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Abstract: One of the main characteristics in optimization and performance evaluation in a Queueing Model is

its busy period. Finding the exact distribution of this variables in Queueing Models which service distribution

and or inter-arrival distribution 1s general is so complicated and there 13 usually no closed formula for that.
Traditionally in these situations, Laplase-Stieltjes transform this variable computed and then by using that the

moments 1t determined.
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INTRODUCTION

In the Queueing Models, there are some features, so
that through them, researchers can analyze the model.
These characteristics are known as the effective sizes.
On the other hand, optimization of queueing systems is
done with the help of cost functions that are themselves
functions of effective sizes. Also since, the arrival and
service processes In queuelng systems are random
Therefore, effective measures are random. Hence, one of
the important objectives n the analysis of queueing
systems is obtained the probability distribution of this
variable and or determined the characters of their
distribution such as mean, variance and etc.

One of the important effective sizes in the Queueng
Models, the busy period 15. Finding the exact distribution
of this variables in Queueing Models which service
distribution and or inter-arrival distribution 1s general 1s so
complicated and there is usually no closed formula for
that. Since that, the moments determine the main feature
of probability distribution for a random vanable, so this
study deals with the busy period moment in M™/G/1/K
system with vacation times and under the partial batch
acceptance strategy.

The batch-poisson arrival M™//G/1/K finite capacity
queue with server vacation 1s
telecommunications. For example, a processor (server)

NOow COMIMon Iin

has secondary jobs (customers) to be performed aside
from primary jobs. The processing time for a secondary
job cormresponds to a vacation time in queueing

termmology. Another example is a buffer (queue) under
the Tiune Division Multiple Access (TDMA) environment
(Stuck and Arthurs, 1985). An arriving packet (customer)
who finds the system idle cannot be transmitted (served)
immediately and it has to wait until the slotted boundary
comes. A constant slotted time period corresponds to a
vacation time. Performances issues in these examples then
necessitate the queue with vacation time.

Traditionally, busy periods have been characterized
through their Laplace-Stieltjes transforms (Casella and
Berger, 1976, Harris, 1971; Miller, 1975; Perry et al., 2000).
However, the Laplace-Stieltjes approach has some
important practical himitations that are not shared by
procedure developed in this study.

Researchers analyze the duration of busy periods in
M™/G/1/K systems by conditioning on the number of
customers that arrive to the system during the first
vacation time while concurrently taking full advantage of
the Markov-regenerative structure of the number of
customers in MZ/G3/1/K systems (Kulkarni, 19953) for the
defimtion and properties of Markov regenerative
processes). By busy period it is (usually) meant the period
of time that starts when a customer arrives to an empty
system and ends at the first subsequent time at which the
system becomes empty (Abramov, 1997; Righter, 1999). In
this study, we obtam results for the slightly generalized
case of delay busy periods (Conway et al., 1967) where a
busy period 13 mitiated by some task other than the
processing of an ordinary job. Researchers end this
introduction with a brief outline of the study.
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The MODEL AND SOME NOTATION

Researchers consider an M™/G/1/K queue where K
equals the number of waiting places in the queue
mcluding the space for the customer that may be in
service.

Researchers assume that the armmival epochs of the
batches form a homogeneous poisson process with
intensity A and the service times form a sequence of i.i.d,,
random variables with general distribution function G(.).
Service times are independent of the arrival process and
are not affected by the discipline and customers accepted
by the system are served by a single server exhaustively,
ie., the server serves the queue continuously until the
queue 18 empty.

As regards the policy,
researchers consider what 1s known as partial blocking
(Vijaya Laxmi and Gupta, 2000) in which if at arrival of a

customer acceptance

batch of | customers there are only m, m<l, free
position available in the system then m customers of
the batch the system and the remaining l-m

customners of the batch are blocked.

enter

Inthe case of delay busy periods at a time when there
are no customers in the system, the server 13 made
unavailable for a time V having distribution function V(.).
At the end of the delay (vacation) the server begins worlk
with a backlog of however many customers (possibly
none) have arrived during the delay and continues until
there are none left. Researchers let (f),,; denote the batch
size probability function where, N, = {1, 2, 3, ...} and £*
denotes the probability that the total number of customers
inr customer batches is equal to i. Note that £ = §,, and:

f(r)

Z f _.f(rflj

i=r-1

forreN and a =, r+1,.... where 8, is the Kronecker delta
function, 1.e., 8, =1 1f1 = a and &,, = O otherwise.

In addition, researchers let P, aeN = {0, 1, 2, ...},
denote the probability that a customers armive during the
vacation time. Then by conditioning on the number of
batches arriving during the vacation time, researchers
have:

- i, M)

r=0

pa

where, o, 13 r-th mixed-poisson probability with armval rate
A and mixing distribution G{) (German, 2000,
Kwiatkowska et al., 2002):
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—As (AS)

——dG(s) )

o, ()= j

MOMENTS OF THE DURATION OF A BUSY PERIOD

Let B, ¢ be the duration of a busy period that starts
with a backlog of i jobs when the queue has a total
capacity of K jobs waiting. In this notation, B, ¢
corresponds to the ordinary busy period B,y 1s
independent of the discipline, so that the busy period is
equivalent to the sum of 1 busy periods, the j-th one
having length B, . .; becausei-] spaces are occupied
by original jobs. Thus:

3

where, @ denotes convolution of random variables, 1.e.,
the sum of independent random variables.

Now, considering the random variable representing
the duration of the delay busy period with K waiting
spaces by Dy, its Laplase-Stieltjes transform by 8,(t) and
distribution function and Laplase-Stieltjes transform of
B, x respectively by B, ,(.) and [, /(t), researchers derive
the following results.

Theorem 1: The Laplase-Stieltjes transform for the
distribution of the duration of a delay busy period for an
M™/G/1/K queue is:

Zw (t)HBI ()

Bpith=v,(D+ Zw {t
(4)

IT B0+

=K-a

Where:

o,0-] 30 et
o r=0 .

Proof: Let A be the number of arrivals during the vacation
time. Then:

i

= exp[-t(v + x)]

= a” Bmm(a, KLK = X}

(3

where, x =01fa = 0. For 1 <a<K, B, y can be replaced by its
decomposition, given by Eq. 3. Then integrate with
respect to B, ;(.), K+1 - a<j<K and apply the convolution
theorem for Laplase transform so that, exp(-tx) is replaced
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with products of the (3, ;(t). Finally, weight each term by
the probability associated with the number of arrivals
during the vacation time and integrate with respect to
V()

However, moments of the model may be obtained by
differentiation of Eq. 4 but this procedure for computing
the higher moments, especially when increasing capacity
of the system, the complicated computation is needed. In
the following theorem, researchers computation this
moments by another way.

Theorem 2: The mteger moments of the duration of delay
busy periods for an M*/G/1/K queue is:

m-1

E(D})=E(v* )+ZpaE(Ba,K)+Zpa >

a=l i=1

+ > p.EBE )+ > p, z[ JE(VbE(B’;;;)

azk azll 1=1

m | -
{ . JE(Va)E(BZKJ)
]

(6)

where, meN.

Proof: Researchers let ¥, denote the duration of the
vacation time of the first delay busy period given
that exactly a customers arrive to the system during his
delay.

If no customers arrive to the system during the
vacation time of the first delay busy period, the
delay busy period ends with terminate the vacation
time.

Otherwise, the customers that arrive to the system
during the vacation time and are not blocked initiate
at end the vacation time, a multiple-busy period
that 18 part of the first delay busy period under
consideration and adds to the duration of the vacation
time. Namely:

d_—
DA =0 V. OB s

where, ! denotes equality in distribution. Taking into
account that has probability function P,, Eq. 1 leads to:

E(D2)=3p, E(V. @B

a=0

1
min(a,K),K)

with B, denoting a random variable that i1s null with
probability one. By using Newton’s binomial formula in
previous equation, we have:

1

2

1=

K-1
E(Dy)= an(Vu 2P
a=1

2

{ JE(V JE(B)

B

3.3 JE(Vi)E(B;‘_‘g

azk

]
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By separating the terms for which j = 0 andj=m
from the remaiming terms in the previous equation
taking into account, researchers conclude following
equation:

E(v®)=3p,E(V:)

az0

As it mentioned, Pacheco and Riberio (2008) has
addressed a recursive algorithm to compute moments
E(B™, ¢), 1 ca<K. In following theorem, researchers provide
a simpler form for the computation the coefticients:

(paE[Va])

0=a<K-2, 0=l=m

Theorem 3: The absolute moment of order m, meN_, of
conditional random variable V, , verifies:

oy 2 (m+j) 0]
EV. =Y — o, fU (7)

’ JZ:T At

for aeN and moreover:

—m KE-1 a |
SPEV)=Ev)- 3y B, o ®)
azK a=0 1=0 A‘ !

Proof: For meN, and aeN:
PEIVII=E V"1, |
o 2 Y

= umze'“—( _u’) £9dviu)

F 7L m+_| .

_ Z (m:: .]) J' —lu ( u) . dv(u)fa(ﬁ

o AT (m+ j)
Z {m+ J)' £
A..m ' T+ j a

1=0

Finally, Eq. 8 follows from Eq. 7 since:

E(V®)= 3 p,E(V.)

azl

thus, implying that:

> p.E(VL)=E(V™)- ZPEE(V )

azkK

The most immediate application of theorem 2 is for the
computation of the expected value of the duration of the
delay busy period of M/G/1/K systems in which case,
researchers conclude that:
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Table 1:  Expected value, coefficient of variation, skewness and kurtosis of
the duration of delay busy period in systems with arrival rate,
unit service rate and exponential vacation time distribution with
unit mean

M/MQ)/1/K

K Evy CVi SV KV

0 1.0000 1.0000 2.0000 9.0000

1 2.0000 2.0000 4.0000 18.0000

2 2.9500 2.2246 4.3238 19.7353

3 3.8525 2.4525 4.7064 22,2209

4 4.7099 2.6573 5.0727 25.0158

5 5.5244 2.8420 5.4149 27.9797

6 6.2982 3.0108 5.7354 31.0580

11 9.6240 3.6995 7.1128 47.5952

16 12,1975 4.2334 8.2691 65.6381

21 14.1888 4.6739 9.3009 85.0173

26 15.7296 5.0475 10.2491 105.6351

31 169219 5.3684 11.1339 127.3832

36 17.8444 5.6456 11.9655 150.1300

41 185583 5.8856 12.7498 173.7177

46 191106 6.0931 13.4895 197.9643

51 20.5380 6.2721 14.1859 222.6676

= 21.0000 7.2450 20.7309 596.7692

E(V)=E(V)+ iE(BU)

This leads to equation derived by Miller (1975) to
compute the duration of a delay busy period of an
M/G/1/K system.

NUMERICAL ILLUSTRATION

To provide a numerical illustration of how the
duration of delay busy period depends on system
capacity, researchers computed the data in Table 1 for
the M/M/1/K system with arrival rate A = 0.95 unit service
rate and exponential vacation time distribution with unit
mean.

In the example, we let EV (CV,, SV, and K'V,) denote
the expected value or mean (coefficient of variation,
skewness and kurtosis) of the duration of delay busy
period (Casella and Berger, 2002).

CONCLUSION

In this study, researchers address using the Laplase-
Stieltjes approach to compute moments of the duration of
the busy period in M7¥/G/1/K systems with vacation
times and under the partial batch acceptance strategy is
associated with some important practical limitations, we
provide other procedure to calculate the moments of this
Queueing Model.
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