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Abstract: Fishery is considered as an emerging farming sector in Bangladesh and plays an important role in

anmual economic growth. This emerging industry 1s facing several hindrances and infectious disease of fish

15 one of them. In early days, fish disease research was on various respects of pathogens rather than
investigating dynamics of disease spread in aquatic population. Vast amounts of data are available on the

responses of these pathogens to environmental and host related factors and generally statistical modeling of
those data could be used to understand the relative importance of the factors influencing the spread of disease.
In particular, the data obtained from aquaculture systems could be robust in formulating mathematical model
due to fewer assumptions involved. Thus, nonlinear relationships between various factors affecting disease

outcome can be evaluated more efficiently and realistic predictions can be obtained using mathematical model.
In this study, we formulate an SIR epidemic model for aquatic infectious disease to investigate the discase
dynamics. The goal of this study is to assess the basic concept of disease modeling for aquatic infectious
disease and provide insight into the relative importance of parameters playing a major role in disease outbreaks.
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INTRODUCTION

Fish play an important role among the population in
Bangladesh. Situated in the delta of the Brahmaputra,
Meghna and Ganges rivers, the climate, water and soil
conditions of Bangladesh are favorable for inland
fisheries and aquaculture. According to the Bangladesh
Bureau of Statistics (BBS), the fisheries sector mcluding
aquaculture and capture fisheries has had an ammual
growth exceeding 7% simce 1995 and contributed 6% to
the country's GDP in 2000 (Statistical Year book of
Bangladesh), (Household Expenditure Survey, BBS,
2000a, b). With annual fish consumption of about
14 kg person™ in 2000, fish account for 60-80% of the
animal protein consumed by the population and also
provide essential vitamins, minerals and fatty acids
(Thompson et al., 2002).

Inland fisheries and freshwater aquaculture are the
main source of these nufrients for most of the
Bangladeshi populations. Over the last 2 decades, there
has been a dramatic increase m inland freshwater
aquaculture  production. Department of Fisheries’
statistics  indicate that fish pond production in
Bangladesh mereased sharply from 123,800 ton in 1986 to
561,000 ton in 2000 and average yields nationwide rose
from &40-2,440 kg ha™' (DOF, 2005). With farm gate

prices of farmed fish of about $0.80 kg™ (Tk 45-50 kg™,
fresh water aquaculture production contributes about
$700 million year™ at farm gate value to the rural economy
or =$1 billion annually when postharvest handling and
marketing are mcluded. Although, identified as an
emerging farming sector, aquaculture in Bangladesh is
neglected due to several hindrances towards its growth
and production and losing its revenue; infectious disease
1s one of major hindrances that have a negative impact on
aquatic farming in Bangladesh.

The current trend in fisheries development 1s towards
mnereased ntensification and commercialization of their
production. Like other farming sectors, the likelihood of
major disease problems occurring increases  as
aquaculture activities intensify and expand. The fish
farmmg industry has been overwhelmed with its share of
diseases and problems caused by viruses, bacteria, fungi,
parasites and other undiagnosed and emerging
pathogens. Thus, infectious disease is now a primary
constraint to the culture of many aquatic species,
impeding both economic and social development.

The appearance and development of a fish or shrimp
disease is the result of the interaction among pathogen,
host and environment. Therefore, only multidisciplinary
studies mvolving the characteristics of potential
pathogenic microorganisms for fish and shrimp, aspects
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of the transmission biology of the hosts as well as a better
understanding of the environmental factors affecting such
cultures will allow the application of adequate measures
to prevent and control the main diseases hmiting the
production of freshwater fishes and shrimp in Bangladesh
(BFRI, 2004).

It may be a general thought that statistical regression
of either experimental or tine series data is the only
modeling technique available for the marine biologist’s
toolkit to analyze infectious disease epidemiology in large
varieties of fish populations but statistical models are
only one of several types of analytical models that are
valuable to understand and predict transmission of
infectious diseases. Mathematical modeling in the study
of fish infectious diseases 1s a set of techmques, tools
and equations that define interactions between
individuals or populations and other individuals,
populations and environments.

By defining the rules of these mnteractions and
translating those rules mto equations, a complex set of
processes can be broken down into components and
quantified. The model can then be used to explore
relationships in the modeled populations, to examine the
mnpact of changes of rules on the system and its
components and the outcomes of various events that
might have an effect on the population.

The foundations of mathematical modeling of human
and mammalian disease epidemics were first established
by Kermack and McKendrick (1927, 1932, 1933). Later, the
extensive reviews (Anderson, 1982; Anderson and May,
1979, May and Anderson, 1979) contributed to the
subject of disease dynamics opening new discussions for
concepts, critical threshold, basic reproductive ratio,
transmission  coefficient, ete. The importance of
mathematical models in disease epidemics has been
discussed extensively by many researchers (Bradley,
1982; Anderson and May, 1991, Heesterbeek and Roberts,
1993). A review (Ogut, 2001) on fish disease dynamics
was also studied.

Considering the vast amount of experimental or time
series data available about various aspects of fish
pathogens, potentials dynamics and
epidemiological models should be explored. Since these
types of studies focus on diseases rather than pathogen,
the information is invaluable in terms of understanding
and controlling disease. In the study, we focus on
formulating a basic SIR model for fish and shmmp
mfectious disease in Bangladesh. We derive analytical
model of fish infectious diseases and then analyze the
outcomes of the model with numerical examples. In the
following sections, we shall describe a compartmental
modeling approach that captures

of disease

the transmission

dynamics of infectious diseases in aquatic populations as
well as give a detail description of mass action theory in
infectious  disease transmission, basic reproduction
number, transmission co-efficient and critical population
densities for infectious disease epidemiology. Then, we
shall give a theoretical framework that describes the
stability and existence of an epidemic in a closed aquatic
population. Finally, some numerical simulations from this
model will be summarized with concluding remarks.

MATERIALS AND METHODS

Compartmental modeling of infectious disease dynamics:
A compartmental mode] of infectious disease dynamics is
a model in which members of a host population are
assigned to compartments on the basis of their infectious
status or other attributes and the changes in the size of
compartments are described as a dynamic system. The
basic model of such kind 1s also known as SIR model with
birth and death rate which is first stated by (Kermack and
MecKendrick, 1927).

The whole population N of an SIR model is
subdivided m three different sub-classes as the
Susceptible class S, the Infected class I and the
Recovered or removed class R. The Susceptible class S
are those individuals who are not infective but who are
capable of contracting the disease and becoming
infective. The mfective class I are those individuals who
are infected with pathogen and capable of transmitting the
disease to others. The Recovered or removed class R are
those individuals who have had the disease and died or
had the disease and recovered and/or become
permanently immune and/or been isclated from the
susceptible until recovery and permanent immurnity occur.
The dynamics of infectious disease transmission between
the classes are shown in Fig. 1.

In the disease transmission model, we assume that
acquatic population will be in closed form i.e., there is no
birth and death. Imitially whole population would be
susceptible with a very few mfected as introduced
population. We also assume that all infected population
will be recovered after certain period of time. Therefore,
the simplified model that we use 1s shown in Fig. 2.

It is assumed that in directly transmitted diseases,
the dynamics proceed according to the mass action
theory, namely that the net rate of hosts becoming
infected 18 the product of density of S individuals tumes
the density of I mdividuals. Thus, the number of
successful contacts made between S and T (infectious)
determines the magnitude of the disease outcome. To
construct the disease transmission model, we further
assume that:
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Fig. 1: Dynamics of infectious disease transmission between the SIR classes

N . v

Fig. 2: Simplified SIR model for infectious disease

1:  Anaverage member of the population makes contact

sufficient to transmit infection with PN others per

unit time where N represents total population size

(mass action incidence)

Infectives leave the infective class at rate 81 per unit

time

3: There is no entry into or departure from the
population except possibly through death from the
disease

According to point 1, since the probability that a
random contact by an infective is with a susceptible who
can then transmit infection 1s S/N, the number of new
infections in unit time per infective is (PN) (S/N), giving a
rate of new infections (PN) (S/N)I = BSI. Alternately, the
probability that this contact is with an infective is I/N and
thus the rate of new infections per susceptible is (PN)
(I/N) giving a rate of new infections (BN} (I/N) S = BSI.
Therefore, the systems of differential equations that can
describe the dynamics of infectious disease transmission
in a fully susceptible closed aquatic population are given
as follows:

ds/dt=—psI (1
dl/dt =P8I - &1 2
dR /dt=31 (3
N=8+I+R 4

Infectious disease transmission co-efficient P is
determined by two factors (Anderson, 1982), the

10

frequency of contacts made which 1s directly related to
the density of susceptible individuals and the likelihood
that a contact results in pathogen transmission. In aquatic
environment, all of the fish are exposed to the same
environmental conditions. Smnce, 1t 13 a closed
environment, making an assumption on contact rate that
every fish has the same chance of coming into a contact
with an infectious fish and/or an infectious agent m the
water column is more than an assumption

There is a threshold density which disease cannot
persist. Kermack and McKendrick (1927) first reported the
concept of threshold density. The critical threshold
density in a closed population for a short peried of time
where no birth and death is considered is determined by
the following relationship:

N, =8/

For a disease outbreak to occur, there should be a
certain number of susceptible individuals in the
population, higher than N; (i.e., S»N;) (Anderson and
May, 1986; Nasel, 1995; Dietz, 1974).

For directly transmitted macro-parasites such as viral
and bacterial pathogens, N is low due to the production
of large numbers of macro-parasites from individual hosts
and the fact that parasites often have long infective
stages wlich clearly mndicates dependence of net rate of
infected hosts on a certain critical density.

The number of T (infected) will not increase unless
N=N; (Anderson and May, 1986). With the exception of
sexually transmitted diseases (Yorke ef al., 1978), the
requirement of a certain number of individuals for a
disease epidemic is true for virtually all diseases
(Anderson and May, 1979). The basic reproductive rate
(Ry) 18 the most crucial component of the disease
dynamics modeling process. R; is the mean mumber of
individuals directly infected by an infectious case during
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the individuals® entire infectious period after entering a
totally  susceptible population (Anderson, 1982,
Anderson and May, 1979; May and Anderson, 1979,
Anderson and May, 1991).

R, is determined by factors which are specific to the
disease agent (its virulence), the host (the level of
susceptibility which determines levels of latent period-the
time required for an epidemic to oceur) and environmental
factors such as host density and behavior (Anderson,
1982). The measurement of R, is essential in the
determination of the spread of the disease, since 1t 1s the
measwre of the disease mvasion in the population
(Heesterbeek and Roberts, 1995).

Tt determines whether an invasion will emerge after
mtroducing the mfected mdividual s mto a totally
susceptible population. R, could take one of three
possible values as:

Ry<1: Daisease will disappear over time

R;=1: Disease will be endemic and persistent with no
large scale epidemic occurring

There will be an epidemic with elevated levels of
disease related mortality

R,=1:

R, can be estimated using the formula:

B
R,="
"
Where:
B = Disease transmission co-efficient

3(0) =
5 =

Initial susceptible population
Recovery or removal rate from infection

RESULTS AND DISCUSSION

Equilibrium and stability analysis of infectious disease
epidemiology: Modeling infectious diseases demand that
we investigate whether the disease spread could attain an
epidemic level or it could be wiped out. The equilibrium
analysis helps to achieve this. Thus, two equilibriums will
be considered, the disease free equilibrium and epidemic
equilibrium. At equilibrium, the LHS of the three equations
constituting the system of equations are zeros i.e., Eq. 1-3
will be zero as follows:

as_dr_

&R
dt 7 odt

dt

0

El

Hence, the system of equation becomes:

—BSI=0 (3
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(6)

(7

From Eq. 5, we get either S=0or [ =0.If S = O then
epidemic equilibrium:

(8, I*, R =(0,1%, 0)
If T = 0, then disease free equilibrium:

(8%, I*, R*)=(5;, 0, 0)

Where S, 1s the imitial susceptible populations. To
test for the stability of each of the two equilibriums where
we examine the behavior of the model population near the
equilibrium solutions (the disease free and the endemic),
we need to linearize system of Eq. 1-3 by taking the
Jacobian matrix of the system. For the modeled system of
equation, the Jacobian matrix is:

-BI -BS 0
J=| B BS-8 0 (&)
0 S 0

At the disease free equilibrium, (3,, 0, 0), the Jacobian
matrix becomes:

-BI -BS, O
"= BI BS"-8 0 &)
0 b 0
From 9 we have:
det(J" —AD=A (L - B8+ 8)
(10)

Hence, the eigenvalues are:
A, =4, =and A; = B3-0
Since, 4, is negative 1fd>PS, then it is stable in

disease free equilibrium. At the epidemic equilibrium (0, I*,
0) the Jacobian matrix becomes:

-BI 0 0
JIBI -8 0 (1)
08 0
From @ we have:
det(T* -AD=(x+ D%+ ) (12)
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Since all eigenvalues of the epidemic equilibrium are

negative, it is asymptotically stable. Tt follows that in a
short outbreak, epidemic would occur within the closed
population.
Numerical simulations: The system of differential
Eq. 1-3 for understanding aquatic mfectious disease
epidemiology can be solved numerically using
Berkeley Madonna v8.13 package. The hypothetical
value of each parameter of the model is shown in
Table 1. The results from numerical simulations are shown
m Fig. 3-5.

In Fig. 3, the dynamics of infectious disease
progression is shown. With a small proportion of infected,
the epidemic 1s occurred in the whole susceptible
population within a very short period of time. Simulation
results show that mitially the mfected appears in an
exponential growth. Then the epidemic dies out due to
lack of susceptible population.

The critical density of susceptible population 1s very
important to carry on a disease. The critical N; density is
equivalent to &/P. If susceptible population is <d/p then
the disease will not persist. This phenomenon is
shown in Fig. 4.

The number of infected population is largely
depended on the transmission coefficient of disease. In
Fig. 5 mmpact of different transmission coefficients are
shown. Mathematical modeling of aquatic infectious
diseases has several potential benefits. For example, two

fundamental assumptions in any infectious disease

Table 1: Hypothetic values of each model parameters used for numnerical

sirmilations
Parameters Values
I 0.001
p 1-100
o 0.40
5 0.05
L
0.9 E
084 |! e SUsCEpible
.g ord i === Infected
g 0 i —— Recovered
Boo6] in
£ 057 i’
g 0.44 |
E 0.3+ i
= 024 A
014 / /4
0 AN 1 v . 0
0 50 100 150 200
Time

Fig. 3: Dynamics of disease progression m entirely
susceptible populations
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modeling are homogeneous mixing and the closed
populations that make model robust in terms of predictive
capabilities. In pond and cage culture situations,
enviromment 15 homogenous for each ndividual sharing
the same environment and the population can also be
considered as in closed form.

Disease epidemic is the result of the complex
combination of environmental, host and pathogen related
factors. Therefore, environmental (temperature, oxygen,
pollutions), host (species, age, demsity, immumity) or
pathogen related factors (virulence, strain) could be
manipulated to control diseases.

It is a fact that the system is very complex, however
not all parameters have the same amount of effect on the
outcome of the disease. Some parameters playing a role in
disease dynamics could be key factors. Adjusting just
those key factors could make sigmficant improvement in
the system in terms of decreasing loses or prevalence. In
Fig. 1, we showed the complex effect of disease
transmission co-efficient on development of an epidemic

in the susceptible populations. Modeling disease
T
0.9- E ----- Susceptible<critical density
osd i ———— Epidemic curve for susceptible<ctitical
B! density
Bor{ ! e - Susceptible>critical density
B i —— Epidemic curve for susceptible>critical
?é 0.6- density
& 0.5-
-]
-g 0.4
= 034
0.24
0.0 b NG
Y . ; - ]
0 50 100 150 200
Time

Fig. 4: Critical population density to persist an epidemic

- B=02
E 0.9 o [} = 0.282843
g 0.8- A —p=04
& 0.7 x‘\‘ —— B=0.565685
& o6 :h co-- B=08
:g 059 {1
A 04 |
k-
g 031
-E 0.2
£ 0.1
0 : '
. 50 100 150 200

Time

Fig. 5: Changes in fraction of infected population due to
varying disease transmission coefficient values
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dynamics totally focuses on disease by estimating R, and
Ny values and observes changes on these parameters.
Any significant decrease m these values indicates
effectiveness of a control measure which could be a drug
treatment or vaccination.

Here, controlling the disease means pulling R, below
umity. Therefore, there may not be any need to vaccinate
the whole population but just enough proportion to draw
R, below unity. This will decrease cost and effort of
controlling the disease.

CONCLUSION

In brief, the large amounts of data have been
accumulated on various pathogens of fish in Bangladesh
(BFRI, 2004, DOF, 2005). However, the list of things that
we do not know includes many issues of fundamental,
practical and theoretical importance about aquatic
disease. The main reason for this gap 1s that the disease
itself has not been mn focus but pathogen. Mathematical
modeling is one approach studying disease itself and
guides us to take necessary steps in controlling and
preventing diseases.
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