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Abstract: In this research, we studied the flow of a reacting pressure/temperature dependent viscous fluid,
when air or oxygen is introduced into a channel containing hydrocarbon, oxidation or combustion is induced,
we study the heat transfer in the chanmel. The model leads to system of momentum and energy equation and
the resulting non-linear differential equation 1s solved numerically, we showed that the momentum equation just

like the energy equation has multiple solutions.
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INTRODUCTION

Fluid flows through porous media are not only
umportant to both plant and ammals for continuity of life
1t 18 also important to man due to the recovery of crude o1l
from the pores of the reservoir rocks.

Marchesin and Schecter (2003) considered the
oxidation heat pulses in two phase expansive flow in
porous media, following them, low temperature oxidation
is a method of oil recovery that uses a chemical reaction
to cause a temperature increase, thereby reducing oil
viscosity and allowing the o1l to flow more readily. It has
been successfully used in various oil fields for example,
total oil’s Horse greek project, North Dakota U.S.A
Germain and Geyelin (1997) and has been the subject of a
number of papers in the petroleum engineering literature
(Baibakov and Garushev, 1989, Cram and Redford 1977,
Dabbous and Fulton, 1994; Fassihi et al, 1990
Grabowski et al., 1979; Prats, 1986) and the mathematics
literature (Barkve, 1989, Brvining and Duyn, 2000,
Da-Mota etal., 1999, Da-Mota, 1992). The mathematical
theory of low temperature oxidation is an aspect of
the theory of combustion in multiple flows in porous
medium.

Bear (1972) comsidered the effect of pressure and
temperature on viscosity and concluded that most fluid
shows a pronounced variation with temperature but are
relatively msensitive to pressure until high pressures
have been attained he also reported that for gases at twice
the critical temperature variations of viscosity with
temperature are quite small until pressures of the order of

the critical pressure have been reached. For gases, at high
pressure an increase in temperature causes a decrease in
viscosity while a decrease in temperature causes the
viscosity of a gas at low density to decrease. Also
Adesanya and Ayeni (2007) studied the couette flow of a
reacting pressure/temperature dependent viscous flow
and we gave conditions for which viscosity can depend
on pressure and temperature exponentially.

The need to investigate heat transfer to a viscous
incompressible fluid arises because it has been proven
useful for the description of polymer melts, metal melts,
blood flow as well as many other industrial flows Ckoya
(2006) and Makinde and Mhone ({2005) investigated the
heat transfer to MHD oscillatory flow in a channel filled
with porous media, they assumed a constant viscosity.
when the thermal conductivity (k) of the fluid 18 constant
and 1its viscosity a function of temperature, analytical
solutions have been presented by Frank-Kameneskii
(1987), Gainutdinov (2001 ) and Adesanya et al. (2006).

In this study, we shall investigate the heat transfer in
the channel with respect to the boundary conditions with
the following assumptions;

»  Temperature and velocity have reached the steady
state.

*  Viscosity is a function of pressure and temperature.

¢ Heat transfer through radiation is not negligible.

» Flud 13 reacting and satisfies the Arrhemus
temperature dependence law.

¢ The walls of the channel are chemically inert.

¢ The rmal conductivity (k) is a constant.
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MATHEMATICAL MODEL

Let us consider the flow of fluid between 2 parallel
plates with gap h between them in the y-direction. The
plates and the fluid between them m the fractured
reservolr are assumed to extend very far m the +x-
direction the upper plate has the velocity U, the lower
plate is stationary also the fluid is reacting. These
assumptions lead to the steady equation: Take a Cartesian
coordinate system (x, y), then, the equation governing the
motion are given by

Momentum equation

df du}] dp
0=—| p— |- — T-T (1)
dy[udy} o T PeR(T-Ty)
Energy equation
-E
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with boundary conditions
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We now mtroduce the following dimensionless
parameters
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We obtain the dimensionless equations (after

dropping of bar)
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We now proceed to solve the Eq. 9 and 11 under the
boundary conditions (10) and (12).

METHOD OF SOLUTION

Leta=1b=1,e=0,d=1,g=1,f=05p=050=05

_5)+2
d enSy(l sy do +y(1-y)+6=0 (14
dy dy
$-1)=0=0¢ (1)
2
d—?+o.5ee:0 (15)
dy
0(-1)=06()=0
The 2 solutions of (11) (Adesanya et al., 2006) are:
: (16)
e? =e”'“sech 0.58y
and
5]
e? =a"¥gech 211y a7)
We now find the solution of Eq. 10,
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We obtains
4 "I B gach 0.58y@ +y(l-y)+3.0844=0
dy dy
Integrating
v LY 1 30814y+4q
b 273 . (20)

dy " 7eb 0 gech 0.58y )

Where q 1s the integration constant
And
When

g
e?=e""sech 211y

Repeating the procedure for Eq. 12in 13

We have
i eD Sy(lfy)el 438 seCh 211y@ +
. dy (2D
y(1-v)+2lne'*Fsech 2.1y =0
This becomes
d[eu Sy(l—y)eu.lsﬁ sech 0.58)/(14)} +
ay dy (22)
zily | ,-2ily
y(l-y)+2876- QIH[%J -
We finally obtains
i el 7l-MgldB ganh 7 ] IY@ 23
dy & =
+y(1-y)+56484=0
Integrating
2 17X +5.6484v +
dp Fla )AL =

-4
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Equation 20 and 24 has no analytic solution, we
therefore solve numerically using maple soft ware which
clearly satisfy the 2 boundary conditions as seen m the
Table 1.

The rate of heat transfer 13 given as the Nussel

number (NTI).

Table 1: The 2 boundary condition

v D101 0202
-1 0 0
-0.9 0.45867455 0.806082412
-0.8 0.817455649 1.315031122
-0.7 1.094920945 1.632869323
-0.6 1.305837235 1.827795545
-0.5 1.461850338 1.943627106
-0.4 1.572064876 2.008389465
-0.3 1.643517502 2.039807443
-0.2 1.681554006 2.048806488
-0.1 1.690123566 2.041725973
1.672002256 2.021684729
0.1 1.628955959 1.989371541
0.2 1.561851956 1.943431068
0.3 1.470725191 1.880525055
0.4 1.354801306 1.795109572
0.5 1.212480295 1.678913408
0.6 1.041277056 1.520057986
0.7 0.837718037 1.301705004
0.8 0.591851497 1.00004621
0.9 0.313698147 0.581347364
1 -0.023794776 -0.002389601
Table 2: The rate of heat transfer for 01, 02
hi Nul Nu2
-1 -0.60629 -4.09774
-0.9 -0.55592 -4.03496
-0.8 -0.50267 -3.94102
-0.7 -0.44668 -3.80182
-0.6 -0.38814 -3.59844
-0.5 -0.32728 -3.30739
-0.4 -0.26439 -2.90303
-0.3 -0.19983 -2.36368
-0.2 -0.13395 -1.68215
-0.1 -0.0672 -0.87744
0 0 0
0.1 0.0672 0.87744
0.2 0.13396 1.68215
0.3 0.19983 2.36368
0.4 0.26439 2.90303
0.5 0.32728 3.30739
0.6 0.38814 3.59844
0.7 0.44668 3.80182
0.8 0.50267 3.94102
0.9 0.55592 4.03496
1 0.60629 4.09774
For 61,
we have
do
Nu =——=—1.16tanh 0.58y (25)
dy
And for 62
We have,
do
Nu = o —4.22tanh 2.11y (26)
Y

The result (25) and (26) are given in Table 2.
DISCUSSION

Table 1 shows the result given in (20) and (24) while
Table 2 present the result obtamed in (25) and (26). While
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Fig. 1: Combine velocity profile
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Fig. 2: Heat transfer rate

Fig. 1 shows the relationship between the two results
presented in Table 1 and Fig. 2 shows the rate of heat
transfer.

CONCLUSION

We have studied the heat transfer during
combustion reaction in a channel, the possible application
of this result is in fractured reservoir, when air or oxygen
is introduced into oil reservoir and oxidation or
combustion 13 mduced since the viscosity of crude oil
depends on pressure and temperature, the heat reduces
the viscosity thus allowing the oil to flow more readily
during oil recovery. We shall study the effect of a uniform
transverse magnetic field on the flow in our next research.

Nomenclature:

Axaal velocity.

Fluid temperature.

Pressure.

Gravitational force.

Coefticient of volume due to expansion.
Thermal conductivity.

M T S

v : Fluid dynamic viscosity.

P : Fluid density.

Q . Heat per unit mass during reaction.
R : Umniversal gas constant.

E : Activation energy.

U, : The flow mean velocity.

X The co-ordinate in flow direction.
y The co-ordinate across flow.

h : The distance between plate.
T,and T, : Are wall temperature.

=
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