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Abstract: In this study, the performance of inverted
pendulum has been Investigated using neural network
control theory. The proposed controllers used in this study
are NARMA-L2 with resilient backpropagation and
Levenberg Marquardt backpropagation algorithm
controllers. The mathematical model of Inverted
Pendulum on a Cart driving mechanism have been done
successfully. Comparison of an inverted pendulum with
NARMA-L2 with resilient backpropagation and
Levenberg Marquardt backpropagation algorithm
controllers for a control target deviation of an angle from
vertical of the inverted pendulum using two input signals
(step and random). The simulation result shows that the
inverted pendulum with NARMA-L2 with resilient
backpropagation controller to have a small rise time,
settling time and percentage overshoot in the step
response and having a good response in the random
response too. Finally, the inverted pendulum with with
NARMA-L2 with resilient backpropagation controller
shows the best performance in the overall simulation
result.

INTRODUCTION

An inverted pendulum is a pendulum that has its
center of mass above its pivot point. It is unstable and
without additional help will fall over. It can be suspended
stably in this inverted position by using a control system
to monitor the angle of the pole and move the pivot point
horizontally back under the center of mass when it starts
to fall over, keeping it balanced. The inverted pendulum
is a classic problem in dynamics and control theory and is
used as a benchmark for testing control strategies. It is
often implemented with the pivot point mounted on a cart
that can move horizontally under control of an electronic
servo system as shown in the photo; this is called a cart

and pole apparatus. Most applications limit the pendulum
to 1 degree of freedom by affixing the pole to an axis of
rotation. Whereas a normal pendulum is stable when
hanging downwards, an inverted pendulum is inherently
unstable and must be actively balanced in order to remain
upright; this can be done either by applying a torque at the
pivot point by moving the pivot point horizontally as part
of a feedback system, changing the rate of rotation of a
mass mounted on the pendulum on an axis parallel to the
pivot axis and thereby generating a net torque on the
pendulum, or by oscillating the pivot point vertically. A
simple demonstration of moving the pivot point in a
feedback system is achieved by balancing an upturned
broomstick on the end of one’s finger[1].

324



J. Eng. Applied Sci., 16 (10): 324-330, 2021

A second type of inverted pendulum is a tiltmeter for
tall structures which consists of a wire anchored to the
bottom of the foundation and attached to a float in a pool
of oil at the top of the structure that has devices for
measuring movement of the neutral position of the float
away from its original position.

A pendulum with its bob hanging directly below the
support pivot is at a stable equilibrium point; there is no
torque on the pendulum, so, it will remain motionless and
if displaced from this position will experience a restoring
torque which returns it toward the equilibrium position. A
pendulum with its bob in an inverted position, supported
on a rigid rod directly above the pivot, 180° from its
stable equilibrium position, is at an unstable equilibrium
point. At this point again there is no torque on the
pendulum but the slightest displacement away from this
position will cause a gravitation torque on the pendulum
which will accelerate it away from equilibrium and it will
fall over[2].

In order to stabilize a pendulum in this inverted
position, a feedback control system can be used which
monitors the pendulum’s angle and moves the position of
the pivot point sideways when the pendulum starts to fall
over, to keep it balanced. The inverted pendulum is a
classic problem in dynamics and control theory and is
widely used as a benchmark for testing control algorithms
(PID controllers, state space representation, neural
networks, fuzzy control, genetic algorithms, etc.).
Variations on this problem include multiple links,
allowing the motion of the cart to be commanded while
maintaining the pendulum and balancing the
cart-pendulum system on a see-saw. The inverted
pendulum is related to rocket or missile guidance where
the center of gravity is located behind the center of drag
causing aerodynamic instability. The understanding of a
similar problem can be shown by simple robotics in the
form of a balancing cart. Balancing an upturned
broomstick on the end of one’s finger is a simple
demonstration and the problem is solved by self-balancing
personal transporters such as the Segway PT, the
self-balancing hoverboard and the self-balancing unicycle.

MATERIALS AND METHODS

Mathematical model of the inverted pendulum: The
free body diagram of the inverted pendulum is shown in
Fig. 1.

Summing the forces in the free body diagram of the
cart in the horizontal direction, you get the following
equation of motion:

(1)Mz Dz Q F   

The force exerted in the horizontal direction due to
the moment on the pendulum is determined as follows:

Fig. 1: Free body diagrams of the inverted pendulum
system
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Component of this force in the direction of Q is
 The component of the centripetal force actingmI cos . 

along the horizontal axis is as follows:
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Component of this force in the direction of Q is
 Summing the forces in the Free Body Diagram2mI sin . 

of the pendulum in the horizontal direction, you can get
an equation for Q:

(2)2Q mz mI cos mI sin      

If you substitute this Eq. 2 into the first equation (1),
you get the first equation of motion for this system:

(3)  2M m z Dz mI cos mI sin F         

To get the second equation of motion, sum the forces
perpendicular to the pendulum. This axis is chosen to
simplify mathematical complexity. Solving the system
along this axis ends up saving you a lot of algebra. Just as
the previous equation is obtained, the vertical components
of those forces are considered here to get the following
equation[3]:

(4)Wsin Qcos mgsin mI mzcos      
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To get rid of the P and N terms in the equation above,
sum the moments around the centroid of the pendulum to
get the following equation:

(5)WIsin QIcos I    

Combining these last two equations, you get the second
dynamic equation:

 2I mI mgIsin mIzcos      

The set of equations completely defining the dynamics of
the inverted pendulum are:

 
 

2

2

M m z Dz mI cos mI sin F

I mI mgIsin mIzcos

       

     

  
 

These two equations are non-linear and need to be
linearized for the operating range. Since, the pendulum is
being stabilized at an unstable equilibrium position which
is ‘Pi’ radians from the stable equilibrium position, this
set of equations should be linearized about theta = Pi.
Assume that theta = Pi+ø (where ø represents a small
angle from the vertical upward direction). Therefore, cos
(theta) = -1, sin (theta) = -ø and (d (theta)/dt)2 = 0. After
linearization the two equations of motion become (where
u represents the input):

 
 2

M m z Dz mI u

I mI mgI mIz

    

   

 
 

The transfer function of inverted pendulum, a DC motor,
Cart and Cart driving system will be:

 
  3 2

s 1.3s

E s 0.272s 0.34s 0.8s 1




  

Where:
E(s) = Error voltage and
Φ(s) = Angular position of the pendulum

The parameters of the system are shown in Table 1.

Proposed controllers design
Design of NARMA-L2 controller: The neuro controller
described on this phase is cited through two different
names: response linearization control and NARMA-L2
manipulate. It is known as comments linearization when
the plant shape has a specific form (associate form)[4]. It
is known as NARMA-L2 manipulate while the
fortification mold may be approximated by using the same
form. The vital principle of this type of control is to
convert nonlinear design system into linear dynamics with

Table 1: Parameters of the inverted pendulum
Model parameter Symbols Symbol’s value
Mass of the Cart M 1 (kg)
Mass of the pendulum m 0.3 (kg)
Friction of the Cart D 0.000 (N/m/sec)
Length of pendulum to center L 0.26 (m)
of gravity
Moment of inertia (Pendulum) I 0.007 (kg mG2)
Radius of pulley r 0.04 (m)
Force applied to the cart F 
Cart position coordinate z
Pendulum angle with the vertical φ

the aid of cancelling the non-linearities. This phase starts
off evolved with the aid of submitting the associate
system form and presentation how you may use a neural
community to become aware of this model. Then it
describes how the identified neural network model may
be used to broaden a controller[5].

Identification of the NARMA-L2 model: The first step
in the use of feedback linearization (or NARMA-L2)
manipulate is to identify the design to be controlled. You
train a neural network to represent the forward dynamics
of the system[6].

The first step is to pick out a styles association to use.
One standard pattern this is used to symbolize fashionable
discrete-time nonlinear system is the Nonlinear
Autoregressive-Moving Average (NARMA) model:

(6) 
   
     
 

y k ,y k 1 ,...,

y k d N y k n 1 ,u k ,u k 1 ,....,

u k n 1

 
 

     
   

Where:
u(k) = The system input
y(k) = The system output

For the identification section, you can teach a neural
network to approximate the nonlinear function N. If you
want the system output to follow some reference
trajectory y(k+d) = yr(k+d) the subsequent step is to
expand a nonlinear controller of the form:

(7) 
   
   
   

r

y k ,y k 1 ,...,

u k G y k n 1 ,y k d ,

u k 1 ,....,u k m 1

 
 

    
    

The trouble with the usage of this controller is that in
case you need to teach a neural network to create the
characteristic G to minimize mean square blunders, you
need to apply dynamic returned propagation. This can be
pretty sluggish. One answer is to apply approximate
models to symbolize the system. The controller used on
this section is based totally at the NARMA-L2
approximate model[7]:
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(8)

 
   
   
 

     
   

 

y k ,y k 1 ,...,
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This model is in associate shape, wherein the next
controller input u(k) is not contained in the nonlinearity.
The gain of this form is that you could resolve for the
control input that causes the system output to comply with
the reference y(k+d) = yr(k+d). The resulting controller
would have the form:

(9) 
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Using this equation immediately can motive
awareness problems, due to the fact you ought to
determine  the  control  input  u(k)  primarily  based  on
the   output   at   the   same   time,   y(k).   So,   rather, use 
the model[8]:

(10)
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where d$2. Figure 2 shows the structure of a neural
network representation. Using the NARMA-L2 model,
you can obtain the controller:

(11) 
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which is realizable for d$2. Figure 3 shows the block
diagram of the NARMA-L2 controller. This controller can
be implemented with the formerly diagnosed NARMA-L2
plant model, as shown in Fig. 4. Table 2 illustrates the
network architecture, training data and training
parameters of the proposed controllers.

Levenberg-Marquardt algorithm: Like the
quasi-Newton    methods,    the     Levenberg-Marquardt 

Table 2: Neural network parameters
Network architecture Values Variables Values
Size of hidden layer 6 Delayed plant input 2
Sample interval(sec) 1 Delayed plant output 3
Training data
Training sample 100 Maximum Plant output 3
Maximum plant input 1 Minimum Plant output 1
Minimum plant input 1 Max interval value (sec) 3
Min interval value (sec) 1.5
Training parameters
Training epochs 100

Fig. 2: The structure of a neural network representation

Fig. 3: Block diagram of the NARMA-L2 controller

algorithm was designed to approach second-order training
speed without having to compute the Hessian matrix.
When the performance function has the form of a sum of
squares (as is typical in training feed-forward networks),
then the Hessian matrix can be approximated as:

(12)TH J J

and the gradient can be computed as:

(13)Tg J e

where, J is the Jacobian matrix that contains first
derivatives  of  the  network  errors  with  respect  to  the 
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Fig. 4: Previously identified NARMA-L2 plant model

weights and biases and e is a vector of network errors.
The Jacobian matrix can be computed through a standard
backpropagation technique that is much less complex than
computing the Hessian matrix. The Levenberg-Marquardt
algorithm uses this approximation to the Hessian matrix
in the following Newton-like update:

(14)
1T T

k 1 kx x J J I J e


     

When the scalar µ is zero, this is just Newton’s
method, using the approximate Hessian matrix. When µ
is large, this becomes gradient descent with a small step
size. Newton’s method is faster and more accurate near an
error minimum, so, the aim is to shift toward Newton’s
method as quickly as possible. Thus, µ is decreased after
each successful step (reduction in performance function)
and is increased only when a tentative step would increase
the performance function. In this way, the performance
function is always reduced at each iteration of the
algorithm.

Resilient backpropagation algorithm: Multilayer
networks typically use sigmoid transfer functions in the
hidden layers. These functions are often called
“squashing” functions because they compress an infinite
input range into a finite output range. Sigmoid functions
are characterized by the fact that their slopes must
approach zero as the input gets large. This causes a
problem when you use steepest descent to train a
multilayer network with sigmoid functions because the
gradient can have a very small magnitude and therefore,
cause small changes in the weights and biases, even
though the weights and biases are far from their optimal
values. The purpose of the resilient backpropagation

(Rprop) training algorithm is to eliminate these harmful
effects of the magnitudes of the partial derivatives. Only
the sign of the derivative can determine the direction of
the weight update; the magnitude of the derivative has no
effect on the weight update. The size of the weight change
is determined by a separate update value. 

RESULTS AND DISCUSSION

Comparison of the inverted pendulum using
NARMA-L2 with resilient backpropagation and
Levenberg Marquardt backpropagation algorithm for
step input signal: The simulink model of the inverted
pendulum using NARMA-L2 with resilient
backpropagation and Levenberg Marquardt
backpropagation algorithm for step input signal is shown
in Fig. 5.

The inverted pendulum withthe proposed controllers
simulation result are shown in Fig. 6. The data of the rise
time, percentage overshoot, settling time and peak value
is shown in Table 3[9].

As Table 3 shows that the inverted pendulum with an
oscillatory base using NARMA-L2 with resilient
backpropagation algorithm improves the performance of
the system by minimizing the rise time, percentage
overshoot and settling time.

Comparison of the inverted pendulum using
NARMA-L2 with resilient backpropagation and
Levenberg Marquardt backpropagation algorithm for
random input signal: The simulink model of the inverted
pendulum using NARMA-L2 with resilient
backpropagation and Levenberg Marquardt
backpropagation algorithm for random input signal is
shown in Fig. 7[10].
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Fig. 5: Simulink model of the inverted pendulum using NARMA-L2 with resilient backpropagation and Levenberg
Marquardt backpropagation algorithm for step input signal

Fig. 6: Step response simulation result

Fig. 7: Simulink model of the inverted pendulum using NARMA-L2 with resilient backpropagation and Levenberg
Marquardt backpropagation algorithm for random input signal

The inverted pendulum with the proposed controllers
simulation result are shown in Fig. 8. Figure 8 shows that
the inverted pendulum with an oscillatory base using
NARMA-L2 with resilient backpropagation algorithm
improves the performance of the system by minimizing
the percentage overshoot and tracking the reference
signal[11].

Table 3: Step response data
Resilient Levenberg Marquardt

Performance data backpropagation backpropagation
Rise time 1.12 (sec) 1.65 (sec)
Per. overshoot 20 (%) 32 (%)
Settling time 2.4 (sec) 10.5 (sec)
Peak value 3 (°) 3.3 (°)
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Fig. 8: Random input signal simulation result

CONCLUSION

In this study, performance investigation of an
inverted pendulum system using neural network theory
have been analysed and simulated successfully. The
mathematical model of inverted pendulum on a Cart and
Cart driving mechanism have been developed. The
inverted pendulum with NARMA-L2 with resilient
backpropagation and Levenberg Marquardt
backpropagation algorithm controllers have been designed
and the comparison of the inverted pendulum with
NARMA-L2 with resilient backpropagation and
Levenberg Marquardt backpropagation algorithm
controllers using step and random input desired position
signals have been done using MATLAB/Simulink. The
simulation results prove that the inverted pendulum with
NARMA-L2 with resilient backpropagation controller
shows improvement in minimizing the rise time, settling
time and percentage overshoot than the inverted
pendulum NARMA-L2 with Levenberg Marquardt
backpropagation algorithm controller. Finally, the
comparative and simulation results prove the
effectiveness of the inverted pendulum with NARMA-L2
with resilient backpropagation controller[12].
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