspect. The research in which the largest number of
experimental   subjects   has  participated  was  in
 Stawicki et al. (2016) with 61 people and it was the
article that obtained one of the best results (with an
accuracy of 93.03%). The articles that have tested with
the smallest number of subjects were in Gonzalez-
Mendoza et al. (2015) and Yang et al. (2017) with 2
people each. The most common number of participants in
experiments were 4 people (present in 10 of the reviewed
articles) while the average number of participants was
7.95.

BCI equipment: In this review, we also have analyzed
the equipment used by researchers in developing their
experimental prototypes. The information gathered in this
analysis is organized in Table 5. Such table indicates that
Li  et  al.  (2013);  Peng  et  al.  (2016);  Su and Li (2017);
Wu et al. (2016); Yang et al. (2017); Zhang et al. (2017a,
b); Nakanishi et al. (2017) and Wang et al. (2018) have
used BCI hardware made by NeuroScan (from different
models). Similarly, OpenBCI and Emotiv EPOC also
demonstrate to be a popular solution with 5 articles each.
On the other hand, other articles such as Turnip et al.
(2015a-c); Andronicus et al. (2015); Turnip et al. (2016); 
Anindya et al. (2016)and Turnip et al. (2017)did not
specify the BCI hardware that they used.

Additionally, we could observe that 19 of the articles
used an EEG electrode cap; although, the articles did not
detail  the  model, the information was inferred using the 
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Table 2: Channels used in the reviewed articles
References Articles title No. of channels Channels
Turnip et al. (2015a-c) EEG-SSVEP signals extraction with nonlinear adaptive filter  for 3 O1, O2, Pz

brain-controlled wheelchair
Turnip et al. (2016) Utilization  of  EEG-SSVEP  method  and  ANFIS  classifier  for

controlling electronic wheelchair 3 O1, O2, Pz
Turnip et al. (2017) Real  time classification  of  SSVEP  brain  activity  with adaptive

feedforward neural networks 3 O1, O2, Oz
Turnip et al. (2017) Design of  extraction  method  of  SSVEP  brain  activity  with IIR

chebyshev 3 O1, O2, Oz
Achic et al. (2016) Hybrid BCI system to operate an electric wheelchair and a robotic

Arm for navigation and manipulation Tasks 4 P7, O1, O2, P8
Andronicus et al. (2015) Heuristic steady state visual evoked potential based brain computer 

interface system for robotic wheelchair application 1 Oz
Anindya et al. (2016) A  prototype  of  SSVEP-based  BCI  for  home  appliances control 4 O1, O2, POz, Oz
Bevilacqua et al. (2014) A  novel  BCI-SSVEP  based  approach  for  control of walking in

virtual environment using a convolutional neural network 6 Cz, Pz, PO3, PO4, Oz, AFz
Zhang et al. (2012) A  simple   platform   of   brain-controlled   mobile   robot  and  its

implementation by SSVEP 4 Oz, O1, O2, Pz
Diez et al. (2014) Mobile robot navigation with a self-paced brain-computer interface

based on high-frequency SSVEP 3 O1, Oz, O2
González-Mendoza Brain computer interface based on SSVEP for controlling a remote 2 Fz, Oz
et al. (2015)  control car
Gui et al. (2015) Online brain-computer interface controlling robotic exoskeleton for 4 O1, O2, PO3, PO4

gait rehabilitation
Guneysu and Akin An SSVEP based BCI to control a humanoid robot by using portable 1 O1, O2
(2013) EEG device
Zhao et al. (2017) Behavior-based  SSVEP  hierarchical  architecture  for  telepresence 9 Oz, POz, PO3, PO4, PO5, 

control of humanoid robot to achieve full-body movement PO6, Pz, P1, P2
Kang et al. (2016) Brain-machine   interfacing-based   teleoperation   of   multiple 24 SP1, SP2, FP1, FP2, F7, F3, 

coordinated mobile robots FZ, F4, F8, T3, C3, CZ,
C4, T4, T5, P3, PZ, P4,
T6, REF, O1, Oz, O2,
GND

Khan et al. (2016) Hybrid EEG-NIRS based active command generation for quadcopter 14 F3, AF4, F3, F4, F7, F8, FC5,
movement control FC6, T7, T8, P7, P8, O1,

O2
Zhang et al. (2011) A new object-oriented SSVEP-based BCI paradigm using 6 PO3, Pz, PO4, O1, Oz, O2

continuous action scene
Lakmazaheri et al. Applicability of SSVEP-based brain-computer interfaces 4 O1, O2, Oz, POz

for robot navigation in real environments
Lee et al. (2012) A brain-wave-actuated small robot car using ensemble

empirical mode decomposition-based approach 1 Oz
Li et al. (2018) A human-vehicle collaborative simulated driving system based 13 T7, T8, P7, P8, FC3, FC4,

on hybrid brain-computer interfaces and computer vision C3, C4, CP3, CP4, P3, P4,
Oz

Liu et al. (2018) Design of a video feedback SSVEP-BCI system for car
control based on improved MUSIC method 3 O1, Oz, O2

Turnip et al. (2016) An application of online ANFIS classifier for wheelchair based brain
computer interface 3 O1, O2, Pz

Wang et al. (2018) A Wearable SSVEP-Based BCI System for quadcopter
Control Using Head-Mounted Device 6 PO3, PO4, O1, O2, C5, C6

Mistry et al. (2018) An SSVEP based brain computer interface system to control
electric wheelchairs 6 P3, Pz, P4, O1, Oz, O2

Nakanishi et al. (2017) Enhancing detection of SSVEPs for a high-speed brain 10 Pz, PO5, PO3, POz, PO4, 
speller using task-related component analysis PO6, O1, Oz, O2, Cz

Pelayo et al. (2018) Brain-Computer Interface Controlled Robotic Arm to Improve 6 Not specified
Quality of Life

Peng et al. (2016) Control of a nursing bed based on a hybrid brain-computer interface 8 P7, P3, Pz, P4, P8, O1, Oz, 
O2

Perera et al. (2016) EEG-controlled meal assistance robot with camera-based automatic 8 O1, O2, POz, PO3, PO4, 
mouth position tracking and mouth open detection C1, C2, C3

Perera et al. (2017) SSVEP Based BMI for a meal assistance robot 8 O1, O2, POz, PO3, PO4, 
C1, C2, C3

Zhao et al. (2017) A SSVEP intelligent home service system based on CCA Not specified Not specified
Ruhunage et al. (2017) EMG signal controlled transhumeral prosthetic with 2 POz, Oz

EEG-SSVEP based approach for hand open/close
Savic and Popovic (2015) Brain computer interface prototypes for upper limb 3 C3, Oz, Cz

Rehabilitation: a review of principles and experimental results
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Table 2: Continue
References Articles title No. of channels Channels
Stawicki et al. (2016) Driving a Semiautonomous Mobile Robotic Car Controlled by an 10 Pz, PO3, PO4, O1, O2, Oz,

SSVEP-Based BCI O9, O10, AFz, Cz
Su and Li (2017) Brain-computer interface based stochastic navigation and control 4 PZ, O1, Oz, O2

of a semiautonomous mobile robot in an indoor environment
Virdi et al. (2017) Home automation control system implementation using 8 PO7, PO3, PO4, POz, PO8, 

SSVEP based brain-computer interface O1, O2, Oz
Zhang et al. (2016) A hybrid EEG-based BCI for robot grasp controlling 8 P7, P3, Pz, P4, P8, O1, Oz, 

O2
Won et al. (2014) A BCI Speller based on SSVEP using high frequency stimuli design 15 P5, P3, P1, Pz, P2, P4, P6, 

PO7, PO3, POz, PO4, PO8,
 O1, Oz, O2

Wu et al. (2016) A new SSVEP based BCI application on the mobile robot in a maze 4 O1, Oz, O2, Pz
game

Yang et al. (2017) Mind control of a robotic arm with visual fusion technology 6 O1, O2, Oz, P3, P4, Pz
Li et al. (2013) A hybrid BCI system combining P300 and SSVEP and its application 8 P7, P3, Pz, P4, P8, O1, Oz,O2

to wheelchair control

Table 3: Metrics used to evaluate system’s performance
Reference Articles Title Evaluation metric
Turnip et al. (2015a-c) EEG-SSVEP signals extraction with nonlinear adaptive filter for brain-controlled Success rate

wheelchair
Turnip et al. (2016) Utilization of EEG-SSVEP method and ANFIS classifier for controlling electronic Success rate

wheelchair
Turnip et al. (2017) Real time classification of SSVEP brain activity with adaptive feedforward neural Success rate

networks
Turnip et al. (2017) Design of extraction method of ssvep brain activity with iir chebyshev Success rate
Achic et al. (2016) Hybrid BCI system to operate an electric wheelchair and a robotic arm for Success rate and time efficiency

navigation and manipulation tasks
Andronicus et al. (2015) Heuristic steady state visual evoked potential based brain computer interface Success rate

system for robotic wheelchair application
Anindya et al. (2016) A prototype of SSVEP-based BCI for home appliances control Success rate
Bevilacqua et al. (2014) A novel BCI-SSVEP based approach for control of walking in virtual Success rate

environment using a convolutional neural network
Zhang et al. (2012) A simple platform of brain-controlled mobile robot and its implementation Success rate and information

by SSVEP transfer rate
Diez et al. (2014) Mobile robot navigation with a self-paced brain–computer interface Success rate and time efficiency

based on high-frequency SSVEP
Gonzalez-Mendoza et al. Brain Computer Interface based on SSVEP for controlling a remote control car Success rate
(2015)
Gui et al. (2015) Online brain-computer interface controlling robotic exoskeleton for gait Duration of the transitional state 

rehabilitation and rate of recognition of the
steady state

Guneysu and Akin (2013) An SSVEP based BCI to control a humanoid robot by using portable EEG device Success rate
Zhao et al. (2017) Behavior-based SSVEP hierarchical architecture for telepresence control of Success rate and time efficiency

humanoid robot to achieve full-body movement
Kang et al. Brain-machine interfacing-based teleoperation of multiple coordinated mobile robots Success rate
Khan et al. (2016) Hybrid EEG-NIRS based active command generation for quadcopter movement control Success rate
Zhang et al. (2011) A new object-oriented SSVEP-based BCI paradigm using continuous action scene Success rate and time efficiency
Lakmazaheri et al. Applicability of SSVEP-based brain-computer interfaces for robot navigation Success rate

in real environments
Lee et al. (2012) A brain-wave-actuated small robot car using ensemble empirical mode Command transfer interval,

decomposition-based approach information transfer rate and
success rate

Li et al. (2017) A human-vehicle collaborative simulated driving system based on hybrid T-test, success rate and time 
brain-computer interfaces and computer vision efficiency

Liu et al. (2018) Design of a video feedback SSVEP-BCI system for car control based on Success rate
improved MUSIC method

Turnip et al. (2016) An application of online ANFIS classifier for wheelchair based brain computer Success rate
interface

Wang et al. (2018) A wearable SSVEP-based BCI system for quadcopter control using Online accuracy, success rate,
head-mounted device t i m e  e f f i c i e n c y  a n d

information transfer rate
Mistry et al. (2018) An SSVEP based brain computer interface system to control electric wheelchairs Success rate and time efficiency
Nakanishi et al. (2017) Enhancing detection of SSVEPs for a high-speed brain speller using CCA extended

task-related component analysis
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Table 3: Continue
References Articles title Evaluation metric
Pelayo et al. (2018) Brain-computer interface controlled robotic arm to improve quality of life Success rate
Peng et al. (2016) Control of a nursing bed based on a hybrid brain-computer interface Success rate, time efficiency and

false-positive rate
Perera et al. (2017) EEG-controlled meal assistance robot with camera-based automatic mouth position Efficiency of time

tracking and mouth open detection
Perera et al. (2017) SSVEP Based BMI for a meal assistance robot Success rate and time efficiency
Zhao et al. (2017) A SSVEP intelligent home service system based on CCA Success rate
Ruhunage et al. (2017) EMG signal controlled transhumeral prosthetic with EEG-SSVEP based Success rate and time efficiency

approach for hand open/close
Savic and Popovic (2015) Brain computer interface prototypes for upper limb rehabilitation: a review of

principles and experimental results Success rate and time efficiency
Stawicki et al. (2016) Driving a semiautonomous mobile robotic car controlled by an SSVEP-Based BCI Success rate and information

transfer rate
Su and Li (2017) Brain-computer interface based stochastic navigation and control of a ERA, success rate and time

semiautonomous mobile robot in an indoor environment efficiency
Virdi et al. (2017) Home automation control system implementation using SSVEP based Success rate and time efficiency

brain-computer interface
Zhang et al. (2017) A hybrid EEG-based BCI for robot grasp controlling Success rate and time efficiency
Won et al. (2014) A BCI speller based on SSVEP using high frequency stimuli design Subjective fatigue and success rate
Wu et al. (2016) A new SSVEP based BCI application on the mobile robot in a maze game Success rate
Yang et al. (2017) Mind control of a robotic arm with Visual fusion technology Success rate
Li et al. (2013) A hybrid BCI system combining P300 and SSVEP and Its False positives rate and true 

application to wheelchair control positives rate

Table 4: Number of subjects that participated in system’s test
Reference Articles Title No.of subjects
Turnip et al. (2015a-c) EEG-SSVEP signals extraction with nonlinear adaptive filter for brain-controlled wheelchair 4
Turnip et al. (2016) Utilization of EEG-SSVEP method and ANFIS classifier for controlling electronic wheelchair 4
Turnip et al. (2017) Real time classification of SSVEP brain activity with adaptive feedforward neural networks 11
Turnip et al. (2017) Design of extraction method of SSVEP brain activity with IIR Chebyshev 14
Achic et al. (2016) Hybrid BCI system to operate an electric wheelchair and a robotic arm for navigation and 4

manipulation tasks
Andronicus et al. (2015) Heuristic steady state visual evoked potential based brain computer interface system for 8

robotic wheelchair application
Anindya et al. (2016) A prototype of SSVEP-based BCI for home appliances control 4
Bevilacqua et al. (2014) A novel BCI-SSVEP based approach for control of walking in virtual environment using 4

a convolutional neural network
Zhang et al. (2012) A simple platform of brain-controlled mobile robot and its implementation by SSVEP 4
Diez et al. (2014) Mobile robot navigation with a self-paced brain–computer interface based on high-frequency 7

SSVEP
González-Mendoza et al. Brain Computer Interface based on SSVEP for controlling a remote control car 2
(2015)
Gui et al. (2015) Online brain-computer interface controlling robotic exoskeleton for gait rehabilitation 6
Guneysu and Akin (2013) An SSVEP based BCI to control a humanoid robot by using portable EEG device 3
Zhao et al. (2017) Behavior-based SSVEP hierarchical architecture for telepresence control of humanoid robot

to achieve full-body movement 5
Kang et al. Brain-machine interfacing-based teleoperation of multiple coordinated mobile robots 5
Khan et al. (2016) Hybrid EEG-NIRS based active command generation for quadcopter movement control 3
Zhang et al. (2018) A new object-oriented SSVEP-based BCI paradigm using continuous action scene 4
Lakmazaheri et al. Applicability of SSVEP-based brain-computer interfaces for robot navigation in real environments 15
Lee et al. (2012) A brain-wave-actuated small robot car using ensemble empirical mode 11

decomposition-based approach
Li et al. (2013) A human-vehicle collaborative simulated driving system based on hybrid brain-computer 6

interfaces and computer vision
Liu et al. (2018) Design of a video feedback SSVEP-BCI system for car control based on improved MUSIC method Not specified
Turnip et al. (2016) An application of online ANFIS classifier for wheelchair based brain computer interface 4
Wang et al. (2018) A wearable SSVEP-Based BCI system for quadcopter control using head-mounted device 5
Mistry et al. (2018) An SSVEP based brain computer interface system to control electric wheelchairs 4
Nakanishi et al. (2017) Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis 12 and 20
Pelayo et al. (2018) Brain-Computer Interface Controlled Robotic Arm to improve quality of Life 3
Peng et al. (2016) Control of a nursing bed based on a hybrid brain-computer interface 8
Perera et al. (2016) EEG-controlled meal assistance robot with camera-based automatic mouth position tracking and 6

mouth open detection
Perera et al. (2017) SSVEP Based BMI for a meal assistance robot 5
Zhao et al. (2017) A SSVEP intelligent home service system based on CCA 10
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Table 4: Continue
References Articles title No.of subjects
Ruhunage et al. (2017) EMG signal controlled transhumeral prosthetic with EEG-SSVEP based approach for hand 5

open/close
Savic and Popovic (2015) Brain computer interface prototypes for upper limb rehabilitation: a review of principles and 6

experimental results
Stawicki et al. (2016) Driving a semiautonomous mobile robotic car controlled by an SSVEP-Based BCI 61
Su and Li (2017) brain-computer interface based stochastic navigation and control of a semiautonomous mobile 5

robot in an indoor environment
Virdi et al. (2017) Home Automation control system implementation using SSVEP based brain-computer interface 10
Zhang et al. (2017) A hybrid EEG-based BCI for robot grasp controlling 6
Won et al. (2014) A BCI speller based on SSVEP using high frequency stimuli design 4
Wu et al. (2016) A new SSVEP based BCI application on the mobile robot in a maze game 10
Yang et al. (2017) Mind control of a robotic arm with visual fusion technology 2
Li et al. (2013) A hybrid BCI system combining P300 and SSVEP and Its application to wheelchair control 8

Table 5: BCI hardware, headset and sensors used in the reviewed articles
References Articles title BCI hardware Headset Sensors
Turnip et al. (2015a-c) EEG-SSVEP signals extraction with nonlinear adaptive Not specified EEG Electrode Not specified

filter for brain-controlled wheelchair  cap*
Turnip et al. (2016) Utilization of EEG-SSVEP method and ANFIS classifier Not specified EEG Electrode Not specified

for controlling electronic wheelchair cap*
Turnip et al. (2017) Real time classification of SSVEP brain activity with Not specified* Not specified Not specified

adaptive feedforward neural networks
Turnip et al. (2017) Design of extraction method of SSVEP brain activity Not specified Not specified Not specified

with IIR chebyshev
Achic et al. (2016) Hybrid BCI system to operate an electric wheelchair Emotiv epoc Emotiv epoc Saline based

and a robotic arm for navigation and manipulation tasks electrodes
Andronicus et al. Heuristic steady state visual evoked potential based brain
(2015) computer interface system for robotic wheelchair application Not specified* Not specified Not specified
Anindya et al. (2016) A prototype of SSVEP-based BCI for home appliances control Not specified Not specified Not specified
Bevilacqua et al. A novel BCI-SSVEP based approach for control of walking in
(2014) virtual environment using a convolutional neural network g.USBamp EEG electrode cap* Not specified
Zhang et al. (2012) A simple platform of brain-controlled mobile robot and its

implementation by SSVEP MEG6116 Not specified Not specified
Diez et al. (2014) Mobile robot navigation with a self-paced brain-computer National EEG electrode cap Not specified

interface based on high-frequency SSVEP instruments ADC
(NI-DAQPad6015) 

Gonzalez-Mendoza Brain Computer Interface based on SSVEP for controlling a National EEG headband * Not specified
et al. (2015) remote control car  instruments ADC

(NI-DAQ 6008)
Gui et al. (2015) Online brain-computer interface controlling robotic Emotiv epoc Emotiv epoc Saline based 

exoskeleton for gait rehabilitation electrodes
Guneysu and Akin An SSVEP based BCI to control a humanoid robot by using Emotiv Epoc Emotiv Epoc Saline Based 
(2013) portable EEG device electrodes
Zhao et al. (2017) Behavior-based SSVEP hierarchical architecture for CerebusTM EEG electrode Not specified

telepresence control of humanoid robot to achieve data acquisition cap
full-body movement system

Kang et al. Brain-machine interfacing-based teleoperation of multiple NCC NuAmps Not specified Not specified
coordinated mobile robots 24channel

Khan et al. (2016) Hybrid EEG-NIRS based active command generation for EEG-NIRS* Not specified Not specified
quadcopter movement control

Zhang et al. (2018) A New Object-oriented SSVEP-based BCI paradigm using Neusen 32 channel Not specified
continuous action scene amplifier EEG electrode cap

Lakmazaheri et al. Applicability of SSVEP-based brain-computer interfaces g.MOBIlab Not specified Not specified
for robot navigation in real environments

Lee et al. (2012) A brain-wave-actuated small robot car using ensemble BioAmp with Not specified Not specified
empirical mode decomposition-based approach national

instruments
ADC
(NI USB-6259)

Li et al. (2013) A human-vehicle collaborative simulated driving system g.USBmap EEG electrode cap Not specified
based on hybrid brain-computer interfaces and computer vision

Liu et al. (2018) Design of a video feedback SSVEP-BCI system for car control
based on improved MUSIC method GES 300 system 64-channel Not specified

adult-sized head cap
Turnip et al. (2016) An application of online ANFIS classifier for wheelchair based Not specified EEG electrode cap* Not specified

brain computer interface
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Table 5: BCI hardware, headset and sensors used in the reviewed articles
Reference Articles title BCI hardware Headset Sensors
Wang et al. (2018) A Wearable SSVEP-Based BCI system for quadcopter control Emotiv epoc Emotiv epoc Saline based 

using head-mounted device Electrodes
Mistry et al. (2018) An SSVEP based brain computer interface system to control

electric wheelchairs OpenBCI V3 Ultracortex Dry EEG sensors
Nakanishi et al. (2017) Enhancing detection of SSVEPs for a high-speed brain speller

using task-related component analysis Synamp 2 system Synamp 2 system Not specified
Pelayo et al. (2018) Brain-computer interface controlled robotic arm to improve OpenBCI Ultracortex Dry spike EEG

quality of life sensors
Peng et al. (2016) Control of a nursing bed based on a hybrid brain-computer NuAmp EEG EEG Electrode Ag/AgCl

interface amplifier cap (LT37)  electrodes
Perera et al. (2016) EEG-controlled meal assistance robot with camera-based OpenBCI V3 EEG electrode cap* Not specified

automatic mouth position tracking and mouth open detection
Perera et al. (2017) SSVEP Based BMI for a meal assistance robot OpenBCI V3 Easycap Gold cup 

electrode ca electrodes
Zhao et al. (2017) A SSVEP intelligent home service system based on CCA ADS1299* EEG electrode cap* Not specified
Ruhunage et al. (2017) EMG signal controlled transhumeral prosthetic with OpenBCI EEG electrode cap Not specified

EEG-SSVEP based approach for hand open/close
Savic and Popovic Brain computer interface prototypes for upper limb PSYLAB EEG electrode Ag/AgCl 
(2015) rehabilitation: a review of principles and experimental results  EEG8 cap electrodes
Stawicki et al. (2016) Driving a semiautonomous mobile robotic car controlled by Emotiv epoc Emotiv epoc Saline based 

an SSVEP-Based BCI electrodes
Su and Li (2017) Brain-Computer interface based stochastic navigation and Neuroscan EEG Electrode Not specified

control of a semiautonomous mobile robot in an indoor amplifier cap
environment

Virdi et al. (2017) Home automation control system implementation using g.USBamp G.GAMMAcap g.LADYbird
SSVEP based brain-computer interface

Zhang et al. (2017) A hybrid EEG-based BCI for robot grasp controlling Neruoscan EEG electrode Not specified
EEG system cap
with 32 channels

Won et al. (2014) A BCI Speller based on SSVEP using high frequency BrainAmp EEG electrode cap* Not specified
stimuli design

Wu et al. (2016) A new SSVEP based BCI application on the mobile robot NuAmp EEG Not specified  Not specified
in a maze game  amplifier

Yang et al. (2017) Mind control of a robotic arm with visual fusion technology Neuroscan EEG electrode Not specified
amplifier  cap

Li et al. (2013) A Hybrid BCI system combining P300 and SSVEP and NuAmp EEG EEG electrode Ag–AgCl 
its application to wheelchair control amplifier cap (LT37) electrodes

*Not mentioned by the researchers. Deduced using the figures presented in the article

figures  provided  in  the articles. The following articles,
Li et al. (2013); Peng et al. (2016) indicated that the LT37
model was used. In addition, Guneysu and Akin (2013);
Gui et al. (2015); Achic et al. (2016); Stawicki et al.
(2016); Wang et al. (2018) used the Emotiv EPOC
headset which incorporates all the components in its
equipment.

Finally, regarding the sensors, 28 of 40 reviewed
articles  have  not  specified this information. Instead,
Peng et al. (2016) indicated that the research used Dry
spike EEG sensors while Li et al. (2013); Peng et al.
(2016); Savic and Popovic (2015) indicated the usage of
Ag/AgCl electrodes.

Benefits and limitations of analyzed articles: Within the
reviewed literature, many advantageous features that can
improve the lifestyle of human beings were found,
especially for people who have MND or other types of
disabilities. Health-oriented applications offer several
benefits such as support to people who have difficulty
performing daily tasks (e.g., feeding), help people with
movement limitations (e.g., electric wheelchair) and
support for physical rehabilitation.

Additionally in the field of robotics and vehicles,
there are advances that are beginning to appear, since, this
area can offer a great amount of benefit for society. One
of the common applications are those related to humanoid
robots. Multiple BCI applications have been generated in
the field since, they can offer benefits such as replacing
the task of human beings in dangerous situations and to
perform jobs in a more efficient and faster way. On the
other hand, BCI systems applied to motorized vehicles
will bring great benefits since driver reactions will be
perceived by the automotive system in a rapid and
transparent manner, reducing the number of accidents. In
addition, research on improving driving environments
using brainwaves will bring significant changes to the
automotive area.

Furthermore, we believe that the attempts of applying
the SSVEP BCI systems in the IoT field are a good idea
since the wide range of frequencies could allow the
control of a large number of devices. For now, the revised
solutions are not very advanced but they have great
potential as they propose complete and scalable platforms.
On the other hand, SSVEP is being applied in the field of
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virtual reality to simulate solutions that are difficult to
implement in the real world. One of the examples is the
implementation of a BCI system for controlling a real car;
this solution is quite valid, since, implementing a test site
for driving cars with brainwaves in the real world could
be complicated, very expensive and even dangerous.

In the field of AAC, BCI systems are being used
commonly for speller applications. In this aspect,
although, spellers usually use P300 signals, the use of
SSVEP is improving such systems, since, they deliver a
higher Information Transfer Rate (ITR), more intuitive
interface for users, faster response and less dependency
for the user (Id and Benda).

As shown in the previous paragraphs, the BCI
systems based on SSVEP provide many benefits for their
users and present an interesting future. However, they
also incorporate several limitations that need to be
overcome.

In the case of health-oriented applications, they have
the limitation that most of the works were never tested
with real patients with MND or other types of disabilities.
For example, rehabilitation systems such as Savic and
Popovic (2015) were tested on healthy people who were
supposed to need rehabilitation. This situation leads to a
problem since, the systems are not be assured that they
really fulfill the requirements of real users. On the other
hand, navigation systems have the limitation of delivering
a limited number of commands (e.g., Li et al. (2013) only
allows go forward and stop while Ruhunage et al. (2017)
only works at 6 Hz frequency). Similarly, some
navigation assistance technology applications require the
user to concentrate to execute specific commands and this
is not possible in a real environment where there are many
distractions.

On the other hand, systems for controlling vehicles
also have some limitations. For example, since, the
vehicles are controlled remotely, loss and delay of control
signals would be a big problem. If control signals reach
the vehicle with losses and delay, it could cause severe
accidents. Additionally, controlling a vehicle with
precision using SSVEP is very difficult; even though the
user's concentration, the flickering light to which he/she
is exposed would not allow him/her to do so for a long
period of time.

Solutions in the IoT area are ambitious but the current
prototypes are still very limited in terms of the number of
commands and devices they can control. However, we
believe that this is one of the areas where the applicability
of the EEG-SSVEP is going to increase. Furthermore, we
believe that the BCI applications oriented to virtual reality
is very premature and we have to wait a little more to
have more realistic applications. Finally, the spellers
developed in the AAC field that use SSVEP seem to have
a great future but they will have to find an adequate
solution to deal with a correct distribution of stimulus

frequencies since the proximity between stimuli of similar
frequencies can delay responses and even make it
impossible to classify. 

In summary, the EEG-SSVEP based BCI systems are
very interesting and demonstrate to be excellent options
for a different type of applications, however, they still
have several issues to be solved before being
implemented in massive real-world applications.

Analysis of different technological aspects of reviewed
articles
Classification algorithms: As far as the classification
techniques are concerned, although, the SSVEP signals
generated by visual stimuli are quite distinguishable by
their frequencies (Liu et al. 2018), they require great
precision. This is the reason why the study of
classification algorithms is one of the main focuses of
research in non-invasive BCI systems. In this aspect, the
majority of systems in the reviewed articles uses popular
classification algorithms such as CCA, LDA and FFT
since, they achieve quite acceptable results but it is
important to remember that other non-popular techniques
such as Multivariate Synchronization Index (MSI) and
Matched Filter Detector (MFD) look like to have better
results. Finally, it is important to emphasize that more and
more solutions are appearing that make use of machine
learning algorithms even though they require wider
knowledge to adjust its parameters and a larger amount of
data/time to train and test the models.

Channels: The most used channels for gathering signals
for SSVEP are O1, Oz and O2 because they are involved
with vision. But it should be noted that many works used
other channels in conjunction with those mentioned
above; this is because they use a hybrid system or they are
taking into account the variation that may occur signals
between each test subject. In addition, as mentioned in
Table 2, some jobs do not specify the channels used. This
represents a limitation, since, it does not allow the studies
to be replicated.

Experimentation subject: We believe that one of the
aspects that most of the reviewed articles need to improve
is the number of subjects of experimentation. This is
because only 24.39% of the articles tested their prototypes
on 10 or more subjects while 53.66% tested on 5 or fewer
users. We believe that the high number of test subjects
gives greater reliability of the results, demonstrates the
implementation feasibility of the proposed solutions in
real applications and ensures interoperability between
different users.

 BCI equipment: In terms of BCI equipment, only a
small amount of works go into detail about the hardware
(e.g., sensors and headsets) that researchers have used.
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This can be an important limitation because the possibility
of replicating prototypes of previous works (e.g., for
validation of results or improvement of the system)
decreases considerably. Among the works that detail the
used hardware stands out the usage of NeuroScan (from
different models), OpenBCI and Emotiv EPOC.

Final comments: Most of the research in the BCI field
has quite ambitious objectives and is being studied by
different research groups worldwide. It is a field that will
definitely benefit human beings, especially, those who
have some physical disability. And inside of this field, the
use of SSVEP signals has a great future since, it has
several benefits such as high ITR, high classification
accuracy and a short or null training time which translates
into less dependence on the subject. In addition, the
applicability of this technique in different types of
systems will allow the integration of different
technologies such as robotics, IoT, virtual reality and
motorized vehicles.

In terms of robotics integration with BCI systems
would bring significant benefits for humanity, these
benefits will bring the inclusion of people with disabilities
in jobs in addition to facilitating the use of robotic
machinery in industries, replacing repetitive and
exhausting tasks.

CONCLUSION

In this review, forty articles related to the
development of EEG-SSVEP applications were analyzed.
The considerable number of articles published lately
shows the progress EEG-SSVEP system has had in the
field of real-world BCI systems.
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